首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 471 毫秒
1.
The dehydratases (DHs) of modular polyketide synthases (PKSs) catalyze dehydrations that occur frequently in the biosynthesis of complex polyketides, yet little is known about them structurally or mechanistically. Here, the structure of a DH domain, isolated from the fourth module of the erythromycin PKS, is presented at 1.85 Å resolution. As with the DH of the highly related animalian fatty acid synthase, the DH monomer possesses a double-hotdog fold. Two symmetry mates within the crystal lattice make a contact that likely represents the DH dimerization interface within an intact PKS. Conserved hydrophobic residues on the DH surface indicate potential interfaces with two other PKS domains, the ketoreductase and the acyl carrier protein. Mutation of an invariant arginine at the hypothesized acyl carrier protein docking site in the context of the erythromycin PKS resulted in decreased production of the erythromycin precursor 6-deoxyerythronolide B. The structure elucidates how the α-hydrogen and β-hydroxyl group of a polyketide substrate interact with the catalytic histidine and aspartic acid in the DH active site prior to dehydration.  相似文献   

2.
《Gene》1998,216(2):255-265
Five clustered polyketide synthase (PKS) genes, rifArifE, involved in rifamycin (Rf) biosynthesis in Amycolatopsis mediterranei S699 have been cloned and sequenced (August, P.R. et al., 1998. Chem. Biol. 5, 69–79). The five multifunctional polypeptides constitute a type I modular PKS that contains ten modules, each responsible for a specific round of polyketide chain elongation. Sequence comparisons of the Rf PKS proteins with other prokaryotic modular PKSs elucidated the regions that have an important role in enzyme activity and specificity. The β-ketoacyl:acyl carrier protein synthase (KS) domains show the highest degree of similarity between themselves (86–90%) and to other PKSs (78–85%) among all the constituent domains. Both malonyl-coenzyme A (MCoA) and methylmalonyl-coenzyme A (mMCoA) are substrates for chain elongation steps carried out by the Rf PKS. Since acyltransferase (AT) domains of modular PKSs can distinguish between these two substrates, comparison of the sequence of all ten AT domains of the Rf PKS with those found in the erythromycin (Er) (Donadio, S. and Katz, L., 1992. Gene 111, 51–60) and rapamycin (Rp) (Haydock, S. et al., 1995. FEBS Lett. 374, 246–248) PKSs revealed that the AT domains in module 2 of RifA and module 9 of RifE are specific for MCoA, whereas the other eight modules specify mMCoA. Dehydration of the β-hydroxyacylthioester intermediates should occur during the reactions catalysed by module 4 of RifB and modules 9 and 10 of RifE, yet only the active site region of module 4 conforms closely to the dehydratase (DH) motifs in the Er and Rp PKSs. The DH domains of modules 9 and 10 diverge significantly from the consensus sequence defined by the Er and Rp PKSs, except for the active site His residues. Deletions in the DH active sites of module 1 in RifA and module 5 in RifB and in the N- and C-terminal regions of module 8 of RifD should inactivate these domains, and module 2 of RifA lacks a DH domain, all of which are consistent with the proposed biosynthesis of Rf. In contrast, module 6 of RifB and module 7 of RifC appear to contain intact DH domains even though DH activity is not apparently required in these modules. Module 2 of RifA lacks a β-ketoacyl:acyl carrier protein reductase (KR) domain and the one in module 3 has an apparently inactive NADPH binding motif, similar to one found in the Er PKS, while the other eight KR domains of the Rf PKS should be functional. These observations are consistent with biosynthetic predictions. All the acyl carrier protein (ACP) domains, while clearly functional, nevertheless have active site signature sequences distinctive from those of the Er and Rp PKSs. Module 2 of RifA has only the core domains (KS, AT and ACP). The starter unit ligase (SUL) and ACP domains present in the N-terminus of RifA direct the selection and loading of the starter unit, 3-amino-5-hydroxybenzoic acid (AHBA), onto the PKS. AHBA is made by the products of several other genes in the Rf cluster through a variant of the shikimate pathway (August, P.R. et al., inter alia). RifF, produced by the gene immediately downstream of rifE, is thought to catalyse the intramolecular cyclization of the PKS product, thereby forming the ansamacrolide precursor of Rf B.  相似文献   

