首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein C‐termini study is still a challenging task and far behind its counterpart, N‐termini study. MS based C‐terminomics study is often hampered by the low ionization efficiency of C‐terminal peptides and the lack of efficient enrichment methods. We previously optimized the C‐terminal amine‐based isotope labeling of substrates (C‐TAILS) method and identified 369 genuine protein C‐termini in Escherichia coli. A key limitation of C‐TAILS is that the prior protection of amines and carboxylic groups at protein level makes Arg‐C as the only specific enzyme in practice. Herein, we report an approach combining multi‐enzyme digestion and C‐TAILS, which significantly increases the identification rate of C‐terminal peptides and consequently improves the applicability of C‐TAILS in biological studies. We carry out a systematic study and confirm that the omission of the prior amine protection at protein level has a negligible influence and allows the application of multi‐enzyme digestion. We successfully apply five different enzyme digestions to C‐TAILS, including trypsin, Arg‐C, Lys‐C, Lys‐N, and Lysarginase. As a result, we identify a total of 722 protein C‐termini in E. coli, which is at least 66% more than the results using any single enzyme. Moreover, the favored enzyme and enzyme combination are discovered. Data are available via ProteomeXchange with identifier PXD004275.  相似文献   

2.
The Src Homology 3 (SH3) domain is an important regulatory domain found in many signaling proteins. X‐ray crystallography and NMR structures of SH3 domains are generally conserved but other studies indicate that protein flexibility and dynamics are not. We previously reported that based on hydrogen exchange mass spectrometry (HX MS) studies, there is variable flexibility and dynamics among the SH3 domains of the Src‐family tyrosine kinases and related proteins. Here we have extended our studies to the SH3 domains of the Tec family tyrosine kinases (Itk, Btk, Tec, Txk, Bmx). The SH3 domains of members of this family augment the variety in dynamics observed in previous SH3 domains. Txk and Bmx SH3 were found to be highly dynamic in solution by HX MS and Bmx was unstructured by NMR. Itk and Btk SH3 underwent a clear EX1 cooperative unfolding event, which was localized using pepsin digestion and mass spectrometry after hydrogen exchange labeling. The unfolding was localized to peptide regions that had been previously identified in the Src‐family and related protein SH3 domains, yet the kinetics of unfolding were not. Sequence alignment does not provide an easy explanation for the observed dynamics behavior, yet the similarity of location of EX1 unfolding suggests that higher‐order structural properties may play a role. While the exact reason for such dynamics is not clear, such motions can be exploited in intra‐ and intermolecular binding assays of proteins containing the domains.  相似文献   

3.
Polyethylene glycol modification (PEGylation) can enhance the pharmacokinetic properties of therapeutic proteins by the attachment of polyethylene glycol (PEG) to the surface of a protein to shield the protein surface from proteolytic degradation and limit aggregation. However, current PEGylation strategies often reduce biological activity, potentially as a result of steric hindrance of PEG. Overall, there are no structure‐based guidelines for selection of conjugate sites that retain optimal biological activity with improved pharmacokinetic properties. In this study, site‐specific PEGylation based on the FGF2‐FGFR1‐heparin complex structure is performed. The effects of the conjugate sites on protein function are investigated by measuring the receptor/heparin binding affinities of the modified proteins and performing assays to measure cell‐based bio‐activity and in vivo stability. Comprehensive analysis of these data demonstrates that PEGylation of FGF2 that avoids the binding sites for fibroblast growth factor receptor 1 (FGFR1) and heparin provides optimal pharmacokinetic enhancement with minimal losses to biological activity. Animal experiments demonstrate that PEGylated FGF2 exhibits greater efficacy in protecting against traumatic brain injury‐induced brain damage and neurological functions than the non‐modified FGF2. This rational structure‐based PEGylation strategy for protein modification is expected to have a major impact in the area of protein‐based therapeutics.  相似文献   

4.
