首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 302 毫秒
1.
Bacterial resistance to antimicrobial peptides   总被引:1,自引:0,他引:1  
Antimicrobial peptides (AMPs) or host defense peptides (HDPs) are vital components of human innate defense system targeting human‐related bacteria. Many bacteria have various mechanisms interfering with AMP activity, causing resistance to AMPs. Since AMPs are considered as potential novel antimicrobial drugs, understanding the mechanisms of bacterial resistance to direct killing of AMPs is of great significance. In this review, a comparative overview of bacterial strategies for resistance to direct killing of various AMPs is presented. Such strategies include bacterial cell envelope modification, AMP degradation, sequestration, expelling, and capsule.  相似文献   

2.
Antimicrobial peptides (AMPs) are natural antibiotics produced by all living organisms to combat pathogens. They are important effector molecules of the immune system both in animals and plants. AMPs are diverse in structure and mode of action. Based on homology of amino acid sequences and 3D structures several AMP families have been distinguished. They are defensins, thionins, lipid transfer proteins, hevein- and knottin-like peptides, and cyclotides. AMPs display broad-spectrum antimicrobial activity and thus show promise for the development of disease- resistant crops by genetic engineering and for the production of new-generation drugs. In this paper, the properties of the main AMP families (defensins and hevein-like peptides) and of a new 4-Cys plant AMP family are reviewed.  相似文献   

3.
Antimicrobial peptides (AMPs) are natural antibiotics produced by all living organisms to fight pathogens. They are important effector molecules of the immune system both in animals and plants. AMPs are diverse in structure and mode of action. Based on the homology of amino acid sequences and 3D structures several AMP families have been distinguished. They are defensins, thionins, lipid transfer proteins, hevein- and knottin-like peptides, and cyclotides. AMPs display broad-spectrum antimicrobial activity and thus show promise for the development of disease-resistant crops by genetic engineering and for the production of new-generation drugs. In this paper, the properties of the main AMP families (defensins and hevein-like peptides) and of new 4-Cys plant AMP family are reviewed.  相似文献   

4.
Antimicrobial peptides (AMPs) are effector molecules that are able to kill or inactivate microbial pathogens. However, most AMPs harbor multiple basic amino acids that hamper current proteomic identification. In our peptidomic survey of endogenous peptides, we identified a novel intramolecular disulfide-linked 22-residue amidated peptide. This peptide, designated AMP-IBP5 (antimicrobial peptide derived from insulin-like growth factor-binding protein 5), showed antimicrobial activity against six of the eight microorganisms tested at concentrations comparable to or lower than those for well-characterized AMPs cathelicidin and β-defensin-2. AMP-IBP5 is identical at the amino acid level between human, mouse, rat, pig, and cow. Natural occurrence of this peptide as the originally isolated form was demonstrated in the rat brain and intestine, using mass spectrometric characterization of major immunoreactivity. The peptide is flanked N-terminally by a single arginine and C-terminally by a common amidation signal, indicating that insulin-like growth factor-binding protein 5 (IGFBP-5) undergoes specific cleavage by a defined set of processing proteases. Furthermore, the intramolecular linkage C199-C210 reveals itself as a correct disulfide pairing in the precursor protein, the finding not inferred from closely related family members IGFBP-4 and -6. In principle, neither conventional proteomics nor bioinformatics would achieve the identification of this AMP. Our study exemplifies the impact of peptidomics to study naturally occurring peptides.  相似文献   