3.
Modular polyketide synthases (PKSs) are large multi-enzymatic, multi-domain megasynthases, which are involved in the biosynthesis of a class of pharmaceutically important natural products, namely polyketides. These enzymes harbor a set of repetitive active sites termed modules and the domains present in each module dictate the chemical moiety that would add to a growing polyketide chain. This modular logic of biosynthesis has been exploited with reasonable success to produce several novel compounds by genetic manipulation. However, for harnessing their vast potential of combinatorial biosynthesis, it is essential to develop knowledge based in silico approaches for correlating the sequence and domain organization of PKSs to their polyketide products. In this work, we have carried out extensive sequence analysis of experimentally characterized PKS clusters to develop an automated computational protocol for unambiguous identification of various PKS domains in a polypeptide sequence. A structure based approach has been used to identify the putative active site residues of acyltransferase (AT) domains, which control the specificities for various starter and extender units during polyketide biosynthesis. On the basis of the analysis of the active site residues and molecular modelling of substrates in the active site of representative AT domains, we have identified a crucial residue that is likely to play a major role in discriminating between malonate and methylmalonate during selection of extender groups by this domain. Structural modelling has also explained the experimentally observed chiral preference of AT domain in substrate selection. This computational protocol has been used to predict the domain organization and substrate specificity for PKS clusters from various microbial genomes. The results of our analysis as well as the computational tools for prediction of domain organization and substrate specificity have been organized in the form of a searchable computerized database (PKSDB). PKSDB would serve as a valuable tool for identification of polyketide products biosynthesized by uncharacterized PKS clusters. This database can also provide guidelines for rational design of experiments to engineer novel polyketides.  相似文献   

4.
Polyketides are a diverse class of natural products having important clinical properties, including antibiotic, immunosuppressive and anticancer activities. They are biosynthesized by polyketide synthases (PKSs), which are modular, multienzyme complexes that sequentially condense simple carboxylic acid derivatives. The final reaction in many PKSs involves thioesterase-catalyzed cyclization of linear chain elongation intermediates. As the substrate in PKSs is presented by a tethered acyl carrier protein, introduction of substrate by diffusion is problematic, and no substrate-bound type I PKS domain structure has been reported so far. We describe the chemical synthesis of polyketide-based affinity labels that covalently modify the active site serine of excised pikromycin thioesterase from Streptomyces venezuelae. Crystal structures reported here of the affinity label-pikromycin thioesterase adducts provide important mechanistic insights. These results suggest that affinity labels can be valuable tools for understanding the mechanisms of individual steps within multifunctional PKSs and for directing rational engineering of PKS domains for combinatorial biosynthesis.  相似文献   

5.
The enoylreductase (ER) is the final common enzyme from modular polyketide synthases (PKSs) to be structurally characterized. The 3.0 ?-resolution structure of the didomain comprising the ketoreductase (KR) and ER from the second module of the spinosyn PKS reveals that ER shares an ~600-?(2) interface with KR distinct from that of the related mammalian fatty acid synthase (FAS). In contrast to the ER domains of the mammalian FAS, the ER domains of the second module of the spinosyn PKS do not make contact across the two-fold axis of the synthase. This monomeric organization may have been necessary in the evolution of multimodular PKSs to enable acyl carrier proteins to access each of their cognate enzymes. The isolated ER domain showed activity toward a substrate analog, enabling us to determine the contributions of its active site residues.  相似文献   

