首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  • Dormancy cycling is a key mechanism that contributes to the maintenance of long‐term persistent soil seed banks, but has not been recorded in long‐lived woody shrub species from fire‐prone environments. Such species rely on seed banks and dormancy break as important processes for post‐fire recruitment and recovery.
  • We used germination experiments with smoke treatments on fresh seeds and those buried for 1 year (retrieved in spring) and 1.5 years (retrieved the following late autumn) to investigate whether Asterolasia buxifolia, a shrub from fire‐prone south‐eastern Australia with physiologically dormant seeds, exhibited dormancy cycling.
  • All seeds had an obligation for winter seasonal temperatures and smoke to promote germination, even after ageing in the soil. A high proportion of germination was recorded from fresh seeds. but germination after the first retrieval was significantly lower, despite high seed viability. After the second retrieval, germination returned to the initial level. This indicates a pattern of annual dormancy cycling; one of the few observations, to our knowledge, for a perennial species. Additionally, A. buxifolia’s winter temperature and smoke requirements did not change over time, highlighting the potential for seeds to remain conditionally dormant (i.e. restricted to a narrow range of germination conditions) for long periods.
  • For physiologically dormant species, such as A. buxifolia, we conclude that dormancy cycling is an important driver of successful regeneration, allowing seed bank persistence, sometimes for decades, during fire‐free periods unsuitable for successful recruitment, while ensuring that a large proportion of seeds are available for recruitment when a fire occurs.
  相似文献   

2.
Questions: 1. Which plant traits and habitat characteristics best explain local above‐ground persistence of vascular plant species and 2. Is there a trade‐off between local above‐ground persistence and the ability for seed dispersal and below‐ground persistence in the soil seed bank? Locations: 845 long‐term permanent plots in terrestrial habitats across the Netherlands. Methods: We analysed the local above‐ground persistence of vascular plants in permanent plots (monitored once a year for ca. 16 year) with respect to functional traits and habitat preferences using survival statistics (Kaplan‐Meier analysis and Cox’ regression). These methods account for censored data and are rarely used in vegetation ecology. Results: Local above‐ground persistence is determined by both functional traits (especially the ability to form long‐lived clonal connections) and habitat preferences (especially nutrient requirements). Above‐ground persistence is negatively related to the ability for dispersal by wind and to the ability to accumulate a long‐term persistent soil seed bank (‘dispersal through time’) and is positively related to the ability for dispersal by water. Conclusions: Most species have a half‐life expectation over 15 years, which may contribute to time lags after changes in habitat quality or ‐configuration (‘extinction debt’). There is evidence for a trade‐off relationship between local above‐ground persistence and below‐ground seed persistence, while the relationship with dispersal in space is vector specific. The rate of species turnover increases with productivity.  相似文献   

3.
Current fuel loads and distribution suggest that fire events are infrequent and of a low intensity in the regenerated dry sclerophyll forests of the Victorian box‐ironbark ecosystem. However, many box‐ironbark species possess traits consistent with fire‐cued regeneration. It is unclear the degree to which human disturbance may have altered fire regimes in these forests. The infrequent and low‐intensity fire regime suggested by current fuel dynamics may pose a threat to the persistence of fire‐cued species. Obligate seeders such as those of the Fabaceae and Mimosaceae, common in box‐ironbark understoreys, may be particularly vulnerable if inter‐fire intervals exceed seed longevity. This study used seed burial trials to examine seed dormancy and longevity in five legume species to explore their capacity to regenerate under an infrequent, low‐intensity fire regime. All species displayed dormancy and longevity patterns consistent with other south‐east Australian legumes. Before burial, dormancy levels were high for all species (98–100%). After 3 years, storage under in situ and ex situ conditions, dormancy in Pultenaea prostrata remained at pre‐burial levels with virtually no seed becoming non‐dormant. Over time, some Acacia seed became non‐dormant under both in situ and ex situ storage, with the pattern varying among species. Longevity also varied between species. Variation in the dormancy and longevity patterns observed in these obligate seeder legumes suggests two strategies: (i) releasing a portion of soil‐stored seed from dormancy during the inter‐fire period to permit inter‐fire recruitment; and (ii) retaining most soil‐stored seed as dormant during the inter‐fire interval. Both strategies represent potential weaknesses under a long fire interval regime. The first relies on dormancy release translating to successful recruitment and requires ongoing inter‐fire input into the soil seed bank. The second relies on seed longevity exceeding the inter‐fire interval. Whether either is more suitable to coping with long‐term infrequent fire requires long‐term monitoring.  相似文献   