A relaxin‐like gonad‐stimulating peptide (RGP) in starfish was the first identified invertebrate gonadotropin responsible for final gamete maturation. An RGP ortholog was newly identified from Astropecten scoparius of the order Paxillosida. The A. scoparius RGP (AscRGP) precursor is encoded by a 354 base pair open reading frame and is a 118 amino acid (aa) protein consisting of a signal peptide (26 aa), B‐chain (21 aa), C‐peptide (47 aa), and A‐chain (24 aa). There are three putative processing sites (Lys‐Arg) between the B‐chain and C‐peptide, between the C‐peptide and A‐chain, and within the C‐peptide. This structural organization revealed that the mature AscRGP is composed of A‐ and B‐chains with two interchain disulfide bonds and one intrachain disulfide bond. The C‐terminal residues of the B‐chain are Gln‐Gly‐Arg, which is a potential substrate for formation of an amidated C‐terminal Gln residue. Non‐amidated (AscRGP‐GR) and amidated (AscRGP‐NH2) peptides were chemically synthesized and their effect on gamete shedding activity was examined using A. scoparius ovaries. Both AscRGP‐GR and AscRGP‐NH2 induced oocyte maturation and ovulation in similar dose‐dependent manners. This is the first report on a C‐terminally amidated functional RGP. Collectively, these results suggest that AscRGP‐GR and AscRGP‐NH2 act as a natural gonadotropic hormone in A. scoparius.  相似文献   

5.
The amino acid Aib predisposes a peptide to be helical with context‐dependent preference for either 310‐ or α‐ or a mixed helical conformation. Short peptides also show an inherent tendency to be unfolded. To characterize helical and unfolded states adopted by water‐soluble Aib‐containing peptides, the conformational preference of Ac‐Ala‐Aib‐Ala‐Lys‐Ala‐Aib‐Lys‐Ala‐Lys‐Ala‐Aib‐Tyr‐NH2 was determined by CD, NMR and MD simulations as a function of temperature. Temperature‐dependent CD data indicated the contribution of two major components, each an admixture of helical and extended/polyproline II structures. Both right‐ and left‐handed helical conformations were detected from deconvolution of CD data and 13C NMR experiments. The presence of a helical backbone, more pronounced at the N‐terminal, and a temperature‐induced shift in α‐helix/310‐helix equilibrium, more pronounced at the C‐terminal, emerged from NMR data. Starting from polyproline II, the N‐terminal of the peptide folded into a helical backbone in MD simulations within 5 ns at 60°C. Longer simulations showed a mixed‐helical backbone to be stable over the entire peptide at 5°C while at 60°C the mixed‐helix was either stable at the N‐terminus or occurred in short stretches through out the peptide, along with a significant population of polyproline II. Our results point towards conformational heterogeneity of water‐soluble Aib‐based peptide helices and the associated subtleties. The problem of analyzing CD and NMR data of both left‐ and right‐handed helices are discussed, especially the validity of the ellipticity ratio [θ]222/[θ]207, as a reporter of α‐/310‐ population ratio, in right‐ and left‐handed helical mixtures. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
An efficient protein‐folding pathway leading to target structure, and the avoidance of aggregation, is essential to protein evolution and de novo design; however, design details to achieve efficient folding and avoid aggregation are poorly understood. We report characterization of the thermally‐induced aggregate of fibroblast growth factor‐1 (FGF‐1), a small globular protein, by solid‐state NMR. NMR spectra are consistent with residual structure in the aggregate and provide evidence of a structured region that corresponds to the region of the folding nucleus. NMR data on aggregated FGF‐1 also indicate the presence of unstructured regions that exhibit hydration‐dependent dynamics and suggest that unstructured regions of aggregated FGF‐1 lie outside the folding nucleus. Since it is known that regions outside the folding nucleus fold late in the folding pathway, we postulate that these regions unfold early in the unfolding pathway and that the partially folded state is more prone to intermolecular aggregation. This interpretation is further supported by comparison with a designed protein that shares the same FGF‐1 folding nucleus sequence, but has different 1° structure outside the folding nucleus, and does not thermally aggregate. The results suggest that design of an efficient folding nucleus, and the avoidance of aggregation in the folding pathway, are potentially separable design criteria – the latter of which could principally focus upon the physicochemical properties of 1° structure outside the folding nucleus.  相似文献   

7.