6.
A large number of antibiotics and other industrially important microbial secondary metabolites are synthesized by polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). These multienzymatic complexes provide an enormous flexibility in formation of diverse chemical structures from simple substrates, such as carboxylic acids and amino acids. Modular PKSs and NRPSs, often referred to as megasynthases, have brought about a special interest due to the colinearity between enzymatic domains in the proteins working as an “assembly line” and the chain elongation and modification steps. Extensive efforts toward modified compound biosynthesis by changing organization of PKS and NRPS domains in a combinatorial manner laid good grounds for rational design of new structures and their controllable biosynthesis as proposed by the synthetic biology approach. Despite undeniable progress made in this field, the yield of such “unnatural” natural products is often not satisfactory. Here, we focus on type II thioesterases (TEIIs)—discrete hydrolytic enzymes often encoded within PKS and NRPS gene clusters which can be used to enhance product yield. We review diverse roles of TEIIs (removal of aberrant residues blocking the megasynthase, participation in substrate selection, intermediate, and product release) and discuss their application in new biosynthetic systems utilizing PKS and NRPS parts.  相似文献   

7.
Sequence data arising from an increasing number of partial and complete genome projects is revealing the presence of the polyketide synthase (PKS) family of genes not only in microbes and fungi but also in plants and other eukaryotes. PKSs are huge multifunctional megasynthases that use a variety of biosynthetic paradigms to generate enormously diverse arrays of polyketide products that posses several pharmaceutically important properties. The remarkable conservation of these gene clusters across organisms offers abundant scope for obtaining novel insights into PKS biosynthetic code by computational analysis. We have carried out a comprehensive in silico analysis of modular and iterative gene clusters to test whether chemical structures of the secondary metabolites can be predicted from PKS protein sequences. Here, we report the success of our method and demonstrate the feasibility of deciphering the putative metabolic products of uncharacterized PKS clusters found in newly sequenced genomes. Profile Hidden Markov Model analysis has revealed distinct sequence features that can distinguish modular PKS proteins from their iterative counterparts. For iterative PKS proteins, structural models of iterative ketosynthase (KS) domains have revealed novel correlations between the size of the polyketide products and volume of the active site pocket. Furthermore, we have identified key residues in the substrate binding pocket that control the number of chain extensions in iterative PKSs. For modular PKS proteins, we describe for the first time an automated method based on crucial intermolecular contacts that can distinguish the correct biosynthetic order of substrate channeling from a large number of non-cognate combinatorial possibilities. Taken together, our in silico analysis provides valuable clues for formulating rules for predicting polyketide products of iterative as well as modular PKS clusters. These results have promising potential for discovery of novel natural products by genome mining and rational design of novel natural products.  相似文献   

8.
Jiralerspong S  Rangaswamy V  Bender CL  Parry RJ 《Gene》2001,270(1-2):191-200
Coronafacic acid (CFA) is the polyketide component of coronatine (COR), a phytotoxin produced by the plant pathogen Pseudomonas syringae. The CFA polyketide synthase (PKS) consists of two open reading frames (ORFs) that encode type I multifunctional proteins and several ORFs that encode monofunctional proteins. Sequence comparisons of the modular portions of the CFA PKS with other prokaryotic, modular PKSs elucidated the boundaries of the domains that are involved in the individual stages of polyketide assembly. The two β-ketoacyl:acyl carrier protein synthase (KS) domains in the modular portion of the CFA PKS exhibit a high degree of similarity to each other (53%), but are even more similar to the KS domains of DEBS, RAPS, and RIF. Cfa6 possesses two acyltransferases- AT0, which is associated with a loading domain, and AT1, which uses ethylmalonyl-CoA (eMCoA) as a substrate for chain extension. Cfa7 contains an AT that uses malonyl-CoA as a substrate for chain extension. The Cfa6 AT0 shows 35 and 32% similarity to the DEBS1 and NidA1 AT0s, respectively, and 32 and 36% similarity to the Cfa6 and Cfa7 AT1s. Sequence motifs have previously been identified that correlate with AT substrates. The motifs in Cfa6 AT1 were found to correlate reasonably well with those predicted for methylmalonyl-CoA (mMCoA) ATs. The motifs in the AT of Cfa7 correlated more poorly with those predicted for MCoA ATs. Three ACP domains occur in the modular proteins of the COR PKS. The loading domain-associated ACP0 showed 38% similarity to the loading domain ACP0s of DEBS1 and NidA1 and 32–36% similarity to the two module-associated ACPs of the COR PKS. It exhibited a higher degree of similarity to the module-associated ACPs of RAPS. The two module-associated ACPs show 39% similarity to each other, but appear more closely related to module-associated ACP domains in RAPS and RIFS. Furthermore, the DH and KR domains of Cfa6 and Cfa7 show greater similarity to DH and KR domains in RAPS and RIFS than to each other. The CFA PKS includes a thioesterase domain (TE I) that resides at the C-terminus of Cfa7 and a second thioesterase, which exists as a separate ORF (Cfa9, a TE II). Analysis of a Cfa7 thioesterase mutant demonstrated that the TE domain is required for the production of CFA. The co-existence of TE domains within modular PKSs along with physically separated, monofunctional TEs (TE IIs) has been reported for a number of modular polyketide and non-ribosomal peptide synthases (NRPS). An analysis of the two types of thioesterases using Clustal X yielded a dendrogram showing that TE IIs from PKSs and NRPSs are more closely related to each other than to domain TEs from either PKSs or NRPSs. Furthermore, the dendrogram indicates that both types of TE IIs are more closely related to TE domains associated with PKSs than to TE domains in NRPSs. Finally, the overall % G+C content and the % G+C content at the third codon for all of the PKS genes in the COR cluster suggest that these genes may have been recruited from a gram-positive bacterium.  相似文献   