4.
Soil seed banks act as a gene pool for local plant species and, as such, can buffer local populations, especially those experiencing challenging environmental conditions. Seed dormancy has important implications to dynamics of soil seed banks. Therefore, estimating the seed dormancy of transgenic crop–wild hybrids could shed light on the persistence of transgenes in wild‐plant soil seed banks. Individuals from eight populations of wild rice Oryza rufipogon were crossed with those of three insect‐resistant transgenic rice lines. Selfed (F2–F4) and backcrossed populations (BC1, BC1F2 and BC1F3) were then made from the hybrids. Seed germination was tested under three treatments: (a) normal; (b) overwintering in soil; and (c) one‐week heat‐shocking. The effects of transgene, wild parent and hybrid generation on hybrid seed germination were examined. No significant effect of insect‐resistant transgenes (Bt and CpTI) was detected on the seed dormancy of crop–wild hybrids, while a significant wild parent effect was found. The seeds of advanced generation hybrids have higher germination percentages and lower dormancy than do those of F1 and BC1 generations. The study showed that the dormancy of hybrid seeds was determined mainly by their genetic backgrounds. All hybrid seeds have higher germination percentages and lower dormancy (and, consequently, a poorer overwintering ability), compared with wild seeds, and reduce dormancy would contribute to a fitness disadvantage, compared with wild types. Therefore, such seeds might form part of naturally occurring soil seed banks, through which crop genes would persist in wild populations.  相似文献   

5.
土壤种子库的分类系统和种子在土壤中的持久性   总被引:19,自引:2,他引:19  
于顺利  陈宏伟  郎南军 《生态学报》2007,27(5):2099-2108
对国际上已经发表的10个土壤种子库分类系统的内容进行了总结和阐述,并对土壤种子库分类系统进行了评述,其中Thompson & Grime在1979年提出的把土壤种子库分为短暂土壤种子库(Transient soil seed bank)和持久土壤种子库(Persistent seed bank)的二元分类系统以及Thompson等人提出的把土壤种子库分为(1)短暂土壤种子库,(2)短期持久土壤种子库(Short term persistent seed bank),(3)长期土壤种子库(Long termp ersistent seed bank)的三元分类系统在生态学文献中已被广泛采用。在此分类的基础上产生了植物种子在土壤中的持久性(Persistence)概念,持久性是指植物的一种特性,是指植物的种子在土壤中能够存活超过1a的特性;植物种子的持久性被认为是一种对环境的进化适应,它可以在多个生长季节萌发从而分担环境震荡的风险,持久土壤种子库不仅在不稳定的环境里占有优势;即使在稳定的环境里,也被认为能够减少种内和种间的竞争;造成持久性的原因可分为环境因子和种子本身的特性比如休眠等两个方面,持久土壤种子库的出现使得土壤种子库的研究与进化生物学结合起来,使得土壤种子库的研究进入一个新的领域,更易激发人们的兴趣。关于种子的大小、形状及持久性的关系问题已经引起了相当的争论,基本上有4种格局:一是种子大小和形状与种子在土壤中的持久性有关,小而圆或扁的种子在土壤易存活持久;二是种子大小与种子在土壤中的持久性有关,小种子在土壤中易存活持久,但种子形状与持久性无关;三是种子大小、形状与种子在土壤中的持久性无关;四为较大的种子在土壤易存活持久,而种子形状与种子在土壤中的持久性无关。影响种子在土壤中的持久性因子比较复杂,总结过去的文献发现主要有以下几个因子:①种子的散布方式,②捕食,③植被的物种组成,④风,⑤土壤基质,⑥火,⑦干扰等。通过比较分析和研究,提出影响种子大小和在土壤中的持久性关系格局的关键因子是气候,特别是生态系统所在地的雨量;湿润气候下容易产生前两种格局,而干旱环境下的生境容易产生后两种格局。  相似文献   

6.
Theoretical ecological models, such as succession and facilitation, were defined in terrestrial habitats, and subsequently applied to marine and freshwater habitats in intertidal and then subtidal realms. One such model is the soil seed bank, defined as all viable seeds (or fruits) found near the soil surface that facilitate community restoration/recovery. “Banks of microscopic forms” have been hypothesized in aquatic habitats and recent work from aquaculture has highlighted dormancy in algal life cycle stages. To reinvigorate the discussions about these algal banks, we discuss differences in life cycles, dispersal, and summarize research on banks of macroalgal stages in aquatic ecosystems that may be easier to explore with modern advances in molecular technology. With focus on seminal work in global kelp forest ecosystems, we present a pilot study in northern California as proof of concept that Nereocystis luetkeana and Alaria marginata stages can be detected within kelp forests in the biofilm of rocks and bedrock using targeted primers long after zoospore release. Considering the increased interest in algae as an economic resource, [blue] carbon sink, and as ecosystem engineers, the potential for “banking” macroalgal forms could be a mechanism of resilience and recovery in aquatic populations that have complex life cycles and environmental cues for reproduction. Molecular barcoding is becoming an important tool for identifying banks of macroalgal forms in marine communities. Understanding banks of macroalgal stages, especially in deforested habitats with intense disturbance and grazer pressure, will allow researchers and marine resource managers to facilitate this natural process in recovery of the aquatic system.  相似文献   

