首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Sections of human skin were processed according to the indirect immunofluorescence technique with a rabbit antiserum against human protein gene product 9.5 (PGP 9.5). Immunoreactivity was detected in intraepidermal and dermal nerve fibres and cells. The intraepidermal nerves were varicose or smooth with different diameters, running as single processes or branched, straight or bent, projecting in various directions and terminating in the stratum basale, spinosum or granulosum. The density of the intraepidermal nerves varied between the different skin areas investigated. PGP 9.5-containing axons of the lower dermis were found in large bundles. They separated into smaller axon bundles within the upper dermis, entering this portion of the skin perpendicular to the surface. Then they branched into fibres mainly arranged parallel to the epidermal-dermal junctional zone. However, the fibres en route to the epidermis traversed the upper dermis more or less perpendicularly. Furthermore, immunoreactive dermal nerve fibres were found in the Meissner corpuscles, the arrector pili muscles, hair follicles, around the eccrine and apocrine sweat glands and around certain blood vessels. Such fibres were also observed around most subcutaneous blood vessels, sometimes heavily innervating these structures. Numerous weakly-to-strongly PGP 9.5-immunoreactive cells were found both in the epidermis and in the dermis.  相似文献   

2.
Collagen types I, III, and V in human embryonic and fetal skin   总被引:3,自引:0,他引:3  
The dermis of human skin develops embryonically from lateral plate mesoderm and is established in an adult-like pattern by the end of the first trimester of gestation. In this study the structure, biochemistry, and immunocytochemistry of collagenous matrix in embryonic and fetal dermis during the period of 5 to 26 weeks of gestation was investigated. The dermis at five weeks contains fine, individual collagen fibrils draped over the surfaces of mesenchymal cells. With increasing age, collagen matrix increases in abundance in the extracellular space. The size of fibril diameters increases, and greater numbers of fibrils associate into fiber bundles. By 15 weeks, papillary and reticular regions are recognized. Larger-diameter fibrils, larger fibers, denser accumulations of collagen, and fewer cells distinguish the deeper reticular region from the finer, more cellular papillary region located beneath the epidermis. The distribution of collagen types I, III, and V were studied at the light microscope level by immunoperoxidase staining and at the ultrastructural level by transmission (TEM) and scanning electron microscopy (SEM) with immunogold labeling. By immunoperoxidase, types I and III were found to be evenly distributed, regardless of fetal age, throughout the dermal and subdermal connective tissue with an intensification of staining at the dermal-epidermal junction (DEJ). Staining for types III and V collagen was concentrated around blood vessels. Type V collagen was also localized in basal and periderm cells of the epidermis. By immuno-SEM, types I and III were found associated with collagen fibrils, and type V was localized to dermal cell surfaces and to a more limited extent with fibrils. The results of biochemical analyses for relative amounts of types I, III, and V collagen in fetal skin extracts were consistent with immunoperoxidase data. Type I collagen was 70-75%, type III collagen was 18-21%, and type V was 6-8% of the total of these collagens at all gestational ages tested, compared to 85-90% type I, 8-11% type III, and 2-4% type V in adult skin. The enrichment of both types III and V collagen in fetal skin may reflect in part the proportion of vessel- and nerve-associated collagen versus dermal fibrillar collagen. The accumulation of dermal fibrillar collagen with increasing age would enhance the estimated proportion of type I collagen, even though the ratios of type III to I in dermal collagen fibrils may be similar at all ages.  相似文献   

3.
The nerves and nerve endings in the skin of tropical cattle were studied using histological and histochemical techniques. Many nerve trunks and fibres were present in the reticular and papillary dermis in both hairy and non-hairy skin sites. In non-hairy skin locations such as the muzzle and lower lip, encapsulated endings akin to Krause and Ruffini end bulbs, which arise from myelinated nerve trunks situated lower down the dermis were observed at the upper papillary layer level. Some fibre trunks seen at this level extended upwards to terminate within dermal papillae as bulb-shaped longitudinally lamellated Pacinian-type endings, while other onion-shaped lamellated nerve structures were located either within dermal papillae or near the dermo-epidermal area. Intraepidermal free-ending nerve fibres, appearing non-myelinated were observed in areas with thick epidermis. Intraepidermal free-ending nerve fibres, appearing non-myelinated were observed in areas with thick epidermis. On hairy skin sites, however, organized nerve endings or intraepidermal nerve endings were not readily identifiable.  相似文献   