Myosin light chain kinase (MLCK) is a key regulator of various forms of cell motility including smooth muscle contraction, cell migration, cytokinesis, receptor capping, secretion, etc. Inhibition of MLCK activity in endothelial and epithelial monolayers using cell‐permeant peptide Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐Arg‐Lys (PIK, P eptide I nhibitor of K inase) allows protecting the barrier capacity, suggesting a potential medical use of PIK. However, low stability of L ‐PIK in a biological milieu prompts for development of more stable L ‐PIK analogues for use as experimental tools in basic and drug‐oriented biomedical research. Previously, we designed PIK1, H‐(NαMe)Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐Arg‐Lys‐NH2, that was 2.5‐fold more resistant to peptidases in human plasma in vitro than L ‐PIK and equal to it as MLCK inhibitor. In order to further enhance proteolytic stability of PIK inhibitor, we designed the set of six site‐protected peptides based on L ‐PIK and PIK1 degradation patterns in human plasma as revealed by 1H‐NMR analysis. Implemented modifications increased half‐live of the PIK‐related peptides in plasma about 10‐fold, and these compounds retained 25–100% of L ‐PIK inhibitory activity toward MLCK in vitro. Based on stability and functional activity ranking, PIK2, H‐(NαMe)Arg‐Lys‐Lys‐Tyr‐Lys‐Tyr‐Arg‐D ‐Arg‐Lys‐NH2, was identified as the most stable and effective L ‐PIK analogue. PIK2 was able to decrease myosin light chain phosphorylation in endothelial cells stimulated with thrombin, and this effect correlated with the inhibition by PIK2 of thrombin‐induced endothelial hyperpermeability in vitro. Therefore, PIK2 could be used as novel alternative to other cell‐permeant inhibitors of MLCK in cell culture‐based and in vivo studies where MLCK catalytic activity inhibition is required. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Aims: This study aimed at isolating thermophilic bacteria that utilize cheap carbon substrates for the economically feasible production of poly(3‐hydroxybutyrate), poly(3HB), at elevated temperatures. Methods and Results: Thermophilic bacteria were enriched from an aerobic organic waste treatment plant in Germany, and from hot springs in Egypt. Using the viable colony staining method for hydrophobic cellular inclusions with Nile red in mineral salts medium (MSM) containing different carbon sources, six Gram‐negative bacteria were isolated. Under the cultivation conditions used in this study, strains MW9, MW11, MW12, MW13 and MW14 formed stable star‐shaped cell‐aggregates (SSCAs) during growth; only strain MW10 consisted of free‐living rod‐shaped cells. The phylogenetic relationships of the strains as derived from 16S rRNA gene sequence comparisons revealed them as members of the Alphaproteobacteria. The 16S rRNA gene sequences of the isolates were very similar (>99% similarity) and exhibited similarities ranging from 93 to 99% with the most closely related species that were Chelatococcus daeguensis, Chelatococcus sambhunathii , Chelatococcus asaccharovorans, Bosea minatitlanensis, Bosea thiooxidans and Methylobacterium lusitanum. Strains MW9, MW10, MW13 and MW14 grew optimally in MSM with glucose, whereas strains MW11 and MW12 preferred glycerol as sole carbon source for growth and poly(3HB) accumulation. The highest cell density and highest poly(3HB) content attained were 4·8 g l?l (cell dry weight) and 73% (w/w), respectively. Cells of all strains grew at temperatures between 37 and 55°C with the optimum growth at 50°C. Conclusions: New PHA‐accumulating thermophilic bacterial strains were isolated and characterized to produce poly(3HB) from glucose or glycerol in MSM at 50°C. SSCAs formation was reported during growth. Significance and Impact of the Study: To the best of our knowledge, this is the first report on the formation of SSCAs by PHA‐accumulating bacteria and also by thermophilic bacteria. PHA‐producing thermophiles can significantly reduce the costs of fermentative PHA production.  相似文献   

9.