9.
Kim JA  Hong SG  Cheong YH  Koh YJ  Hur JS 《Mycologia》2012,104(2):362-370
Lichens produce unique polyketide secondary metabolites including depsides, depsidones, dibenzofurans and depsones. The biosynthesis of these compounds is governed by polyketide synthase (PKS), but the mechanism via which they are produced has remained unclear until now. We reported the 6-methylsalicylic acid synthase (6-MSAS) type of PKS gene, which is a member of the fungal-reducing PKSs. A cultured mycobiont of Cladonia metacorallifera was employed in the isolation and characterization of a polyketide synthase gene (CmPKS1). The complete sequence information for CmPKS1 was acquired via the screening of a Fosmid genomic library with a 456 bp fragment corresponding to part of the acyl transferase (AT) domain as a probe. CmPKS1 contains β-ketoacyl synthase (KS), AT, dehydratase (DH), ketoreductase (KR) and phosphopantetheine attachment site (PP) domains.: The domain organization of CmPKS1 (KS-AT-DH-KR-PP) is a typical 6-MSAS-type PKS, and the results of phylogenetic analysis showed that CmPKS1 grouped with other fungal-reducing PKSs. Quantitative real time PCR analyses showed that CmPKS1 was expressed preferentially in the early growth stage of the axenically cultured mycobiont. Furthermore CmPKS1 expression was found to be dependent on the carbon sources and concentrations in the medium.  相似文献   

10.
[目的]I型聚酮合酶(Polyketide synthase,PKS)模块中不同的修饰是聚酮类化合物结构多样性的重要原因之一.抗癌药物安丝菌素化学结构中C11-C14区域存在特殊的双键迁移结构,可能与聚酮合酶模块2或者3中脱水酶结构域(Dehydratase,DH)的催化密切相关,本研究通过探究聚酮合酶模块2中DH结构...  相似文献   

11.
Modular polyketide synthases (PKSs) of bacteria provide an enormous reservoir of natural chemical diversity. Studying natural biocombinatorics may aid in the development of concepts for experimental design of genes for the biosynthesis of new bioactive compounds. Here we address the question of how the modularity of biosynthetic enzymes and the prevalence of multiple gene clusters in Streptomyces drive the evolution of metabolic diversity. The phylogeny of ketosynthase (KS) domains of Streptomyces PKSs revealed that the majority of modules involved in the biosynthesis of a single compound evolved by duplication of a single ancestor module. Using Streptomyces avermitilis as a model organism, we have reconstructed the evolutionary relationships of different domain types. This analysis suggests that 65% of the modules were altered by recombinational replacements that occurred within and between biosynthetic gene clusters. The natural reprogramming of the biosynthetic pathways was unambiguously confined to domains that account for the structural diversity of the polyketide products and never observed for the KS domains. We provide examples for natural acyltransferase (AT), ketoreductase (KR), and dehydratase (DH)–KR domain replacements. Potential sites of homologous recombination could be identified in interdomain regions and within domains. Our results indicate that homologous recombination facilitated by the modularity of PKS architecture is the most important mechanism underlying polyketide diversity in bacteria.  相似文献   