4.
Fibroblasts derived from the papillary and reticular dermis of human skin and human keratinocytes show differences in their abilities to contract floating three-dimensional gels constructed from type I collagen. Reticular fibroblasts produce greater gel contraction than papillary fibroblasts. When equal numbers of papillary and reticular fibroblasts are mixed in the gels, papillary fibroblasts consistently inhibit gel contraction by reticular fibroblasts indicating interaction between these cell types in the contraction process. Surprisingly, keratinocytes alone produce greater gel contraction than that produced by either fibroblast type. Cooperativity in the gel contraction process is observed when fibroblasts are incorporated into the collagen matrix and keratinocytes are seeded onto the gel surface. Keratinocytes and dermal fibroblasts adhere to the collagen fibril to induce gel contraction by different mechanisms. Fibroblast contraction of collagen gels does not require fibronectin but is a serum-dependent reaction. In contrast, keratinocyte contraction of collagen gels occurs in a serum-free environment. Polyclonal, affinity-purified antibodies to human plasma fibronectin at high concentrations do not inhibit gel contraction by keratinocytes, making unlikely the possibility that fibronectin synthesized by the keratinocyte is a significant factor in the gel contraction process. We are currently examining the possibilities either that keratinocytes are synthesizing other adhesion proteins or that receptors on the cell surface can interact directly with the collagen fiber.  相似文献   

5.
Wound healing of deep and extensive burns can induce hypertrophic scar formation, which is a detrimental outcome for skin functionality. These scars are characterized by an impaired collagen fibril organization with fibril bundles oriented parallel to each other, in contrast with a basket weave pattern arrangement in normal skin. We prepared a reconstructed skin made of a collagen sponge seeded with human fibroblasts and keratinocytes and grown in vitro for 20 days. We transplanted it on the back of nude mice to assess whether this reconstructed skin could prevent scar formation. After transplantation, murine blood vessels had revascularized one-third of the sponge thickness on the fifth day and were observed underneath the epidermis at day 15. The reconstructed skin extracellular matrix was mostly made of human collagen I, organized in loosely packed fibrils 5 days after transplantation, with a mean diameter of 45 nm. After 40-90 days, fibril bundles were arranged in a basket weave pattern while their mean diameter increased to 56 nm, therefore exactly matching mouse skin papillary dermis organization. Interestingly, we showed that an elastic system remodeling was started off in this model. Indeed, human elastin deposits were organized in thin fibrils oriented perpendicular to epidermis at day 90 whereas elastic system usually took years to be re-established in human scars. Our reconstructed skin model promoted in only 90 days the remodeling of an extracellular matrix nearly similar to normal dermis (i.e. collagen fibril diameter and arrangement, and the partial reconstruction of the elastic system).  相似文献   

6.
Frozen sections stained with Oil-red-O and semithin (0.5 μm) plastic sections stained with toluidine blue revealed an abundance of fat globules of various sizes in all strata of the epidermis of bottlenose dolphins (Tursiops truncatus and T. gilli). The fat was rather evenly distributed but sometimes appeared as circumscribed areas of heavier concentration involving hundreds of cells (as seen in a single plane). Occasionally, there were smaller groups of epidermal cells heavily loaded with lipid. The dermis presented a unique phenomenon in the presence of abundant extracellular fat distributed among the collagen bundles as droplets of various sizes or as larger, irregularly shaped lipid particles that seemed to conform to the spaces between collagen bundles. These lipid particles were sometimes seen to be closely applied to the dermal surface of the stratum basale. Equally unusual was the presence of lipid particles of various sizes and shapes in the lumen of some of the vessels of the dermal papillae. Granular cells resembling mast cells were commonly seen in the papillary dermis and some were closely associated with lipid particles. Blood vessels of the reticular dermis tended to have collections of lipid droplets in the loose connective tissue often found adjacent to the tunica adventitia. It is postulated that the extracellular dermal lipids (probably mainly triglycerides) are broken down to free fatty acids that diffuse into the basal layer of the epidermis and are there resynthesized into triglycerides. Possible uses for the epidermal lipids are discussed.  相似文献   

