首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
Synopsis Blood samples from cannulated young adult (2.5–15 kg) white sturgeon, acclimated to San Francisco Bay water (24 ppt) had plasma values of 248.8 ± 13.5 mOsm kg−1 H2O, [Na+] = 125 ± 8.0 mEq 1−1, [K+] = 2.6 ± 0.8 mEq 1−1 and [CL] = 122 ± 3.0 mEq 1−1. Freshwater acclimated sturgeon had an osmolality of 236 ± 7, [Na+] = 131.6 + 4.4, [K+] = 2.5 ± 0.7 and [CL] = 110.6 ± 3.6. Freshwater acclimated fish gradually exposed to sea water (increase of 5 ppt h−1) had higher plasma osmolalities than did the bay water acclimated fish. These young adult sturgeon are able to tolerate transfer from fresh water to sea water as well as gradual transfer from sea water to fresh water. Plasma electrolytes in transferred fish are regulated, but tend to differ from long term acclimated fish at the same salinities. There is a gradual increase in the upper salinity tolerance (abrupt transfer) of juvenile white sturgeon with weight: 5–10 ppt for 0.4–0.9 g fish, 10–15 ppt for 0.7–1.8 g fish, and 15 ppt for 4.9–50.0 g fish. The ability of juveniles to regulate plasma osmolality is limited. The young adult fish are able to tolerate higher salinities (35 ppt) than juvenile sturgeon but probably are also characterized by low activity of the necessary ion exchange mechanisms in the gills which permit rapid adjustment of blood electrolytes with graduate change in external salinity.  相似文献   

2.
The semi-diurnal tidal regime (≥2 m) in the Paria Gulf on the Atlantic coast of Venezuela, and the flat landscape of the region, allow the penetration for tens of km of marine waters into the rivers draining the northeastern coastal plain of the country. The levels of salinity, tidal flooding, and sedimentation decrease perpendicularly from the river channel toward the back swamps. The vegetation varies sequentially from fringe mangroves along the river margins, to back swamps containing forests dominated by Pterocarpus officinalis, herbaceous communities of Lagenocarpus guianensis, and palm swamps with Mauritia flexuosa, Chrysobalanus icaco, and Tabebuia spp. This environmental structure was used to test the hypotheses that: (a) mangrove distribution is strongly associated with salinity of interstitial water, and (b) they occupy areas where tidal influence and sediment dynamics determine a relatively open N cycle. Analyses of soil, water, and plants along a 1.5 km transect located near the confluence of the Guanoco and San Juan Rivers (Sucre and Monagas States, Venezuela) revealed that: (a) conductivity decreased from 11 to 0.2 mmhos cm−1 from the river fringe to the internal swamp, whereas Na in the same stretch decreased from 100 to 2 μM; (b) average leaf tissue concentrations of Na, P, and N decreased significantly along the transect; (c) P. officinalis showed a large Na-exclusion capacity indicated by positive K/Na ratios from 8 to 200, and Crinum erubescens counteracted Na by accumulating K above 1,000 mmol kg−1; (d) leaves varied widely in δ 13C (−25.5 to −32‰) and δ 15N (4 to −10.5‰) values. Samples were aggregated according to soil carbon content corresponding to those of the mangrove forest belt (5–28 mol C kg−1; 0–650 from river fringe) and those of the back swamps (40–44 mol C kg−1; 700–1,500 m from river fringe). The concentrations of Na, P, and N (in mmol kg−1) and δ 15N values (in ‰) were significantly higher in the mangrove forest compared to the back swamp (Na 213 vs. 88; P 41 vs. 16; N 1,535 vs. 727; δ 15N 1.5 vs. −3.7), indicating that the fringe forest was not nutrient limited. These results support the hypotheses that mangroves are restricted to the more-saline sections of the transect, and that the fringe forest has a more open N cycle, favoring 15N accumulation within the system.  相似文献   