12.
The assembly‐line architecture of polyketide synthases (PKSs) provides an opportunity to rationally reprogram polyketide biosynthetic pathways to produce novel antibiotics. A fundamental challenge toward this goal is to identify the factors that control the unidirectional channeling of reactive biosynthetic intermediates through these enzymatic assembly lines. Within the catalytic cycle of every PKS module, the acyl carrier protein (ACP) first collaborates with the ketosynthase (KS) domain of the paired subunit in its own homodimeric module so as to elongate the growing polyketide chain and then with the KS domain of the next module to translocate the newly elongated polyketide chain. Using NMR spectroscopy, we investigated the features of a structurally characterized ACP domain of the 6‐deoxyerythronolide B synthase that contribute to its association with its KS translocation partner. Not only were we able to visualize selective protein–protein interactions between the two partners, but also we detected a significant influence of the acyl chain substrate on this interaction. A novel reagent, CF3‐S‐ACP, was developed as a 19F NMR spectroscopic probe of protein–protein interactions. The implications of our findings for understanding intermodular chain translocation are discussed.  相似文献   

13.
Polyketides are important secondary metabolites, many of which exhibit potent pharmacological applications. Biosynthesis of polyketides is carried out by a single polyketide synthase (PKS) or multiple PKSs in successive elongations of enzyme-bound intermediates related to fatty acid biosynthesis. The polyketide gene PKS306 from Pseudallescheria boydii NTOU2362 containing domains of ketosynthase (KS), acyltransferase (AT), dehydratase (DH), acyl carrier protein (ACP) and methyltransferase (MT) was cloned in an attempt to produce novel chemical compounds, and this PKS harbouring green fluorescent protein (GFP) was expressed in Saccharomyces cerevisiae. Although fluorescence of GFP and fusion protein analysed by anti-GFP antibody were observed, no novel compound was detected. 6-methylsalicylic acid synthase (6MSAS) was then used as a template and engineered with PKS306 by combinatorial fusion. The chimeric PKS containing domains of KS, AT, DH and ketoreductase (KR) from 6MSAS with ACP and MT from PKS306 demonstrated biosynthesis of a novel compound. The compound was identified with a deduced chemical formula of C7H10O3, and the chemical structure was named as 2-hydroxy-2-(propan-2-yl) cyclobutane-1,3-dione. The novel compound synthesized by the chimeric PKS in this study demonstrates the feasibility of combinatorial fusion of PKS genes to produce novel polyketides.  相似文献   

14.
Sequence comparisons of multiple acyltransferase (AT) domains from modular polyketide synthases (PKSs) have highlighted a correlation between a short sequence motif and the nature of the extender unit selected. When this motif was specifically altered in the bimodular model PKS DEBS1-TE of Saccharopolyspora erythraea, the products included triketide lactones in which acetate extension units had been incorporated instead of propionate units at the predicted positions. We also describe a cassette system for convenient construction of hybrid modular PKSs based on the tylosin PKS in Streptomyces fradiae and demonstrate its use in domain and module swaps.  相似文献   