7.
Summary The distribution of collagen types I, III, IV, and of fibronectin has been studied in the human dermis by light and electron-microscopic immunocytochemistry, using affinity purified primary antibodies and tetramethylrhodamine isothiocyanate-conjugated secondary antibodies. Type I collagen was present in all collagen fibers of both papillary and reticular dermis, but collagen fibrils, which could be resolved as discrete entities, were labeled with different intensity. Type III collagen codistributed with type I in the collagen fibers, besides being concentrated around blood vessels and skin appendages. Coexistence of type I and type III collagens in the collagen fibrils of the whole dermis was confirmed by ultrastructural double-labelling experiments using colloidal immunogold as a probe. Type IV collagen was detected in all basement membranes. Fibronectin was distributed in patches among collagen fibers and was associated with all basement membranes, while a weaker positive reaction was observed in collagen fibers. Ageing caused the thinning of collagen fibers, chiefly in the recticular dermis. The labeling pattern of both type I and III collagens did not change in skin samples from patients of up to 79 years of age, but immunoreactivity for type III collagen increased in comparison to younger skins. A loss of fibronectin, likely related to the decreased morphogenetic activity of tissues, was observed with age.  相似文献   

8.
Integrated studies of the structural and metabolic degradation of skin during 4 degrees C refrigerated storage in Eagle's minimal essential medium were undertaken. Skin degeneration occurred in three phases during the first 7 weeks of refrigeration. Phase I (Days 1-10) was characterized by the release of cellular debris and leakage of intracellular enzymes into the storage medium, shrinkage of the epithelium, and vacuolization and cell loss in the vascular bundles of the papillary dermis. The release of debris was accelerated by a 2-hr incubation of the skin at 25 and 37 degrees C prior to 4 degrees C storage. The ability of dermal cells to metabolize glucose, aspartic acid, glutamic acid, ornithine, and orotic acid to carbon dioxide dropped to low levels during Phase I. Phase II (Days 11-30) was characterized by a period of less intense physical decay, but with continued cellular and vascular degeneration. By the third week, there was nearly total loss of recognizable vascular bundles in the papillary dermis. Phase III (Days 31-58) was characterized by the exfoliation of large amounts of cellular debris and significant loss of structural integrity. By the fifth week, nearly all of the nuclei in the epidermis became pyknotic, and the vascular bundles of the reticular dermis were lost. Previous reports of the maximum allowable duration of skin storage at 0-8 degrees C have ranged from 0.3 to 185 days; however, our findings suggest that the useful limit of refrigerated skin storage in nutrient medium is 1 week if physiological function and structural integrity are desired for optimum postgraft performance.  相似文献   

9.
To investigate the vascularization and structure of the skin and its relationship to cutaneous respiration in Pseudobagrus brevicorpus , a histological study by light microscopy was carried out on 15 regions of the skin, including eight body regions, six fins and the barbel. The skin consisted of the epidermis, dermis and subcutis in all regions, except for the barbel that had a relatively thin dermis and subcutis. The epidermis was composed of the outermost layer, the middle layer and the stratum germinativum. There were two kinds of gland cells: the unicellular mucus cells and large club cells. The middle layer had a small number of fine blood capillaries accompanied by dermal collagen in all regions; the mean number of blood capillaries ranged from 0.9 to 5.9. The mean diffusion distance between the capillary endothelial cells and the surface of the epidermis ranged from 50.6 to 126.8 μm. Based on these intra-epithelial blood capillaries, the relative surface area of the respiratory epithelium ranged from 0.1 to a maximum value of 1.2%. The dermis lacking scales had collagen bundles arranged parallel to each other, but vertical fiber bundles around the dorso-lateral regions were seen at intervals. Sensory organs such as taste buds, pit organs and lateral canals were found whereby the taste buds in particular were more abundant in the epidermis of the barbel. The vascularization of the skin may be closely related to an additional respiratory system used to deal with an extreme hypoxic condition during dry seasons.  相似文献   