Attracted by the possibility to optimize time and yield of the synthesis of difficult peptide sequences by MW irradiation, we compared Fmoc/tBu MW‐assisted SPPS of 1–34 N‐terminal fragment of parathyroid hormone‐related peptide (PTHrP) with its conventional SPPS carried out at RT. MWs were applied in both coupling and deprotection steps of SPPS protocol. During the stepwise elongation of the resin‐bound peptide, monitoring was conducted by performing MW‐assisted mini‐cleavages and analyzing them by UPLC‐ESI‐MS. Identification of some deletion sequences was helpful to recognize critical couplings and as such helped to guide the introduction of MW irradiations to these stages. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
A series of model compounds containing 3‐amino‐1H‐pyrazole‐5‐carboxylic acid residue with N‐terminal amide/urethane and C‐terminal amide/hydrazide/ester groups were investigated by using NMR, Fourier transform infrared, and single‐crystal X‐ray diffraction methods, additionally supported by theoretical calculations. The studies demonstrate that the most preferred is the extended conformation with torsion angles ? and ψ close to ±180°. The studied 1H‐pyrazole with N‐terminal amide/urethane and C‐terminal amide/hydrazide groups solely adopts this energetically favored conformation confirming rigidity of that structural motif. However, when the C‐terminal ester group is present, the second conformation with torsion angles ? and ψ close to ±180° and 0°, respectively, is accessible. The conformational equilibrium is observed in NMR and Fourier transform infrared studies in solution in polar environment as well as in the crystal structures of other related compounds. The observed conformational preferences are clearly related to the presence of intramolecular interactions formed within the studied residue. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
The increasing interest in click chemistry and its use to stabilize turn structures led us to compare the propensity for β‐turn stabilization of different analogs designed as mimics of the β‐turn structure found in tendamistat. The β‐turn conformation of linear β‐amino acid‐containing peptides and triazole‐cyclized analogs were compared to ‘conventional’ lactam‐ and disulfide‐bridged hexapeptide analogs. Their 3D structures and their propensity to fold in β‐turns in solution, and for those not structured in solution in the presence of α‐amylase, were analyzed by NMR spectroscopy and by restrained molecular dynamics with energy minimization. The linear tetrapeptide Ac‐Ser‐Trp‐Arg‐Tyr‐NH2 and both the amide bond‐cyclized, c[Pro‐Ser‐Trp‐Arg‐Tyr‐D ‐Ala] and the disulfide‐bridged, Ac‐c[Cys‐Ser‐Trp‐Arg‐Tyr‐Cys]‐NH2 hexapeptides adopt dominantly in solution a β‐turn conformation closely related to the one observed in tendamistat. On the contrary, the β‐amino acid‐containing peptides such as Ac‐(R)‐β3‐hSer‐(S)‐Trp‐(S)‐β3‐hArg‐(S)‐β3‐hTyr‐NH2, and the triazole cyclic peptide, c[Lys‐Ser‐Trp‐Arg‐Tyr‐βtA]‐NH2, both specifically designed to mimic this β‐turn, do not adopt stable structures in solution and do not show any characteristics of β‐turn conformation. However, these unstructured peptides specifically interact in the active site of α‐amylase, as shown by TrNOESY and saturation transfer difference NMR experiments performed in the presence of the enzyme, and are displaced by acarbose, a specific α‐amylase inhibitor. Thus, in contrast to amide‐cyclized or disulfide‐bridged hexapeptides, β‐amino acid‐containing peptides and click‐cyclized peptides may not be regarded as β‐turn stabilizers, but can be considered as potential β‐turn inducers. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
We describe a cyclic on‐column procedure for the sequential degradation of complex O‐glycans on proteins or peptides by periodate oxidation of sugars and cleavage of oxidation products by elimination. Desialylated glycoproteins were immobilized to alkali‐stable, reversed‐phase Poros 20 beads followed by two degradation cycles and the eluted apoproteins were either separated by SDS gel electrophoresis or digested with trypsin prior to LC/ESI‐MS. We demonstrate on the peptide and protein level that even complex glycan moieties are removed under mild conditions with only minimal effects on structural integrity of the peptide core by fragmentation, dehydration or by racemization of the Lys/Arg residues. The protocol is applicable on gel‐immobilized glycoproteins after SDS gel electrophoresis. Conversion of O‐glycoproteins into their corresponding apoproteins should result in facilitated accessibility of tryptic cleavage sites, increase the numbers of peptide fragments, and accordingly enhance protein coverage and identification rates within the subproteome of mucin‐type O‐glycoproteins.  相似文献   

13.