15.
In recent years, remarkable versatility of polyketide synthases (PKSs) has been recognized; both in terms of their structural and functional organization as well as their ability to produce compounds other than typical secondary metabolites. Multifunctional Type I PKSs catalyze the biosynthesis of polyketide products by either using the same active sites repetitively (iterative) or by using these catalytic domains only once (modular) during the entire biosynthetic process. The largest open reading frame in Mycobacterium tuberculosis, pks12, was recently proposed to be involved in the biosynthesis of mannosyl-beta-1-phosphomycoketide (MPM). The PKS12 protein contains two complete sets of modules and has been suggested to synthesize mycoketide by five alternating condensations of methylmalonyl and malonyl units by using an iterative mode of catalysis. The bimodular iterative catalysis would require transfer of intermediate chains from acyl carrier protein domain of module 2 to ketosynthase domain of module 1. Such bimodular iterations during PKS biosynthesis have not been characterized and appear unlikely based on recent understanding of the three-dimensional organization of these proteins. Moreover, all known examples of iterative PKSs so far characterized involve unimodular iterations. Based on cell-free reconstitution of PKS12 enzymatic machinery, in this study, we provide the first evidence for a novel "modularly iterative" mechanism of biosynthesis. By combination of biochemical, computational, mutagenic, analytical ultracentrifugation and atomic force microscopy studies, we propose that PKS12 protein is organized as a large supramolecular assembly mediated through specific interactions between the C- and N-terminus linkers. PKS12 protein thus forms a modular assembly to perform repetitive condensations analogous to iterative proteins. This novel intermolecular iterative biosynthetic mechanism provides new perspective to our understanding of polyketide biosynthetic machinery and also suggests new ways to engineer polyketide metabolites. The characterization of novel molecular mechanisms involved in biosynthesis of mycobacterial virulent lipids has opened new avenues for drug discovery.  相似文献   

16.
Type III polyketide synthases (PKSs) produce an array of metabolites with diverse functions. In this study, we have cloned the complete reading frame encoding type III PKS (SbPKS) from a brown seaweed, Sargassum binderi, and characterized the activity of its recombinant protein biochemically. The deduced amino acid sequence of SbPKS is 414 residues in length, sharing a higher sequence similarity with bacterial PKSs (38% identity) than with plant PKSs. The Cys-His-Asn catalytic triad of PKS is conserved in SbPKS with differences in some of the residues lining the active and CoA binding sites. The wild-type SbPKS displayed broad starter substrate specificity to aliphatic long-chain acyl-CoAs (C6–C14) to produce tri- and tetraketide pyrones. Mutations at H331 and N364 caused complete loss of its activity, thus suggesting that these two residues are the catalytic residues for SbPKS as in other type III PKSs. Furthermore, H227G, H227G/L366V substitutions resulted in increased tetraketide-forming activity, while wild-type SbPKS produces triketide α-pyrone as a major product. On the other hand, mutant H227G/L366V/F93A/V95A demonstrated a dramatic decrease of tetraketide pyrone formation. These observations suggest that His227 and Leu366 play an important role for the polyketide elongation reaction in SbPKS. The conformational changes in protein structure especially the cavity of the active site may have more significant effect to the activity of SbPKS compared with changes in individual residues.  相似文献   

17.
The process by which α-stereocenters of polyketide intermediates are set by modular polyketide synthases (PKSs) when condensation is not immediately followed by reduction is mysterious. However, the reductase-incompetent ketoreductase (KR) from the third module of 6-deoxyerythronolide B synthase has been proposed to operate as a racemase, aiding in the epimerization process that reverses the orientation of the α-methyl group of the polyketide intermediate generated by the ketosynthase to the configuration observed in the 6-deoxyerythronolide B final product. To learn more about the epimerization process, the structure of the C2-type KR from the third module of the pikromycin synthase, analogous to the KR from the third module of 6-deoxyerythronolide B synthase, was determined to 1.88 Å resolution. This first structural analysis of this KR-type reveals differences from reductase-competent KRs such as that the site NADPH binds to reductase-competent KRs is occluded by side chains and the putative catalytic tyrosine possesses more degrees of freedom. The active-site geometry may enable C2-type KRs to align the thioester and β-keto groups of a polyketide intermediate to reduce the pKa of the α-proton and accelerate its abstraction. Results from in vivo assays of engineered PKSs support that C2-type KRs cooperate with epimer-specific ketosynthases to set the configurations of substituent-bearing α-carbons.  相似文献   