3.
Mangroves: obligate or facultative halophytes? A review   总被引:1,自引:0,他引:1  
Salinity plays significant roles in regulating the growth and distribution of mangroves, and the salt tolerance mechanisms of mangroves have been the focus of research for several decades. There are contradictory views regarding the relationship between mangroves and salt: (1) Mangroves are facultative halophytes, i.e. freshwater is a physiological requirement and salt water is an ecological requirement for mangroves because they are capable of growing in freshwater. The former prevents excess respiratory losses while the latter prevents invasion and competition from non-halophytes. (2) Mangroves are obligate halophytes, i.e. salt is necessary for their growth. Mangroves cannot survive in freshwater permanently and salt water is a physiological requirement. Up to now, mangroves are usually considered as facultative halophytes. In this review, we provided five lines of evidence to evaluate these two contradictory views: (1) the results of laboratory culture experiments and field investigations; (2) the viviparous nature of mangroves; (3) the salt accumulation of mangroves under freshwater or low salinity; (4) the effect of salinity on the photosynthetic rate and in vitro enzyme activities, and (5) the effects of salinity fluctuation on mangrove growth and physiology. Contrary to widely accepted view, our evaluations of the aforementioned evidence suggest that mangroves are obligate halophytes. Mangroves can grow in freshwater for a limited time by drawing upon the nutrients and salt reserves in their hypocotyls while prolonged culture in freshwater is fatal to them. Mangroves have the ability to absorb Na+ and Cl rapidly and preferentially under low-salinity conditions. Not all of the enzymes in mangroves are sensitive to salt. In fact, the activities of some enzymes are even stimulated by low or moderate salinity. Plants grown under constant salinity in a laboratory setting are unlikely to behave in the same way as those in their natural habitat with fluctuating salinity. Thus, studies on the effects of freshwater or low salinity and salinity fluctuation on mangroves, as well as the physiological mechanisms that allow maintenance of function under fluctuating salinity conditions should be strengthened in future research.  相似文献   

4.
Because post-agricultural black alder woods have not been the subject of studies on forest recovery, the aim of the research was to investigate the process of colonization of their herb layer by woodland flora. Migration rates of 51 forest plant species in the herb layer of alder woods planted on abandoned meadows, bordering meso- and eutrophic forests, were studied. Mean migration rates calculated for typical wet alderwoods reached 1.20–1.60 m yr−1, for oak-hornbeam forests 1.17–1.63 m yr−1, and for alder-ash carrs 0.79–1.26 m yr−1, exceeding those reported in studies conducted in less fertile, drier sites. Although migration rates for many species exceeded 2 or 3 m, there was a group of slow colonizing species, mainly ancient woodland indicators. Species migration patterns fitted either the model based on the establishment of isolated individuals, or the model of a wave front. The age of the recent forests and the presence of Urtica dioica in their herb layer are the main factors explaining the species composition in post-agricultural black alder woods.  相似文献   

5.
A number of studies have investigated regional and continental scale patterns of carbon (C) stocks in forest ecosystems; however, the altitudinal changes in C storage in different components (vegetation, detritus, and soil) of forest ecosystems remain poorly understood. In this study, we measured C stocks of vegetation, detritus, and soil of 22 forest plots along an altitudinal gradient of 700–2,000 m to quantify altitudinal changes in carbon storage of major forest ecosystems (Pinus koraiensis and broadleaf mixed forest, 700–1,100 m; Picea and Abies forest, 1,100–1,800 m; and Betula ermanii forest, 1,800–2,000 m) on Mt Changbai, Northeast China. Total ecosystem C density (carbon stock per hectare) averaged 237 t C ha−1 (ranging from 112 to 338 t C ha−1) across all the forest stands, of which 153 t C ha−1 (52–245 t C ha−1) was stored in vegetation biomass, 14 t C ha−1 (2.2–48 t C ha−1) in forest detritus (including standing dead trees, fallen trees, and floor material), and 70 t C ha−1 (35–113 t C ha−1) in soil organic matter (1-m depth). Among all the forest types, the lowest vegetation and total C density but the highest soil organic carbon (SOC) density occurred in Betula ermanii forest, whereas the highest detritus C density was observed in Picea and Abies forest. The C density of the three ecosystem components showed distinct altitudinal patterns: with increasing altitude, vegetation C density decreased significantly, detritus C density first increased and then decreased, and SOC density exhibited increasing but insignificant trends. The allocation of total ecosystem C to each component exhibited similar but more significant trends along the altitudinal gradient. Our results suggest that carbon storage and partitioning among different components in temperate forests on Mt Changbai vary greatly with forest type and altitude.  相似文献   