5.
Antimicrobial resistance is a growing health concern. Antimicrobial peptides (AMPs) disrupt harmful microorganisms by nonspecific mechanisms, making it difficult for microbes to develop resistance. Accordingly, they are promising alternatives to traditional antimicrobial drugs. In this study, we developed an improved AMP classification model, called AMP-BERT. We propose a deep learning model with a fine-tuned bidirectional encoder representations from transformers (BERT) architecture designed to extract structural/functional information from input peptides and identify each input as AMP or non-AMP. We compared the performance of our proposed model and other machine/deep learning-based methods. Our model, AMP-BERT, yielded the best prediction results among all models evaluated with our curated external dataset. In addition, we utilized the attention mechanism in BERT to implement an interpretable feature analysis and determine the specific residues in known AMPs that contribute to peptide structure and antimicrobial function. The results show that AMP-BERT can capture the structural properties of peptides for model learning, enabling the prediction of AMPs or non-AMPs from input sequences. AMP-BERT is expected to contribute to the identification of candidate AMPs for functional validation and drug development. The code and dataset for the fine-tuning of AMP-BERT is publicly available at https://github.com/GIST-CSBL/AMP-BERT .  相似文献   

6.
7.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Antimicrobial resistance (AMR) is a silent pandemic declared by the WHO that requires urgent attention in the post-COVID world. AMR is a critical public health concern worldwide, potentially affecting people at different stages of life, including the veterinary and agriculture industries. Notably, very few new-age antimicrobial agents are in the current developmental pipeline. Thus, the design, discovery, and development of new antimicrobial agents are required to address the menace of AMR. Antimicrobial peptides (AMPs) are an important class of antimicrobial agents for combating AMR due to their broad-spectrum activity and ability to evade AMR through a multimodal mechanism of action. However, molecular size, aggregability, proteolytic degradation, cytotoxicity, and hemolysis activity significantly limit the clinical application of natural AMPs. The de novo design and engineering of a short synthetic amphipathic AMP (≤16 aa, Mol. Wt. ≤ 2 kDa) with an unusual architecture comprised of coded and noncoded amino acids (NCAAs) is presented here, which demonstrates potent antibacterial activity against a few selected bacterial strains mentioned in the WHO priority list. The designer AMP is conformationally ordered in solution and effectively permeabilizes the outer and inner membranes, leading to bacterial growth inhibition and death. Additionally, the peptide is resistant to proteolysis and has negligible cytotoxicity and hemolysis activity up to 150 μM toward cultured human cell lines and erythrocytes. The designer AMP is unique and appears to be a potent therapeutic candidate, which can be subsequently subjected to preclinical studies to explicitly understand and address the menace of AMR.  相似文献   

9.
Antimicrobial peptides (AMPs) from cuticular extracts of worker ants of Trichomyrmex criniceps (Mayr, Hymenoptera: Formicidae) were isolated and evaluated for their antimicrobial activity. Eight peptides ranging in mass from 804.42 to 1541.04 Da were characterized using a combination of analytical and bioinformatics approach. All the eight peptides were novel with no similarity to any of the AMPs archived in the Antimicrobial Peptide Database. Two of the eight novel peptides, the smallest and the largest by mass were named Crinicepsin‐1 and Crinicepsin‐2 and were chemically synthesized by solid phase peptide synthesis. The two synthetic peptides had antibacterial and weak hemolytic activity.  相似文献   

10.
Innate immune system is a primary line of defense in fish that protects it from the invading pathogens. Antimicrobial peptides (AMPs) are widely distributed in nature and are essential components of innate immunity. These molecules enable the host’s innate immune system to fight against a variety of infectious agents. One such AMP, hepcidin, is a cysteine rich amphipathic peptide. We have amplified, cloned and characterized hepcidin like AMP from Schizothorax richardsonii that inhabits one of the most difficult aquatic ecosystems in the Indian Himalayas. The cDNA encoding hepcidin like peptide was amplified as a 371 bp fragment with an open reading frame (ORF) of 279 nucleotides flanked by 5′ and 3′ UTRs of 70 and 22 bases respectively. This ORF encodes a peptide of 93 amino acids with a signal peptide of 24 amino acids and a mature peptide of 25 amino acids. The mature hepcidin like peptide of S. richardsonii has eight cystine residues that participate in the formation of four disulfide bonds, a unique feature of hepcidin like AMPs. A 3D model of hepcidin like mature peptide was generated using Modeller 9.10 which was validated using PROCHECK and ERRAT. Phylogenetic analysis of hepcidin like AMP from S. richardsonii revealed that it was closely related to hepcidin from olive barb (Puntius sarana).  相似文献   