Nitration of tyrosine residues has been shown to be an important oxidative modification in proteins and has been suggested to play a role in several diseases such as atherosclerosis, asthma, lung and neurodegenerative diseases. Detection of nitrated proteins has been mainly based on the use of nitrotyrosine‐specific antibodies. In contrast, only a small number of nitration sites in proteins have been unequivocally identified by MS. We have used a monoclonal 3‐NT‐specific antibody, and have synthesized a series of tyrosine‐nitrated peptides of prostacyclin synthase (PCS) in which a single specific nitration site at Tyr‐430 had been previously identified upon reaction with peroxynitrite 17 . The determination of antibody‐binding affinity and specificity of PCS peptides nitrated at different tyrosine residues (Tyr‐430, Tyr‐421, Tyr‐83) and sequence mutations around the nitration sites provided the identification of an epitope motif containing positively charged amino acids (Lys and/or Arg) N‐terminal to the nitration site. The highest affinity to the anti‐3NT‐antibody was found for the PCS peptide comprising the Tyr‐430 nitration site with a KD of 60 nM determined for the peptide, PCS(424‐436‐Tyr‐430NO2); in contrast, PCS peptides nitrated at Tyr‐421 and Tyr‐83 had substantially lower affinity. ELISA, SAW bioaffinity, proteolytic digestion of antibody‐bound peptides and affinity‐MS analysis revealed highest affinity to the antibody for tyrosine‐nitrated peptides that contained positively charged amino acids in the N‐terminal sequence to the nitration site. Remarkably, similar N‐terminal sequences of tyrosine‐nitration sites have been recently identified in nitrated physiological proteins, such as eosinophil peroxidase and eosinophil‐cationic protein. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
Although there is X‐ray crystallographic evidence that the interaction between major histocompatibility complex (MHC, in humans HLA) class I molecules and T cell receptors (TCR) or killer cell Ig‐like receptors (KIR) may be accompanied by considerable changes in the conformation of selected residues or even entire loops within TCR or KIR, conformational changes between receptor‐bound and ‐unbound MHC class I molecules of comparable magnitude have not been observed so far. We have previously determined the structure of the MHC class I molecule HLA‐A1 bound to a melanoma antigen‐encoding gene (MAGE)‐A1‐derived peptide in complex with a recombinant antibody fragment with TCR‐like specificity, Fab‐Hyb3. Here, we compare the X‐ray structure of HLA‐A1:MAGE‐A1 with that complexed with Fab‐Hyb3 to gain insight into structural changes of the MHC molecule that might be induced by the interaction with the antibody fragment. Apart from the expulsion of several water molecules from the interface, Fab‐Hyb3 binding results in major rearrangements (up to 5.5 Å) of heavy chain residues Arg65, Gln72, Arg145, and Lys146. Residue 65 is frequently and residues 72 and 146 are occasionally involved in TCR binding‐induced conformational changes, as revealed by a comparison with MHC class I structures in TCR‐liganded and ‐unliganded forms. On the other hand, residue 145 is subject to a reorientation following engagement of HLA‐Cw4 and KIR2DL1. Therefore, conformational changes within the HLA‐A1:MAGE‐A1:Fab‐Hyb3 complex include MHC residues that are also involved in reorientations in complexes with natural ligands, pointing to their central importance for the peptide‐dependent recognition of MHC molecules.  相似文献   

15.