18.
Tang Y  Lee TS  Kobayashi S  Khosla C 《Biochemistry》2003,42(21):6588-6595
Many bacterial aromatic polyketides are synthesized by type II polyketide synthases (PKSs) which minimally consist of a ketosynthase-chain length factor (KS-CLF) heterodimer, an acyl carrier protein (ACP), and a malonyl-CoA:ACP transacylase (MAT). This minimal PKS initiates polyketide biosynthesis by decarboxylation of malonyl-ACP, which is catalyzed by the KS-CLF complex and leads to incorporation of an acetate starter unit. In non-acetate-primed PKSs, such as the frenolicin (fren) PKS and the R1128 PKS, decarboxylative priming is suppressed in favor of chain initiation with alternative acyl groups. Elucidation of these unusual priming pathways could lead to the engineered biosynthesis of polyketides containing novel starter units. Unique to some non-acetate-primed PKSs is a second catalytic module comprised of a dedicated homodimeric KS, an additional ACP, and a MAT. This initiation module is responsible for starter-unit selection and catalysis of the first chain elongation step. To elucidate the protein-protein recognition features of this dissociated multimodular PKS system, we expressed and purified two priming and two elongation KSs, a set of six ACPs from diverse sources, and a MAT. In the presence of the MAT, each ACP was labeled with malonyl-CoA rapidly. In the presence of a KS-CLF and MAT, all ACPs from minimal PKSs supported polyketide synthesis at comparable rates (k(cat) between 0.17 and 0.37 min(-1)), whereas PKS activity was attenuated by at least 50-fold in the presence of an ACP from an initiation module. In contrast, the opposite specificity pattern was observed with priming KSs: while ACPs from initiation modules were good substrates, ACPs from minimal PKSs were significantly poorer substrates. Our results show that KS-CLF and KSIII recognize orthogonal sets of ACPs, and the additional ACP is indispensable for the incorporation of non-acetate primer units. Sequence alignments of the two classes of ACPs identified a tyrosine residue that is unique to priming ACPs. Site-directed mutagenesis of this amino acid in the initiation and elongation module ACPs of the R1128 PKS confirmed the importance of this residue in modulating interactions between KSs and ACPs. Our study provides new biochemical insights into unusual chain initiation mechanisms of bacterial aromatic PKSs.  相似文献   

19.
Bacterial type I polyketide synthases (PKSs) are complex, multifunctional enzymes that synthesize structurally diverse and medicinally important natural products. Given their modular organization, the manipulation of type I PKSs holds tremendous promise for the generation of novel compounds that are not easily accessible by standard synthetic chemical approaches. In theory, hybrid polyketide synthetic pathways can be constructed through the rational recombination of catalytic domains or modules from a variety of PKS systems; however, the general success of this strategy has been elusive, largely due to a poor understanding of the interactions between catalytic domains, as well as PKS modules. Over the past several years, a fundamental knowledge of these issues, and others, has begun to emerge, offering refined strategies for the facile engineering of hybrid polyketide pathways.  相似文献   

20.

Pimaricin is an important polyene antifungal antibiotic that binds ergosterol and extracts it from fungal membranes. In previous work, two pimaricin derivatives (1 and 2) with improved pharmacological activities and another derivative (3) that showed no antifungal activity were produced by the mutant strain of Streptomyces chattanoogensis, in which the P450 monooxygenase gene scnG has been inactivated. Furthermore, inactivation of the DH12 dehydratase domain of the pimaricin polyketide synthases (PKSs) resulted in specific accumulation of the undesired metabolite 3, suggesting that improvement of the corresponding dehydratase activity may reduce or eliminate the accumulation of 3. Accordingly, the DH12-KR12 didomain within the pimaricin PKS was swapped with the fully active DH11-KR11 didomain. As predicted, the mutant was not able to produce 3 but accumulated 1 and 2 in high yields. Moreover, the effect of the flanking linker regions on domain swapping was evaluated. It was found that retention of the DH12-KR12 linker regions was more critical for the processivity of hybrid PKSs. Subsequently, high-yield production of 1 or 2 was obtained by overexpressing the scnD gene and its partner scnF and by disrupting the scnD gene, respectively. To our knowledge, this is the first report on the elimination of a polyketide undesired metabolite along with overproduction of desired product by improving the catalytic efficiency of a DH domain using a domain swapping technology.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号