6.
Patterns of mangrove vegetation in two distinct basins of Florida Coastal Everglades (FCE), Shark River estuary and Taylor River Slough, represent unique opportunities to test hypotheses that root dynamics respond to gradients of resources, regulators, and hydroperiod. We propose that soil total phosphorus (P) gradients in these two coastal basins of FCE cause specific patterns in belowground biomass allocation and net primary productivity that facilitate nutrient acquisition, but also minimize stress from regulators and hydroperiod in flooded soil conditions. Shark River basin has higher P and tidal hydrology with riverine mangroves, in contrast to scrub mangroves of Taylor basin with more permanent flooding and lower P across the coastal landscape. Belowground biomass (0–90 cm) of mangrove sites in Shark River and Taylor River basins ranged from 2317 to 4673 g m−2, with the highest contribution (62–85%) of roots in the shallow root zone (0–45 cm) compared to the deeper root zone (45–90 cm). Total root productivity did not vary significantly among sites and ranged from 407 to 643 g m−2 y−1. Root production in the shallow root zone accounted for 57–78% of total production. Root turnover rates ranged from 0.04 to 0.60 y−1 and consistently decreased as the root size class distribution increased from fine to coarse roots, indicating differences in root longevity. Fine root biomass was negatively correlated with soil P density and frequency of inundation, whereas fine root turnover decreased with increasing soil N:P ratios. Lower P availability in Taylor River basin relative to Shark River basin, along with higher regulator and hydroperiod stress, confirms our hypothesis that interactions of stress from resource limitation and long duration of hydroperiod account for higher fine root biomass along with lower fine root production and turnover. Because fine root production and organic matter accumulation are the primary processes controlling soil formation and accretion in scrub mangrove forests, root dynamics in the P-limited carbonate ecosystem of south Florida have a major controlling role as to how mangroves respond to future impacts of sea-level rise.  相似文献   

7.
It is generally known that the water quality of shallow lakes can be influenced significantly by marginal wetlands. In order to study the efficacy of constructed littoral wetlands in the IJsselmeer area (The Netherlands) for water quality improvement, a field survey was carried out in 2003. Vegetation, soil, pore water and surface water characteristics were measured in spring and summer in two types of littoral zones: natural and constructed for 8–16 years. The study showed that constructed wetlands perform well and are suitable to enlarge the vegetated littoral zone in the IJsselmeer area. In both natural and constructed sites vegetation biomass varied between 2,200 g m−2 for helophyte vegetation and 1,300 g m−2 for low herbaceous vegetation. Nutrient concentrations in the pore water of constructed sites tended to be higher than in natural sites. and concentrations in pore water were much lower when vegetation was present, probably as a result of plant uptake. The N and P accumulation rate in the soil of constructed wetlands was 20 g N m−2 y−1 and 3 g P m−2 y−1 in vegetated plots; without vegetation the rate was much lower (8 g N m−2 y−1 and 1.8 g P m−2 y−1). We conclude that concerning their effect on water quality, constructed sites may replace natural sites, at least after 8–16 years. Principal component analysis showed a relationship between vegetation biomass and flooding, and nutrient concentrations in soil and pore water. Biomass was negatively correlated with extractable nutrients and positively with soil total N and P content. Flooding duration was negatively related to pore water salinity and positively to pore water nutrients. Due to their high biomass, helophyte stands retained significantly more nutrients than low pioneer vegetation and are therefore more suitable for improving water quality. Handling editor: S. Declerck  相似文献   