The extrinsic proteins of photosystem II of higher plants and green algae PsbO, PsbP, PsbQ, and PsbR are essential for stable oxygen production in the oxygen evolving center. In the available X‐ray crystallographic structure of higher plant PsbQ residues S14‐Y33 are missing. Building on the backbone NMR assignment of PsbQ, which includes this “missing link”, we report the extended resonance assignment including side chain atoms. Based on nuclear Overhauser effect spectra a high resolution solution structure of PsbQ with a backbone RMSD of 0.81 Å was obtained from torsion angle dynamics. Within the N‐terminal residues 1–45 the solution structure deviates significantly from the X‐ray crystallographic one, while the four‐helix bundle core found previously is confirmed. A short α‐helix is observed in the solution structure at the location where a β‐strand had been proposed in the earlier crystallographic study. NMR relaxation data and unrestrained molecular dynamics simulations corroborate that the N‐terminal region behaves as a flexible tail with a persistent short local helical secondary structure, while no indications of forming a β‐strand are found. Proteins 2015; 83:1677–1686. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

16.
Human age‐onset cataracts are believed to be caused by the aggregation of partially unfolded or covalently damaged lens crystallin proteins; however, the exact molecular mechanism remains largely unknown. We have used microseconds of molecular dynamics simulations with explicit solvent to investigate the unfolding process of human lens γD‐crystallin protein and its isolated domains. A partially unfolded folding intermediate of γD‐crystallin is detected in simulations with its C‐terminal domain (C‐td) folded and N‐terminal domain (N‐td) unstructured, in excellent agreement with biochemical experiments. Our simulations strongly indicate that the stability and the folding mechanism of the N‐td are regulated by the interdomain interactions, consistent with experimental observations. A hydrophobic folding core was identified within the C‐td that is comprised of a and b strands from the Greek key motif 4, the one near the domain interface. Detailed analyses reveal a surprising non‐native surface salt‐bridge between Glu135 and Arg142 located at the end of the ab folded hairpin turn playing a critical role in stabilizing the folding core. On the other hand, an in silico single E135A substitution that disrupts this non‐native Glu135‐Arg142 salt‐bridge causes significant destabilization to the folding core of the isolated C‐td, which, in turn, induces unfolding of the N‐td interface. These findings indicate that certain highly conserved charged residues, that is, Glu135 and Arg142, of γD‐crystallin are crucial for stabilizing its hydrophobic domain interface in native conformation, and disruption of charges on the γD‐crystallin surface might lead to unfolding and subsequent aggregation.  相似文献   

17.