11.
Antimicrobial peptides (AMPs) represent a novel class of powerful natural antimicrobial agents. As AMPs are bactericidal, production of AMPs in recombinant bacteria is far from trivial. We report the production of Impatiens balsamina antimicrobial peptide 4 (Ib-AMP4, originally isolated from Impatiens balsamina) in Escherichia coli as a fusion protein and investigate Ib-AMP4's antimicrobial effects on human pathogens. A plasmid vector pET32a-Trx-Ib-AMP4 was constructed and transferred into E. coli. After induction, a soluble fusion protein was expressed successfully. The Ib-AMP4 peptide was obtained with a purity of over 90% after nickel affinity chromatography, ultrafiltration, enterokinase cleavage and sephadex size exclusion chromatography. For maximum activity, Ib-AMP4, which possesses two disulfide bonds, required activation with 5 μg/mL H2O2. Antimicrobial assays showed that Ib-AMP4 could efficiently target clinical multiresistant isolates including methicillin-resistant Staphylococcus aureus and extended-spectrum β-lactamase-producing E. coli. Time kill experiments revealed that Ib-AMP4 is bactericidal within 10 min after application. Haemolysis and cytotoxicity assays implied selectivity towards bacteria, an important prerequisite for clinical applications. Ib-AMP4 might be an interesting candidate for clinical studies involving patients with septicemia or for coating clinical devices, such as catheters. The method described here may be applicable for expression and purification of other AMPs with multiple disulfide bridges.  相似文献   

12.
BackgroundBacterial infections represent a major worldwide health problem the antimicrobial peptides (AMPs) have been considered as potential alternative agents for treating these infections. Here we demonstrated the antimicrobial activity of EcDBS1R6, a peptide derived from a signal peptide sequence of Escherichia coli that we previously turned into an AMP by making changes through the Joker algorithm.MethodsAntimicrobial activity was measured by broth microdilution method. Membrane integrity was measured using fluorescent probes and through scanning electron microscopy imaging. A sliding window of truncated peptides was used to determine the EcDBS1R6 active core. Molecular dynamics in TFE/water environment was used to assess the EcDBS1R6 structure.ResultsSignal peptides are known to naturally interact with membranes; however, the modifications introduced by Joker transformed this peptide into a membrane-active agent capable of killing bacteria. The C-terminus was unable to fold into an α-helix whereas its fragments showed poor or no antimicrobial activity, suggesting that the EcDBS1R6 antibacterial core was located at the helical N-terminus, corresponding to the signal peptide portion of the parent peptide.ConclusionThe strategy of transforming signal peptides into AMPs appears to be promising and could be used to produce novel antimicrobial agents.General significanceThe process of transforming an inactive signal peptide into an antimicrobial peptide could open a new venue for creating new AMPs derived from signal peptides.  相似文献   

13.
Amyloids, protein, and peptide assemblies in various organisms are crucial in physiological and pathological processes. Their intricate structures, however, present significant challenges, limiting our understanding of their functions, regulatory mechanisms, and potential applications in biomedicine and technology. This study evaluated the AlphaFold2 ColabFold method's structure predictions for antimicrobial amyloids, using eight antimicrobial peptides (AMPs), including those with experimentally determined structures and AMPs known for their distinct amyloidogenic morphological features. Additionally, two well-known human amyloids, amyloid-β and islet amyloid polypeptide, were included in the analysis due to their disease relevance, short sequences, and antimicrobial properties. Amyloids typically exhibit tightly mated β-strand sheets forming a cross-β configuration. However, certain amphipathic α-helical subunits can also form amyloid fibrils adopting a cross-α structure. Some AMPs in the study exhibited a combination of cross-α and cross-β amyloid fibrils, adding complexity to structure prediction. The results showed that the AlphaFold2 ColabFold models favored α-helical structures in the tested amyloids, successfully predicting the presence of α-helical mated sheets and a hydrophobic core resembling the cross-α configuration. This implies that the AI-based algorithms prefer assemblies of the monomeric state, which was frequently predicted as helical, or capture an α-helical membrane-active form of toxic peptides, which is triggered upon interaction with lipid membranes.  相似文献   

