首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
从煤堆废水中分离得到3株嗜温嗜酸硫氧化细菌.这3株菌株为革兰氏阴性、菌体大小0.4~0.7 μm×1~2 μm、短杆状运动细菌,其最适生长温度为 30 ℃和最适生长pH 2.0~2.5.它们能够利用元素硫,硫代硫酸钠和连四硫酸钾为能源进行自养生长,不能利用有机物质以及硫酸亚铁、黄铁矿和黄铜矿等无机物质作为能源生长.细菌的形态、生理生化特性研究以及基于16S rRNA序列同源性构建的系统发育树结果表明,这3株细菌初步鉴定为氧化硫硫杆菌.氧化硫硫杆菌能够通过产酸有效促进黄铜矿的浸出速率和浸出率.  相似文献   

2.
采用向硫化矿培养基中补加FeSO4的方式以维持Fe2+ 浓度为4~8 g/L,可使嗜酸氧化亚铁硫杆菌菌浓在培养39 h时达到6.25×108 cells/mL,并在比生长速率几乎不降低的前提下提高了转化率和生产强度.然后对低氧化还原电位下低品位黄铜矿的浸出进行初步研究,结果表明经过30 d浸出,铜的浸出率可达28.5%...  相似文献   

3.
从中国的多个铜矿取样,在45°C条件下富集获得了一种高效的中等嗜热浸矿富集物,探讨了该富集物在柱式反应器中浸出低品位黄铜矿的pH变化以及与Cu2+浸出的关系,并采用限制性片段长度多态性(RFLP)技术分析了微生物的群落结构和种群动态变化规律。结果表明在整个浸出过程中pH变化较为明显,且一直在1.8以上,60 d内回收了13.6%的铜。RFLP结果表明:在初期,嗜铁钩端螺旋菌(Leptospirillum ferriphilum)在浸出前期占有很高比例(81%),随后逐渐降低,至后期只有13%,而耐温氧化硫化杆菌(Sulfobacillus thermotolerans)和喜温硫杆菌(Acidithiobacillus caldus)的比例逐渐升高,在中期分别达到32%和23%;至末期,耐温氧化硫化杆菌达到了79%,成为优势种群。研究加深了对中等嗜热微生物浸矿特性的了解,也为中等嗜热菌处理低品位黄铜矿的工业应用提供了可供借鉴的数据。  相似文献   

4.
The effect of metabolites from the indigenous Acidithiobacillus thiooxidans and temperature on the bioleaching of cadmium from soil was investigated in the present study. Bioleaching was found to be more effective than chemical leaching of cadmium. The metabolite, mainly sulfuric acid, which was shown to be growth-associated in the exponential phase, plays a major role in bioleaching. The maximum amount of cadmium leached was obtained after 8 days of precultivation when cells were directly involved in the leaching process. It indicates that cells in the exponential growth phase exhibit higher activity toward bioleaching. In contrast, the maximum amount of cadmium leached and the maximum initial rate for bioleaching were reached after 16 days of precultivation when only metabolites were involved in the bioleaching process. It implies that higher sulfuric acid concentration results in higher leaching efficiency. In addition, higher temperature leads to higher leaching efficiency. The optimal operation condition for bioleaching was determined to be a two-stage process: The first stage involves the precultivation of the indigenous A. thiooxidans at 30 degrees C for 8 days followed by 20 minutes of centrifugation to discard cells. The second stage involves the bioleaching with the subsequent supernatant at 50 degrees C.  相似文献   