8.
Temporal and spatial occurrence of limnetic larval fish in Lake Banyoles in the spring and summer of 1993 and 1994 indicated that pumpkinseed spawned over 15 weeks (from mid-May to mid-August) and freshwater blenny over 14 weeks (from mid-May until early August). We noted that the spawning period of pumpkinseed commenced earlier in Lake Banyoles than in more northern lakes. Pumpkinseed and freshwater blenny larvae were collected by tow net in both the limnetic (at 4–4.5 m) and littoral zones (at 0–0.5 m), during daylight (no samples were taken during night). Freshwater blenny larvae were more abundant than pumpkinseed larvae. Both of them were more abundant in 1993 than in 1994 (pumpkinseed: 1.61 ind. 100 m−3 vs. 0.70 ind. 100 m−3; freshwater blenny: 3.95 ind. 100 m−3 vs. 1.90 ind. 100 m−3) and in both years they were uniformly distributed in the lake, without differences between the areas considered. The pumpkinseed larvae migrated at 3.5 mm TL into the limnetic zone, and returned to the vegetation of the littoral zone as juveniles. The freshwater blenny larvae were also planktonic (3.5–14 mm TL) but were distributed in both the littoral and limnetic zone before benthic settlement. The larval distribution is discussed on the basis of a trade-off between foraging and predation risk. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
During 1999–2001 the chemical composition and fluxes were measured in rainfall, throughfall, soil solution and stream water in a remote forested site in the Italian Alps. The analysis of temporal patterns revealed the differential behaviour of nitrogen and sulphur and suggested that different mechanisms controlled their flux. No important changes in sulphate concentration and fluxes emerged as the solution passed through the various components of the forest ecosystem, and temporal variations of SO4 in the soil solution and stream were likely driven by the physical process of dilution. The availability of nitrate and ammonia, by contrast, was drastically reduced as throughfall water entered the soil and passed through the mineral layers, irrespective of season. The calculated hydrochemical budget based on throughfall and soil solution N fluxes revealed that ~80% N retention in the forest soil, corresponding to 12 kg ha−1 yr−1, despite a relatively high N deposition loading (15 kg ha−1 yr−1). Most of the leached nitrogen (90%) was in the organic form. Indicators of the N status of this ecosystem, such as C/N ratio in solid and solution phase of the soil and N foliage content as well as land use history were examined. Despite the strong N retention in the forested part of the catchment, the stream water N–NO3 levels were consistently above 10 μg l−1 suggesting that the Val Masino catchment as a whole was less efficient in processing atmospheric N inputs. This contrasting N behaviour illustrates the role of landscape features, such as the soil cover and vegetation type, that is characteristic of an alpine catchment.  相似文献   

10.
A regional forest carbon budget accounting technique based on carbon pools balance with incomes from growing woodstocks and losses from harvesting, fires and other disturbances have been developed. Forest carbon budgets of the Russian administrative units during 1988–2009 have been accounted. The carbon sink to Russian forests have increased from 80 Mt C × yr−1 in 1988 to 230–240 Mt C × yr−1 in late 2000s. This tendency is explained with the decline in harvesting, which have started in 1990s. European part of Russia was found to have higher areally averaged carbon sink compared with the Asian part. It have been associated with peculiar ways of wildfires governance in these two parts.  相似文献   

11.
Bacterial density and productivity were investigated along four salinity gradients within the estuary Ria de Aveiro. Bacterial variables and environmental parameters were measured at three to four stations spanning the entire salinity gradient of the four channels. The rather high variation in bacterial productivity (0.16–7.6 μg C L−1 h−1) along the profiles of salinity indicates that bacterial activity shows a reactive behavior to environmental changing. Bacterial density (0.5–11.2 × 109 cells L−1) with a comparative smaller variation showed a more conservative behavior, mainly reflecting the phytoplankton distribution. Contrary to expectation, minimal values of bacterial productivity were not observed in November–December but in June. In fact, in November–December, the deep zone near the mouth showed the highest values of bacterial activity. At the upper stations, the highest values were observed in October. The relatively high values of bacterial production during the cold rainy season suggest that allochthonous substrates leached out from the surroundings by rain controlled the distribution of bacterial activity in the estuarine system. The substantial decrease in salinity during the rainy season negatively affected bacterial productivity, namely in the marine zone, where water column was highly stratified. Salinity seems to play an indirect role in the regulation of estuarine bacteria because there are different bacterial communities adapted to a wide salinity range.  相似文献   