14.
The spread of multidrug resistant bacteria owing to the intensive use of antibiotics is challenging current antibiotic therapies, and making the discovery and evaluation of new antimicrobial agents a high priority. The evaluation of novel peptide sequences of predicted antimicrobial peptides from different sources is valuable approach to identify alternative antibiotic leads. Two strategies were pursued in this study to evaluate novel antimicrobial peptides from the human β-defensin family (hBD). In the first, a 32-residue peptide was designed based on the alignment of all available hBD primary structures, while in the second a putative 35-residue peptide, hBD10, was mined from the gene DEFB110. Both hBDconsensus and hBD10 were chemically synthesized, folded and purified. They showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Mycobacterium tuberculosis, but were not hemolytic on human red blood cells. The NMR-based solution structure of hBDconsensus revealed that it adopts a classical β-defensin fold and disulfide connectivities. Even though the mass spectrum of hBD10 confirmed the formation of three disulfide bonds, it showed limited dispersion in 1H NMR spectra and structural studies were not pursued. The evaluation of different β-defensin structures may identify new antimicrobial agents effective against multidrug-resistant bacterial strains.  相似文献   

15.
Antibiotic-resistant bacterial infections are becoming a serious health issue and will cause 10 million deaths per year by 2050. As a result, the development of new antimicrobial agents is urgently needed. Antimicrobial peptides (AMPs) are found in the innate immune systems of various organisms to effectively fend off invading pathogens. In this study, we designed a series of AMPs (THL-2-1 to THL-2-9) with centrosymmetric and amphipathic properties, through substituting different amino acids on the hydrophobic side and at the centrosymmetric position to improve their antimicrobial activity. The results showed that leucine as a residue on the hydrophobic side of the peptide could enhance its antimicrobial activity and that glutamic acid as a centrosymmetric residue could increase the salt resistance of the peptide. Thus, the THL-2-3 peptide (KRLLRELKRLL-NH2) showed the greatest antimicrobial activity (MIC90 of 16 μM) against Gram-negative bacteria and had the highest salt resistance and cell selectivity among all the designed peptides. In summary, the results of this study provide useful references for the design of AMPs to enhance antimicrobial activity.  相似文献   

16.
长期滥用抗生素导致了耐药菌株“超级细菌”的出现,增加了动物、人类健康和环境污染风险.寻找抗生素替代品正成为全球研究热点,抗菌肽因其高效抗菌效果和不同于抗生素的独特作用机制引起了各国研究者的关注,并进行了相关研究.然而抗菌肽的安全性、稳定性、生产成本等问题限制了其生产与应用.为了克服这些不利因素,研究者们对抗菌肽进行了多种方式的改造,产生了模拟型、同源型、杂合型、轭合型、稳定型和固位型等改良型抗菌肽,并有望在畜牧业、食品业、医药业等领域得到广泛的应用.本文主要综述了这些改良型抗菌肽近年来的研究进展.  相似文献   