5.
Liu Y  Yin H  Zeng W  Liang Y  Liu Y  Baba N  Qiu G  Shen L  Fu X  Liu X 《Bioresource technology》2011,102(17):8092-8098
Acidithiobacillus thiooxidans A01 was added to a consortium of bioleaching bacteria including Acidithiobacilluscaldus, Leptospirillumferriphilum, Acidithiobacillus ferrooxidans, Sulfobacillus thermosulfidooxidans, Acidiphilium spp., and Ferroplasma thermophilum cultured in modified 9 K medium containing 0.5% (w/v) pyrite, and 10.7% increase of bioleaching rate was observed. Changes in community structure and gene expression were monitored with real-time PCR and functional gene arrays (FGAs). Real-time PCR showed that addition of At. thiooxidans caused increased numbers of all consortium members except At. caldus, and At. caldus, L. ferriphilum, and F. thermophilum remained dominant in this community. FGAs results showed that after addition of At. thiooxidans, most genes involved in iron, sulfur, carbon, and nitrogen metabolisms, metal resistance, electron transport, and extracellular polymeric substances of L. ferriphilum, F. thermophilum, and Acidiphilium spp., were up-regulated while most of these genes were down-regulated at 70-78 h in At. caldus and up-regulated in At. ferrooxidans, then down-regulated at 82-86 h.  相似文献   

6.
The attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum spp. grown on ferrous medium or adapted to a pyrite mineral concentrate to four mineral substrata, namely, chalcopyrite and pyrite concentrates, a low-grade chalcopyrite ore (0.5 wt%) and quartzite, was investigated. The quartzite represented a typical gangue mineral and served as a control. The attachment studies were carried out in a novel particle-coated column reactor. The saturated reactor containing glass beads, which were coated with fine mineral concentrates, provided a quantifiable surface area of mineral concentrate and maintained good fluid flow. A. ferrooxidans and Leptospirillum spp. had similar attachment characteristics. Enhanced attachment efficiency occurred with bacteria grown on sulphide minerals relative to those grown on ferrous sulphate in an ore-free environment. Selective attachment to sulphide minerals relative to gangue materials occurred, with mineral adapted cultures attaching to the minerals more efficiently than ferrous grown cultures. Mineral-adapted cultures showed highest levels of attachment to pyrite (74% and 79% attachment for A. ferrooxidans and L. ferriphilum, respectively). This was followed by attachment of mineral-adapted cultures to chalcopyrite (63% and 58% for A. ferrooxidans and L. ferriphilum, respectively). A. ferrooxidans and L. ferriphilum exhibited lower levels of attachment to low-grade ore and quartz relative to the sulphide minerals.  相似文献   

7.
[背景] 高效的生物浸出与微生物介导活跃的铁硫代谢紧密关联,低品位辉铜矿(Cu2S)铁代谢匮乏严重制约其效能。[目的] 强化铁硫代谢及“接触”机制改善低品位辉铜矿生物浸出。[方法] 基于自主筛选的嗜酸杆菌属(Acidiphilium sp.)及双层平板筛选的嗜铁钩端螺旋菌(Leptospirillum ferriphilum),与硫氧化菌喜温嗜酸硫杆菌(Acidithiobacillus caldus)协作,加以Fe2+/Fe3+-黄铁矿-纤维质废弃物酸解液(废-废资源利用)干预,系统分析浸出生化参数差异性。[结果] 扫描电子显微镜(Scanning Electron Microscope,SEM)结果表明矿渣表面大量微孔及坑壑,表明活跃的菌体作用;傅立叶变换红外光谱仪(Fourier Transform Infrared Spectroscopy,FTIR)揭示N-H、C=O、O-H等键与胞外聚合物(Extracelluler Polymer Substance,EPS)紧密相关,S=O、C-O-S等吸收峰波动表明更剧烈的硫代谢;激光共聚焦扫描显微镜(Confocal Laser Scanning Microscope,CLSM)结果表明优化体系呈现更多附着细胞及EPS,为“接触”机制奠定基础,浸出40 d游离/附着细胞量分别提高2.51倍及5.73倍,最大比生长速率(μmax)出现时间提前1.5-5.3 d,最高浸出率达67.6%。[结论] 铁氧化/还原菌及外源含铁物质干预强化浸出体系铁硫代谢加速矿物溶解,酸解液促进铁元素循环及菌体生长,附着细胞及EPS分泌增多强化“接触”机制从而有效改善浸出微环境和效能。  相似文献   