12.
We determined the impact of the invasive herb, Tradescantia fluminensis Vell., on litter decomposition and nutrient availability in a remnant of New Zealand lowland podocarp–broadleaf forest. Using litter bags, we found that litter beneath mats of Tradescantia decomposed at almost twice the rate of litter placed outside the mat. Values of k (decomposition quotient) were 9.44±0.42 yrs for litter placed beneath Tradescantia and 5.42±0.42 yrs for litter placed in native, non-Tradescantia plots. The impact of Tradescantia on decomposition was evident through the smaller forest floor mass in Tradescantia plots (2.65±1.05 t ha−1) compared with non-Tradescantia plots (5.05±1.05 t ha−1), despite similar quantities of annual leaf litterfall into Tradescantia plots (6.85±0.85 t ha−1 yr−1) and non-Tradescantia plots (7.45±1.05 t ha−1 yr−1). Moreover, there was increased plant nitrate available, as captured on resin bags, in Tradescantia plots (25.77 ± 8.32 cmol(−)/kg resin) compared with non-Tradescantia plots (9.55±3.72 cmol(−)/kg resin). Finally, the annual nutrient uptake by Tradescantia represented a large proportion of nutrients in litterfall (41% N, 61% P, 23% Ca, 46% Mg and 83% K), exceeded the nutrient content of the forest floor (except Ca), but was a small proportion of the topsoil nutrient pools. Taken together, our results show that Tradescantia increases litter decomposition and alters nutrient availability, effects that could influence the long-term viability of the majority of podocarp–broadleaf forest remnants affected with Tradescantia in New Zealand. These impacts are likely mostly due to Tradescantia's vegetation structure (i.e., tall, dense mats) and associated microclimate, compared with native ground covers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Altitudinal forest and climate changes from warm, dry valley bottom (1250 m a.s.l.) to cool, humid ridge top (3550 m a.s.l.) along the typical dry valley slopes of the Bhutan Himalaya were studied. Annual mean temperature decreased upslope with a lapse rate of 0.62 °C·100 m−1 from 18.2 °C at the valley bottom to 4.3 °C at the ridge top. On the contrary volumetric soil moisture content increased from 14.7 to 75.0%. This inverse relationship is the major determinant factor for the distribution of different forest types along the altitudinal gradient. Based on the quantitative vegetation data from 15 plots arranged ca. 200 m in altitude interval (1520–3370 m a.s.l.), a total of 83 tree species belonging to 35 families were recorded. Three major formation types of lower and upper coniferous forests, and a mid-altitude evergreen and deciduous broad-leaved forest were contrasted. Including two transitional types, five forest zones were categorized based on cluster analysis, and each zone can be characterized by the dominants and their phytogeographical traits, viz. (1) west Himalayan warm, dry pine (1520–1760 m a.s.l.), (2) wide ranging east-west Himalayan mixed broad-leaved (1860–2540 m a.s.l.), (3) humid east Himalayan evergreen broad-leaved (2640–2820 m a.s.l.), (4) cool, humid east Himalayan conifer (2950–3210 m a.s.l.), and (5) wide ranging cold, humid conifer (3305–3370 m a.s.l.). Structurally, total basal area (biomass) increased from 15.2 m2 ha−1 in the pine forest (1520 m) to 101.7 m2 ha−1, in the conifer forest (3370 m a.s.l.). Similarly, soil organic carbon increased from 2.7 to 11.3% and nitrogen from 0.2 to 1.9% indicating dry, poor nutrient fragile ecosystem at the dry valley bottom. We concluded that low soil moisture content (<20%) limits downslope extension of broad-leaved species below 1650 m a.s.l. while coldest month’s mean temperature of −1 °C restricted the upslope extension of evergreen broad-leaved species above 3000 m a.s.l. Along the dry valley slopes, the transition from dry pine forest in the valley bottom, to a mixture of dry west Himalayan evergreen and deciduous east Himalayan broad-leaved, and to humid evergreen oak–laurel forests feature a unique pattern of forest type distribution.  相似文献   

14.
Methane emissions from rice paddies were quantified by using an automatic field system stationed in Zhejiang Province, one of the centres for rice cultivation in China. The data set showed pronouned interannual variations over 5 consecutive vegetation periods; by computing average values of all experimental plots the annual emissions were 177 g CH4 m−2 yr−1 in 1987, 50 g CH4 m−2 yr−1 in 1988, and 187 g CH4 m−2 yr−1 in 1989. The field preparations encompassed 4 different treatments: (1) no fertilizers, (2) mineral fertilizer (KCl, K2SO4), (3) organic manure (rape seeed cake, animal manure), (4) mineral fertilizer plus organic manure. The methane emission rates of the different fertilizer treatments did not show significant differences. The mean emission rates, calculated over the entire observation period of 5 seasons, were 30.4 mg CH4 m−2 h−1 (non-fertilized plot) and 28.3 mg CH4 m−2 h−1 (mineral fertilizers). These values indicate a high level of methane production even without additional input of organic material into the rice-soils. In the other plots, the organic fertilizers were added once per vegetation period at app. 1 t fresh weight per ha, a relatively low application rate by agronomical standards. The mean emission rates were 35.1 mg CH4 m−2 h−1 when manure was applied as sole fertilizer and 27.5 mg CH4 m−2 h−1 when applied jointly with potassium fertilizers. Based on the results of this study we estimate a range of 18–28 Tg CH4 yr−1 as the total methane emission from Chinese rice fields. However, more field data from representative sites in China are needed to reduce the uncertainties in this estimate.  相似文献   