10.
Abstract

Morphological and histological features of the integument of 2 Hooker’s sea lions, obtained dead in February, were examined. In a 3- week-old pup there were 7 rows of mystacial vibrissae, comprising 40 on the left side of the muzzle and 38 on the right. In the skin of the torso the guard hairs were in the quiescent phase of their growth cycle. In a 2½-year-old specimen a moult was imminent; guard hairs in quiescent follicles were about to be displaced by fibres in developing follicles. Histological features of the older sea lion, which may have been age-related, were coarser collagen bundles in the reticular layer of the dermis and a greater number of secondary follicles. In guard hair follicles of both animals the sweat gland duct opened above the sebaceous gland duct.  相似文献   

11.
The interfollicular dermis of adult human skin is partitioned into histologically and physiologically distinct papillary and reticular zones. Each of these zones contains a unique population of fibroblasts that differ in respect to their proliferation kinetics, rates at which they contract type I collagen gels, and in their relative production of decorin and versican. Here, site-matched papillary and reticular dermal fibroblasts couples were compared to determine whether each population interacted with keratinocytes in an equivalent or different manner. Papillary and reticular fibroblasts grown in monolayer culture differed significantly from each other in their release of keratinocyte growth factor (KGF) and granulocyte-macrophage colony stimulating factor (GM-CSF) into culture medium. Some matched fibroblast couples also differed in their constitutive release of interleukin-6 (IL-6). Papillary fibroblasts produced a higher ratio of GM-CSF to KGF than did corresponding reticular fibroblasts. Interactions between site-matched papillary and reticular couples were also assayed in a three-dimensional culture system where fibroblasts and keratinocytes were randomly mixed, incorporated into type I collagen gels, and allowed to sort. Keratinocytes formed distinctive cellular masses in which the keratinocytes were organized such that the exterior most layer of cells exhibited characteristics of basal keratinocytes and the interior most cells exhibited characteristics of terminally differentiated keratinocytes. In the presence of papillary dermal fibroblasts, keratinocyte masses were highly symmetrical and cells expressed all levels of differentiation markers. In contrast, keratinocyte masses that formed in the presence of reticular fibroblasts tended to have irregular shapes, and terminal differentiation was suppressed. Furthermore, basement membrane formation was retarded in the presence of reticular cells. These studies indicate that site-matched papillary and reticular dermal fibroblasts qualitatively differ in their support of epidermal cells, with papillary cells interacting more effectively than corresponding reticular cells.  相似文献   

12.
Tenascin/hexabrachion is a large glycoprotein of the extracellular matrix. Previous reports have demonstrated that tenascin is associated with epithelial-mesenchymal interfaces during embryogenesis and is prominent in the matrix of many tumors. However, the distribution of tenascin is more restricted in adult tissues. We have found tenascin to be present in normal human skin in a distribution distinct from other matrix proteins. Immunohistochemical studies showed staining of the papillary dermis immediately beneath the basal lamina. Examination of skin that had been split within the lamina lucida of the basement membrane suggested a localization of tenascin beneath the lamina lucida. In addition, there was finely localized staining within the walls of blood vessels and in the smooth muscle bundles of the arrectori pilorem. Very prominent staining was seen around the cuboidal cells that formed the basal layer of sweat gland ducts. The sweat glands themselves did not stain. The distribution of tenascin in the papillary dermis was studied at high resolution by immunoelectron microscopy. Staining was concentrated in small amorphous patches scattered amongst the collagen fibers beneath the basal lamina. These patches were not associated with cell structures, collagen, or elastic fibers. Tenascin could be partially extracted from the papillary dermis by urea, guanidine hydrochloride, or high pH solution. The extracted protein showed a 320-kD subunit similar to that purified from fibroblast or glioma cell cultures. We have developed a sensitive ELISA assay that can quantitate tenascin at concentrations as low as 5 ng/ml. Tests on extracts of the papillary dermis showed tenascin constituted about 0.02-0.05% of the protein extracted.  相似文献   

13.