Hainantoxin‐IV (HNTX‐IV), isolated from the venom of the spider Ornithoctonus hainana, is a specific antagonist of tetrodotoxin‐sensitive (TTX‐S) voltage‐gated sodium channels in rat dorsal root ganglion (DRG) cells. It adopts an inhibitor cystine knot motif, and structural analysis revealed a positively charged patch consisting of Arg26, Lys27, His28, Arg29 and Lys32 distributed on its molecular surface. Our previous study demonstrated that Lys27 and Arg29 but not Arg26 were critical residues for HNTX‐IV binding to TTX‐S sodium channels. In the present study, we examined the roles of His28 and Lys32 in the interaction of HNTX‐IV with its target. Two mutants, HNTX‐IV‐H28D and HNTX‐IV‐K32A, were generated by solid‐phase chemical synthesis and purified by reverse‐phase HPLC after refolding and oxidation, yielding two compounds of high purity with monoisotopic masses of 3962.66 and 3927.70 Da, respectively, as determined by MALDI‐TOF mass spectrometry. This indicated the presence of six cysteine residues forming three disulfide bonds. Moreover, circular dichroism spectroscopy analysis demonstrated that the substitution of His28 or Lys32 did not affect the overall structure of HNTX‐IV. The inhibitory activity of HNTX‐IV‐H28D and HNTX‐IV‐K32A against TTX‐S sodium channels in rat DRG cells was analyzed by whole‐cell patch‐clamp technique. The IC50 values for the mutants were 0.57 and 5.80 μM (17‐fold and 170‐fold lower than the activity of the native toxin), indicating that His28 and Lys32 may be important for the inhibitory activity of HNTX‐IV. Taken together, our results suggest that the positively charged patch might be the binding site for the interaction of HNTX‐IV with TTX‐S sodium channels. These findings might contribute to the elucidation of the structure and function relationship of HNTX‐IV. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
The 26S proteasome is a multicatalytic protease complex that degrades ubiquitinated proteins in eukaryotic cells. It consists of a proteolytic core (the 20S proteasome) as well as regulatory particles, which contain six ATPase (Rpt) subunits involved in unfolding and translocation of substrates to the catalytic chamber of the 20S proteasome. In this study, we used MS to analyze the N‐terminal modifications of the yeast Rpt1 subunit, which contains the N‐terminal recognition sequence for N‐methyltransferase. Our results revealed that following the removal of the initiation Met residue of yeast Rpt1, the N‐terminal Pro residue is either unmodified, mono‐methylated, or di‐methylated, and that this N‐methylation has not been conserved throughout evolution. In order to gain a better understanding of the possible function(s) of the Pro‐Lys (PK) sequence at positions 3 and 4 of yeast Rpt1, we generated mutant strains expressing an Rpt1 allele that lacks this sequence. The absence of the PK sequence abolished N‐methylation, decreased cell growth, and increased sensitivity to stress. Our data suggest that N‐methylation of Rpt1 and/or its PK sequence might be important in cell growth or stress tolerance in yeast.  相似文献   

19.
This study is aimed at elucidating the structure of a novel T‐cell adhesion inhibitor, cyclo(1,8)‐CPRGGSVC using one‐ and two‐dimensional (2D) 1H NMR and molecular dynamics (MD) simulation. The peptide is derived from the sequence of its parent peptide cIBR (cyclo(1,12)‐PenPRGGSVLVTGC), which is a fragment of intercellular adhesion molecule‐1 (ICAM‐1). Our previous results show that the cyclo(1,8)‐CPRGGSVC peptide binds to the LFA‐1 I‐domain and inhibits heterotypic T‐cell adhesion, presumably by blocking the LFA‐1/ICAM‐1 interactions. The structure of the peptide was determined using NMR and MD simulation in aqueous solution. Our results indicate that the peptide adopts type‐I β‐turn conformation at the Pro2‐Arg3‐Gly4‐Gly5 (PRGG) sequence. The β‐turn structure at the PRGG motif is well conserved in cIBR peptide and ICAM‐1 receptor, which suggests the importance of the PRGG motif for the biological activity of cyclo(1,8)‐CPRGGSVC peptide. Meanwhile, the Gly5‐Ser6‐Val7‐Cys8‐Cys1 (GSVCC) sequence forms a “turn‐like” random coil structure that does not belong to any structured motif. Therefore, cyclo(1,8)‐CPRGGSVC peptide has only one structured region at the PRGG sequence, which may play an important role in the binding of the peptide to the LFA‐1 I‐domain. The conserved β‐turn conformation of the PRGG motif in ICAM‐1, cIBR, and cyclo(1,8)‐CPRGGSVC peptides can potentially be used to design peptidomimetics. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 633–641, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号