15.
Plants, by influencing water fluxes across the ecosystem–vadose zone–aquifer continuum, can leave an imprint on salt accumulation and distribution patterns. We explored how the conversion of native grasslands to oak plantations affected the abundance and distribution of salts on soils and groundwater through changes in the water balance in naturally salt-affected landscapes of Hortobagy (Hungary), a region where artificial drainage performed ∼150 years ago lowered the water table (from −2 to −5 m) decoupling it from the surface ecosystem. Paired soil sampling and detailed soil conductivity transects revealed consistently different salt distribution patterns between grasslands and plantations, with shallow salinity losses and deep salinity gains accompanying tree establishment. Salts accumulated in the upper soil layers during pre-drainage times have remained in drained grasslands but have been flushed away under tree plantations (65 and 83% loss of chloride and sodium, respectively, in the 0 to −0.5 m depth range) as a result of a five- to 25-fold increase in infiltration rates detected under plantations. At greater depth, closer to the current water table level, the salt balance was reversed, with tree plantations gaining 2.5 kg sodium chloride m−2 down to 6 m depth, resulting from groundwater uptake and salt exclusion by tree roots in the capillary fringe. Diurnal water table fluctuations, detected in a plantation stand but not in the neighbouring grasslands, together with salt mass balances suggest that trees consumed ∼380 mm groundwater per year, re-establishing the discharge regime and leading to higher salt accumulation rates than those interrupted by regional drainage practices more than a century ago. The strong influences of vegetation changes on water dynamics can have cascading consequences on salt accumulation and distribution, and a broad ecohydrological perspective that explicitly considers vegetation–groundwater links is needed to anticipate and manage them.  相似文献   

16.
Model experiments on a possibility that pathogenic enterobacteria Salmonella enteritidis (Gartneri) can grow on decaying algal mats with prevalence of the filamentous algae Cladophora glomerata (L.) Kütz were carried out. Samples of algal mats have been collected in the eastern part of the Gulf of Finland in the Baltic Sea. A bacterial culture of Salmonella enteritidis was placed into tubes containing samples of mats. The intensive growth of salmonella was noted in alga samples collected in the freshwater zone (salinity 0.2–1.5‰); growth was practically absent in the samples of algae collected in a zone with salinity 2–3‰, while salmonella remained viable in the control tubes with water without algae. The growth of coliform enterobacteria initially inhabited in the algal mats was discovered in all experiments. Studies carried out in 2009 show that the thickness of the algal mats in the costal zones of the Gulf of Finland reached 20 cm and their biomass reached a few tons per 1 km2. These experiments showed that dead algal mats stimulate the growth of enterobacteria in the littoral zone of the Baltic Sea, especially in the freshwater part, and can promote the development of these pathogenic microorganisms.  相似文献   

17.
T. Penczak  C. Lasso 《Hydrobiologia》1991,215(2):121-133
The River Todasana is a small rain tropical forest stream emptying to the Caribbean Sea (Venezuela). Fish were sampled by electrofishing at three contiguous sites (pool, riffle, raceway). Nine species were recorded. Their mean biomass and production were: 43.72 kg ha−1 and 36.94 kg ha−1 yr−1, maximum: 55.47 kg ha−1 and 42.33 kg ha−1 yr−1, respectively.  相似文献   