The present study investigates the layer-specific mechanical behavior of human skin. Motivated by skin’s histology, a biphasic model is proposed which differentiates between epidermis, papillary and reticular dermis, and hypodermis. Inverse analysis of ex vivo tensile and in vivo suction experiments yields mechanical parameters for each layer and predicts a stiff reticular dermis and successively softer papillary dermis, epidermis and hypodermis. Layer-specific analysis of simulations underlines the dominating role of the reticular dermis in tensile loading. Furthermore, it shows that the observed out-of-plane deflection in ex vivo tensile tests is a direct consequence of the layered structure of skin. In in vivo suction experiments, the softer upper layers strongly influence the mechanical response, whose dissipative part is determined by interstitial fluid redistribution within the tissue. Magnetic resonance imaging-based visualization of skin deformation in suction experiments confirms the deformation pattern predicted by the multilayer model, showing a consistent decrease in dermal thickness for large probe opening diameters.

  相似文献   

14.
Full thickness rabbit skin explants were cultured on plastic dish for 1 week and the sequential morphological changes were examined daily by light and electron microscopy. During the cultured period, bundles of dermal collagen fibres gradually loosened and were removed from the upper dermis and from the cut margin of the explant, which was covered by a sheet of migrating epidermal cells. In these areas, cells containing phagocytosed collagen fibrils were observed from the 3rd day to the end of the culture period. These cells containing phagocytosed collagen fibrils included dermal fibroblasts and macrophages, epidermal keratinocytes and endothelial cells lining blood vessels. The presence of acid phosphatase activity in vacuoles containing the collagen fibrils suggested that intracellular degradation of collagen was occurring. In addition, extracellular collagen degradation was recognized around fibroblasts and beneath the migrating epidermis by the high collagenolytic activity at these sites. These findings suggest that both intra- and extracellular collagen degradation may participate in collagen removal from dermal connective tissue in cultured skin explants.  相似文献   

15.
Summary A Ruffini corpuscle was identified in the dense reticular dermis of the human scalp from a patient with alopecia areata. The corpuscle measured approximately 50 m in diameter. One afferent myelinated axon with a diameter of 4–6 m supplies the corpuscle. Branched axon terminals and the associated Schwann cells tightly envelop parallel bundles of collagen fibrils. Axon terminals evidenced focal swellings, and small finger-like protrusions projected into the endoneural connective tissue. The terminals are characterized by the presence of abundant mitochondria, numerous vesicles, particles of glycogen and electron-opaque lipid material. A thin perineural capsule envelops the bundles of collagen fibrils and associated terminals. The present study provides the first electron-microscopic characterization of a Ruffini corpuscle in human hairy skin.This study was supported in part by the Deutsche ForschungsgemeinschaftSupported in part by U.S. Public Health Service Research Contracts NIDR72-2401 and HD4-2869 and Research Grant HD 11216  相似文献   

16.
Abnormalities of the microfibrillar protein fibrillin (Fib) have been reported in Marfan syndrome (MFS). The so-called neonatal Marfan syndrome (nMFS) is a lethal phenotype displaying features that are not seen in classical MFS. We have therefore studied the biosynthesis and extracellular deposition of Fib and decorin in fibroblasts from a patient with nMFS and controls. Immunofluorescence of the patient's cell cultures showed an almost complete absence of Fib and a marked reduction of decorin in the extracellular matrix (ECM). The nMFS skin revealed Fib on subbasal microfibrillar bundles in the papillary dermis, and Fib associated with elastic fibers in the reticular dermis; the bundles and fibers were fragmented and thinner than normal. Pulse-chase labeling of cells with [35S]Met/Cys revealed moderately reduced secretion, but a diminished deposition of Fib in the ECM; this was more apparent at a longer chase time. Fib mRNA and synthesis appeared to be normal, where-as both decorin mRNA and biosynthesis were reduced. We therefore assume a structural Fib defect in this patient causing reduced deposition into and/or enhanced removal from the ECM, whereas the reduced decorin biosynthesis may be a secondary regulatory phenomenon. The clinical relevance of this remains unclear. Our findings imply that Fib defects may be responsible for the severe, complex phenotype of nMFS.  相似文献   