8.
在低磷(0.5 mg·L-1) 营养胁迫下,运用生理生化方法分析了化感水稻PI312777(PI)与非化感水稻Lemont (Le) 对稗草抑制作用潜力的变化特性及其内在机理.结果表明,在低磷营养胁迫下,化感水稻品种PI对受体稗草根干重的抑制能力明显提高,在处理后的5 、10和15 d,其对稗草地下部干重的抑制率分别增加了5.64%、3.89%和12.13%,增加幅度比非化感水稻品种Le显著.生理生化分析结果表明,与正常营养条件相比,用低磷营养下生长的化感水稻PI的根系分泌物处理稗草5、10和15 d,受体稗草叶片中POD活性的促进率分别提高了20.19%、15.47%和6.68%,吲哚乙酸氧化酶活性的促进率分别提高了18.08%、17.71%和12.50%,硝酸还原酶活性的抑制率分别增加了13.89%、18.60%和2.10%. 在低磷营养胁迫下,化感水稻通过抑制受体植物的硝酸还原酶活性,影响其对氮营养的吸收,同时显著提高了吲哚乙酸氧化酶活性,减缓了受体稗草的生长速度,提高了其抑草作用潜力.  相似文献   

9.
10.
为揭示油菜素甾醇类化合物提高作物耐盐的效应和机理,研究了10-11、10-10、10-9、10-8、10-7、10-6、10-5 mol/L 2,4-表油菜素内酯(EBL)浸种处理对0、50、100、150、175 mmol/L NaCl胁迫7 d的番茄种子萌发、生长、溶质积累、抗氧化代谢的影响。结果显示:NaCl浓度越高的盐胁迫下,10-9 mol/L EBL浸种可体现出越显著的促进番茄种子萌发的效应;在所有处理下,EBL浸种浓度过高,即10-6、10-5 mol/L EBL,均表现出对种子萌发的抑制效应。盐胁迫下种子萌发后,一定浓度的EBL浸种可表现出明显的增加种子胚根和下胚轴长,提高萌发种子鲜重和种子活力指数,其中10-9 mol/L EBL浸种处理促进效果最适;EBL浸种浓度过高,则表现出抑制效应。150 mmol/L NaCl胁迫或非盐胁迫下,10-9 mol/L EBL浸种均可降低萌发种子体内的O2·-、H2O2、丙二醛(MDA)和脯氨酸(Pro)含量;盐胁迫下,10-9 mol/L EBL浸种可显著提高萌发种子可溶性糖(SS)和可溶性蛋白(SP)的含量。150 mmol/L NaCl胁迫或非盐胁迫下,10-9 mol/L EBL处理可不同程度促进番茄种苗超氧化物歧化酶(SOD)和过氧化物酶(POD)活性的上升。综上所述,盐胁迫下,一定浓度范围内的EBL浸种可明显促进番茄种子萌发或成苗,其中以10-9 mol/L EBL浸种的效果最好,主要是因为EBL施用可积极促进番茄种子萌发中物质转化,SS和SP等溶质积累增多,增强其渗透调节能力;同时SOD和POD酶活增强,缓解盐胁迫导致番茄种子萌发中的次生氧化胁迫。  相似文献   

11.
Thioltransferase, an enzyme which catalyzes the thiol/disulfide exchange reaction in the presence of GSH, was purified to homogeneity on 15% SDS-PAGE from human (36,000-fold purification) and bovine (23,000-fold) erythrocyte hemolysates. These enzymes had similar properties in their monomeric structures (M(r) = 11,000) and broad specificities for substrates ranging from low-molecular disulfides (S-sulfocysteine, cystamine, and cystine) to protein disulfides (trypsin and insulin). They were highly sensitive to SH-reagents (monoiodoacetic acid and mercuric chloride), but were protected from inactivation by the presence of disulfides (GSSG, cystamine, and cystine). Phosphofructokinase and pyruvate kinase that had been inactivated by disulfides were reactivated effectively by the addition of thioltransferase with GSH. In addition, disulfides in membrane proteins of human erythrocytes that have been oxidatively damaged by diamide treatment were reduced to the SH-free form more effectively by incubation with thioltransferase.  相似文献   