18.
The distribution of pollen in marine sediments is used to record vegetation changes over the past 30,000 years on the adjacent continent. A transect of marine pollen sequences from the mouth of the river Congo (∼5°S) to Walvis Bay and Lüderitz (∼25°S) shows vegetation changes in Congo, Angola and Namibia from the last glacial period into the Holocene. The comparison of pollen records from different latitudes provides information about the latitudinal shift of open forest and savannahs (Poaceae pollen), the extension of lowland forest (rain forest pollen) and Afromontane forest (Podocarpus pollen), and the position of the desert fringe (pollen of Caryophyllaceae, Chenopodiaceae and Amaranthaceae). High Cyperaceae pollen percentages in sediments from the last glacial period off the mouth of the river Congo suggest the presence of open swamps rather than savannah vegetation in the Congo Basin. Pollen from Restionaceae in combination with Stoebe-type pollen (probably from Elytropappus) indicates a possible northwards extension of winter rain vegetation during the last glacial period. The record of Rhizophora (mangrove) pollen is linked to erosion of the continental shelf and sea-level rise. Pollen influx is highest off river mouths (10–2000 grains year−1 cm−2), close to the coast (300–6000 grains year−1 cm−2), but is an order of magnitude lower at sites situated far from the continent (<10 grains year−1 cm−2).  相似文献   

19.
Substantive encroachment of Phragmites australis (common reed) occurred since the 1970s in the Wilderness estuarine lakes, a National Park and Ramsar site. Cutting of reeds in late summer as a means of controlling reed encroachment was investigated under three different inundation regimes, termed ‘wet zone’ (permanently inundated), ‘moist zone’ (infrequently inundated) and ‘dry zone’ (rarely inundated). The effects of a single annual cut were furthermore compared to those of two successive annual cuts. Without cutting, wet zones had thinner and shorter, but more abundant reeds than drier zones. Cutting in dry and moist zones resulted after one year in more, but shorter and thinner reeds, whereas in wet zones reeds were almost eliminated. After two years, reeds in wet zones had not recovered from the first annual cut. In moist and dry zones, a second annual cut did not result in amplified detrimental effects on reeds. Throughout the experiment, moisture zone was the factor with the largest effect, cutting had the second largest impact, and inter-annual variation was relatively unimportant. We have demonstrated that cutting alone has minimal long-term effect on above-ground reed biomass, whereas reed growth and survivorship can be strongly suppressed through cutting in late-summer in conjunction with inundation with moderately saline water (5.0–7.5 g kg−1). Cut reeds must remain completely inundated for at least a four-week period, or else emerging shoots should be re-cut below the water level. Cut material should be removed from the treatment site. Whenever possible, cutting and inundation should be undertaken to coincide with periods when salinity levels of surface waters are higher. It is foreseen that reed management in the Wilderness Lakes would have positive effects on other biota by countering progression towards single species domination of wetland plant communities and reinstating exposed sandbanks which are extensively utilised by resident and migratory waterbirds.  相似文献   

20.
Much of the primary vegetation at low altitudes has been greatly altered or destroyed by a long history of human activities. This is particularly true in eastern China, where low-altitude areas are now dominated by secondary forests or plantations. Altitudinal vegetation zonation of this region is often based on these secondary forests, resulting in seral vegetation with an obscure zonal sequence. Here, we deduced the potential climax vegetation according to the regeneration patterns of the dominant species of the secondary forests at low altitudes (below 1,000 m a.s.l.) on Mt. Tianmu (1,506 m a.s.l., 30°18′30″–30°21′37″N, 119°24′11″–119°27′11″E). Based on the potential climax vegetation combined with the floristic composition and community structure, three vegetation zones were identified, viz: (1) evergreen broad-leaved forest zone (400–950 m a.s.l.); (2) evergreen and deciduous broad-leaved mixed forest zone (950–1,100 m a.s.l.); (3) deciduous broad-leaved forest zone (1,100–1,506 m a.s.l.). The altitudinal vegetation zones identified in this study correspond with the thermal conditions on Mt. Tianmu. The distribution of vegetation on Mt. Tianmu was limited by lower temperatures in winter, and the altitudinal thermal vegetation zones on this mountain were more similar to the thermal vegetation of Japan than to that of China. The vertical distributions and roles of conifers were different between the eastern and the western regions along 30°N latitude in humid East Asia. Cryptomeria fortunei formed the emergent layer, towering above the broad-leaved canopy at middle altitudes as C. japonica on Yakushima, but disappeared at high altitudes with hydrothermal limitation on Mt. Tianmu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号