17.
The dermis of adult human skin contains a physiologically heterogeneous population of fibroblasts that interact to produce its unique architecture and that participate in inflammatory and wound repair functions in vivo. This heterogeneity has been well documented for fibroblasts located in the superficial papillary dermis and the deep reticular dermis. However, the existence of diverse fibroblast subpopulations within a given region of the dermis has not been explored. In this study, fibroblast cultures have been established from the superficial dermis following enzymatic dissociation of the tissue. These fibroblasts have been cloned by limiting dilution and initially selected on the basis of morphology and proliferation kinetics. Fibroblasts in some of the clones selected for study express α-smooth muscle actin, a myofibroblast characteristic. Significant differences for fibroblast clones obtained from the same piece of skin have been observed with regard to their rate of collagen lattice contraction, their ability to organize a fibronectin matrix, their release of specific growth factors/cytokines into culture medium, and their response to interleukin-1α. These differences in both morphological and physiological characteristics indicate that the superficial papillary dermis contains a heterogeneous population of fibroblasts. This heterogeneity might indicate that diverse subpopulations of fibroblasts are required to interact in both homeostatic and pathological situations in skin. We thank L’Oréal Life Sciences for providing funding for these studies.  相似文献   

18.
Five patients with cornifying Darier's disease were treated successfully by partial-thickness resection of the skin and dermabrasion down through the papillary dermis into the reticular dermis. Healing was quick and the complication rate was low. Although some lesions recurred, all of these 5 patients have been able to return to full work and are now employed. The histology and genetics of the disease are discussed.  相似文献   

19.
Musculocontractural Ehlers-Danlos syndrome (mcEDS) due to CHST14/D4ST1 deficiency (mcEDS-CHST14) is a recently delineated type of EDS caused by biallelic loss-of-function mutations in CHST14, which results in the depletion of dermatan sulfate (DS). Clinical characteristics of mcEDS-CHST14 consist of multiple malformations and progressive fragility-related manifestations, including skin hyperextensibility and fragility. Skin fragility is suspected to result from the impaired assembly of collagen fibrils caused by alteration of the glycosaminoglycan (GAG) chain of decorin-proteoglycan (PG) from DS to chondroitin sulfate (CS). This systematic investigation of the skin pathology of patients with mcEDS-CHST14 comprised both immunostaining of decorin and transmission electron microscopy-based cupromeronic blue staining to visualize GAG chains. Collagen fibrils were dispersed in the affected papillary to reticular dermis; in contrast, they were regularly and tightly assembled in controls. Moreover, the fibrils exhibited a perpendicular arrangement to the affected epidermis, whereas fibrils were parallel to control epidermis. Affected GAG chains were linear, stretching from the outer surface of collagen fibrils to adjacent fibrils; in contrast, those of controls were curved, maintaining close contact with attached collagen fibrils. This is the first observation of compositional alteration, from DS to CS, of GAG side chains, which caused structural alteration of GAG side chains and resulted in spatial disorganization of collagen networks; this presumably disrupted the ring-mesh structure of GAG side chains surrounding collagen fibrils. McEDS-CHST14 provides a critical example of the importance of DS in GAG side chains of decorin-PG during assembly of collagen fibrils in maintenance of connective tissues.  相似文献   

20.
Vitiligo is a common depigmentation disorder characterized by the selective loss of melanocytes. In our daily clinic experience, we noticed that the skin tightness of hypopigmented lesions would be more evident in comparison to that of uninvolved perilesional skin in vitiligo patients. Therefore, we hypothesized that collagen homeostasis might be maintained in vitiligo lesions, irrespective of the substantial excessive oxidative stress that occurs in association with the disease. We found that the expression levels of collagen-related genes and anti-oxidative enzymes were upregulated in vitiligo-derived fibroblasts. Abundant collagenous fibers were observed in the papillary dermis of vitiligo lesions in comparison to uninvolved perilesional skin by electron microscopy. The production of matrix metalloproteinases that degraded collagen fibers was suppressed. The deposition of acrolein adduct protein, which is a product of oxidative stress, was significantly reduced in vitiligo dermis and fibroblasts. As part of the mechanism, we found upregulation of the NRF2 signaling pathway activity, which is an important defense system against oxidative stress. Taken together, we demonstrated that the anti-oxidative action and collagen production were upregulated and that the collagen degeneration was attenuated in vitiligo dermis. These new findings may provide important clues for the maintenance of antioxidant ability in vitiligo lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号