12.
Huangfu  Liexiang  Zhang  Zihui  Zhou  Yong  Zhang  Enying  Chen  Rujia  Fang  Huimin  Li  Pengcheng  Xu  Yang  Yao  Youli  Zhu  Minyan  Yin  Shuangyi  Xu  Chenwu  Lu  Yue  Yang  Zefeng 《Plant Growth Regulation》2021,95(1):19-31
Plant Growth Regulation - Melatonin is an important phytohormone in plant development and stress responses. However, the functions of melatonin in rice salt tolerance during seed germination is...  相似文献   

13.
14.
低温处理下不同禾本科牧草的生理变化及其抗寒性比较   总被引:21,自引:0,他引:21  
研究牧草根系抗寒性的动态变化,对寒冷地区的牧草引种筛选意义重大.试验以美国引进的禾本科牧草高山早熟禾(Poa Aalpine)、俄罗斯野麦(Elymus junceus)、无芒冰草(Agropyron inerme)、爱达荷冰草(Agropyron inerme)(品种名Secar)和爱达荷冰草(Agropyron inerme)(品种名Goldar)为研究材料,人工控温进行低温抗寒锻炼、冷冻处理和解冻恢复生长,测定每一阶段下根系中MDA、可溶性蛋白质、可溶性糖和脯氨酸的含量及SOD活性.结果表明,MDA含量在抗寒锻炼后略有增加,随后维持基本稳定;SOD活性在抗寒锻炼后升高,冷冻处理后显著降低;返青后又显著升高(P<0.05);可溶性蛋白质、可溶性糖和脯氨酸含量在抗寒锻炼和冷冻处理后升高,返青后降低;其中,SOD活性、可溶性糖和脯氨酸的含量随处理不同变幅较大,MDA和可溶性蛋白质的含量随处理不同变幅较小.运用Fuzzy数学中隶属函数法进行抗寒性综合评判,得出抗寒性强弱顺序为:高山早熟禾>俄罗斯野麦>爱达荷冰草(Secar)>无芒冰草>爱达荷冰草(Goldar).  相似文献   

15.
Salinity stress is one of the major abiotic stresses affecting plant growth and productivity globally. In order to improve the yields of plants growing under salt stress bear remarkable importance to supply sustainable agriculture. Acclimation of plants to salinized condition depends upon activation of cascade of molecular network involved in stress sensing/perception, signal transduction, and the expression of specific stress-related genes and metabolites. Isolation of salt overly sensitive (SOS) genes by sos mutants shed us light on the relationship between ion homeostasis and salinity tolerance. Regulation of antioxidative system to maintain a balance between the overproduction of reactive oxygen species and their scavenging to keep them at signaling level for reinstating metabolic activity has been elucidated. However, osmotic adaptation and metabolic homeostasis under abiotic stress environment is required. Recently, role of phytohormones like Abscisic acid, Jasmonic acid, and Salicylic acid in the regulation of metabolic network under osmotic stress condition has emerged through crosstalk between chemical signaling pathways. Thus, abiotic stress signaling and metabolic balance is an important area with respect to increase crop yield under suboptimal conditions. This review focuses on recent developments on improvement in salinity tolerance aiming to contribute sustainable plant yield under saline conditions in the face of climate change.  相似文献   

16.
17.
UCP4 is a member of the mitochondrial uncoupling protein subfamily and one of the three UCPs (UCP2, UCP4, UCP5), associated with the nervous system. Its putative functions include thermogenesis, attenuation of reactive oxidative species (ROS), regulation of mitochondrial calcium concentration and involvement in cell differentiation and apoptosis. Here we investigate UCP4's subcellular, cellular and tissue distribution, using an antibody designed specially for this study, and discuss the findings in terms of the protein's possible functions. Western blot and immunohistochemistry data confirmed that UCP4 is expressed predominantly in the central nervous system (CNS), as previously shown at mRNA level. No protein was found in heart, spleen, stomach, intestine, lung, thymus, muscles, adrenal gland, testis and liver. The reports revealing UCP4 mRNA in kidney and white adipose tissue were not confirmed at protein level. The amount of UCP4 varies in the mitochondria of different brain regions, with the highest protein content found in cortex. We show that UCP4 is present in fetal murine brain tissue as early as embryonic days 12-14 (E12-E14), which coincides with the beginning of neuronal differentiation. The UCP4 content in mitochondria decreases as the age of mice increases. UCP4 preferential expression in neurons and its developmental expression pattern under physiological conditions may indicate a specific protein function, e.g. in neuronal cell differentiation.  相似文献   