17.
Antimicrobial peptides (AMPs) are a naturally occurring component of the innate immune response of many organisms and can have activity against both Gram-negative and Gram-positive bacterial species. In order to optimize and improve the direct antimicrobial effect of AMPs against a broad spectrum of bacterial species, novel synthetic hybrids were rationally designed from cecropin A, LL-37 and magainin II. AMPs were selected based on their α-helical secondary structure and fragments of these were analyzed and combined in silico to determine which hybrid peptides would form the best amphipathic cationic α-helices. Four hybrid peptides were synthesized (CaLL, CaMA, LLaMA and MALL) and evaluated for direct antimicrobial activity against a range of bacterial species (Bacillus anthracis, Burkholderia cepacia, Francisella tularensis LVS and Yersinia pseudotuberculosis) alongside the original 'parent' AMPs. The hybrid peptides showed greater antimicrobial effects than the parent AMPs (in one case a parent is completely ineffective while a hybrid based on it removes all traces of bacteria by 3h), although they also demonstrated higher hemolytic properties. Modifications were then carried out to the most toxic hybrid AMP (CaLL) to further improve the therapeutic index. Modifications made to the hybrid lowered hemolytic activity and also lowered antimicrobial activity by various degrees. Overall, this work highlights the potential for rational design and synthesis of improved AMPs that have the capability to be used therapeutically for treatment of bacterial infections.  相似文献   

18.
Antimicrobial peptides (AMPs) have a broad spectrum of activity and unspecific mechanisms of action. Therefore, they are seen as valid alternatives to overcome clinically relevant biofilms and reduce the chance of acquired resistance. This paper reviews AMPs and anti-biofilm AMP-based strategies and discusses ongoing and future work. Recent studies report successful AMP-based prophylactic and therapeutic strategies, several databases catalogue AMP information and analysis tools, and novel bioinformatics tools are supporting AMP discovery and design. However, most AMP studies are performed with planktonic cultures, and most studies on sessile cells test AMPs on growing rather than mature biofilms. Promising preliminary synergistic studies have to be consubstantiated and the study of functionalized coatings with AMPs must be further explored. Standardized operating protocols, to enforce the repeatability and reproducibility of AMP anti-biofilm tests, and automated means of screening and processing the ever-expanding literature are still missing.  相似文献   

19.
Host defense peptides (historically called antimicrobial peptides, AMPs) are key components in the mammalian innate immune system, and are responsible for both direct killing and immunomodulatory effects in host defense against pathogenic organisms. In order to identify novel host defense peptides by sequence analysis, we constructed the AMPer resource (http://www.cnbi2.com/cgi-bin/amp.pl) that utilizes hidden Markov models to recognize sequences of antimicrobial peptides. In the current work, we utilized the AMPer resource to search bovine expressed sequence tags from the NCBI dbEST project and the bovine genome sequence for novel host defense peptides. Of the 34 known bovine AMPs, 27 were identified with high confidence in the AMPs predicted from ESTs. A further potential 68 AMPs predicted from the EST data were found that appear to be novel giving a total estimate of 102 AMPs present in the genome. Two of these were cathelicidins and selected for experimental verification in RNA derived from bovine tissue. One predicted AMP, most similar to rabbit '15 kDa protein' AMP, was confirmed to be present in infected bovine intestinal tissue using PCR. These findings demonstrated the practical applicability of the developed bioinformatics approach and laid a foundation for future discoveries of gene-coded AMPs. No members of the alpha-defensin family were found in the bovine sequences. Since we could find no technical reasons these would be missed and no references to bovine alpha-defensins in the literature, this suggests that cattle lack this important family of host defense peptides.  相似文献   

20.
Collection of antimicrobial peptides (CAMP), CAMPSign, and ClassAMP are open‐access resources that have been developed to enhance research on antimicrobial peptides (AMPs). Comprehensive information on AMPs and machine learning‐based predictive models are made available for users through these resources. As of date, CAMPR3 has 10,247 sequences, 757 structures, and 114 family‐specific signatures of AMPs along with associated tools for AMP sequence and structure analysis. CAMPSign uses family‐specific sequence conservation, in the form of patterns and hidden Markov models for identification of AMPs. ClassAMP can be used to classify AMPs as antibacterial, antifungal, or antiviral based on sequence information. Here we describe CAMP and its derivatives and illustrate, with a few examples, the contribution of these online resources to the advancement of our current understanding of AMPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号