18.
High gravity (HG) or very high gravity (VHG) brewing has become popular in modern breweries due to its economic and product quality advantages. However, there are the negative impacts such as the fermentation performance of brewer??s yeast in HG or VHG wort, which are closely related to changes in cell physiological activity. In the present study, 3 kinds of worts, with different gravities, were used to examine the systematic effects on fermentation performance and physiological activity of lager yeast FBY009505 (Saccharomyces pastorianus) and ale yeast FBY0099 (Saccharomyces cerevisiae), as well as the resulting beer flavor. Results showed that the responses of FBY009505 and FBY0099 to the HG or VHG worts were similar. The specific fermentation rate and viability of cropped yeast of FBY009505 and FBY0099 were decreased with increasing wort gravity. The increased wort gravity resulted in the increase of energy charge and the decrease of ??-glucosides transport rate and glycolytic enzyme activities. Moreover, the environmental stresses in the HG or VHG wort showed a higher inhibitory activity against ??-glucoside transport than glycolytic enzymes. The content of intracellular trehalose and glycerol of FBY009505 and FBY0099 increased with the increase in wort gravity. The results from this study provided a potential means to systematically understand the physiology of brewer??s yeast under HG or VHG conditions.  相似文献   

19.
The objectives of this work were to clone the catalase (CAT) gene from broccoli (Brassica oleracea) and the ascorbate peroxidase (APX) gene from Chinese cabbage and measure the regulation of CAT and APX gene expressions under heat-stress conditions. Different genotypes responded differently to heat stress according to their various antioxidant enzymes and physiological parameters. CAT and APX gene expression profiles were well matched with the data for CAT and APX enzyme activities in the broccoli and Chinese cabbage plants, respectively. Full-length of the CAT and APX cDNA were 1,768 and 1,070 bp, respectively. A phylogenetic analysis of CAT and APX indicated that plant CATs and APXs diverged into two major clusters.  相似文献   

20.

Key message

Axillary bud activation and outgrowth were dependent on local cytokinin, and that bud activation preceded the activation of cell cycle and cell growth genes in apple branching.

Abstract

Cytokinin is often applied to apple trees to produce more shoot branches in apple seedlings. The molecular response of apple to the application of cytokinin, and the relationship between bud activation and cell cycle in apple branching, however, are poorly understood. In this study, RNA sequencing was used to characterize differential expression genes in axillary buds of 1-year grafted “Fuji” apple at 4 and 96 h after cytokinin application. And comparative gene expression analyses were performed in buds of decapitated shoots and buds of the treatment of biosynthetic inhibitor of cytokinin (Lovastatin) on decapitated shoots. Results indicated that decapitation and cytokinin increased ZR content in buds and internodes at 4–8 h, and induced bud elongation at 96 h after treatment, relative to buds in shoots receiving the Lovastatin treatment. RNA-seq analysis indicated that differential expression genes in auxin and cytokinin signal transduction were significantly enriched at 4 h, and DNA replication was enriched at 96 h. Cytokinin-responsive type-A response regulator, auxin polar transport, and axillary meristem-related genes were up-regulated at 4 h in the cytokinin and decapitation treatments, while qRT-PCR analysis showed that cell cycle and cell growth genes were up-regulated after 8 h. Collectively, the data indicated that bud activation and outgrowth might be dependent on local cytokinin synthesis in axillary buds or stems, and that bud activation preceded the activation of cell cycle genes during the outgrowth of ABs in apple shoots.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号