7.
The soil seed‐banks in the main natural vegetation patches that make up mountain grasslands on granite substrates in central Argentina were studied. The main natural vegetation types are moist swards, tall‐tussock grasslands and stony grasslands. Ten compound soil samples from each community at two soil depths (0–5 and 5–10 cm) were taken. The density of soil seed‐banks was highest in moist swards, intermediate in stony grasslands and lowest in tall‐tussock grasslands. Low levels of similarity were found between the established vegetation and total soil seed‐bank in tall‐tussock grasslands and stony grasslands, but the similarity was higher in swards. In all three communities the seed‐bank was most frequently transient in nature. Short‐term persistent and long‐term persistent seed‐banks were less frequent. Regeneration from the seed‐banks after disturbance is expected to differ among communities on different edaphic patches. On the basis of the density and longevity of the soil seed‐banks and the similarity to the established vegetation, potential for in situ regeneration should be lower in tall‐tussock grasslands, intermediate in stony grasslands and higher in moist swards.  相似文献   

8.
The soil‐borne potato pathogen Spongospora subterranea persists in soil as sporosori, which are aggregates of resting spores. Resting spores may germinate in the presence of plant or environmental stimuli, but direct evidence for resting spore dormancy is limited. A soilless tomato bait plant bioassay and microscopic examination were used to examine features of S. subterranea resting spore dormancy and infectivity. Dried sporosori inocula prepared from tuber lesions and root galls were infective after both short‐ and long‐term storage (1 week to 5 years for tuber lesions and 1 week to 1 year for root galls) with both young and mature root galls inocula showing infectivity. This demonstrated that a proportion of all S. subterranea resting spores regardless of maturity exhibit characteristics of stimuli‐responsive dormancy, germinating under the stimulatory conditions of the bait host plant bioassay. However, evidence for constitutive dormancy within the resting spore population was also provided as incubation of sporosorus inoculum in a germination‐stimulating environment did not fully exhaust germination potential even after 2.4 years. We conclude that S. subterranea sporosori contain both exogenous (stimuli‐responsive) and constitutively dormant resting spores, which enables successful host infection by germination in response to plant stimuli and long‐term persistence in the soil.  相似文献   

9.
种子重量的生态学研究进展   总被引:10,自引:4,他引:10       下载免费PDF全文
作为植物生活史中的一个关键性特征,种子重量与其它许多植物性状和生态因子有关,种子重量的分异与其它一些植物性状及环境的变化关系在进化生物学上已经成为一个非常有意义的研究内容,且具有一定的实践意义。种子重量被发现与下列的一些植物学和群落学性状有关:植物的生活型、种子的散布能力、种子的散布方式、植物的高度、植物的冠幅、植物的比叶面积、植物的寿命、动物的捕食、植被中植物的数量或多度、土壤中种子的数量或多度、种子的休眠、种子在土壤中的持久性和植物的净初级生产力等,另外生态因子如降雨、温度、坡向、海拔、经度、纬度、光强和干扰等都影响种子的重量。种子的重量被认为是在大量小种子和少量大种子之间的进化折衷,在一定的能量限度内,较大重量的种子一般具有较少的数量,而较小重量的种子一般数量较多,这是种子重量和数量方面具有的一种反向关系。与其它性状相比,很多研究都表明种子重量和植物的生活型的关系密切。没有散布结构或风散布的种子比以动物和水作为散布媒介的种子重量要小。种子重量与捕食的关系现发现有3种格局。种子重量和形状与种子在土壤中的持久性的关系有4种格局。在干旱和阴暗的环境条件下,种子有变大的趋势。大重量种子比小种子赋予幼苗较优势的竞争地位,其原理尚有争论,尚不清楚是否是幼苗阶段的竞争决定了世界上大部分植被类型的物种组成。未来的研究方向主要有以下几个方面:1) 种子重量与植物系统学相结合,探索种子重量的变化规律;2)调查群落三向(纬度、经度和海拔)性的种子重量谱变化规律;3) 群落演替与群落种子重量谱的变化;4) 种子重量与群落中植物个体和种子的数量的关系及机理研究;5) 微生境、微地形如坡向、坡位和林间隙等对种子重量的影响;6) 全球气候变化和种子重量变化的关系。  相似文献   

10.
In fire-prone communities such as fynbos, many species rely on regeneration from seed banks in the soil. Persistent seed banks are particularly important for species with life spans shorter than the average fire cycle, in order to counter local extinction. Persistent seed banks also give potential for restoring ecosystems following disturbances such as alien plant invasion. This study investigated the seed persistence patterns of 25 perennial species, representing several growth forms and life histories, during a three-year burial. Long-term persistence (i.e., seed bank half-life exceeding two years) was found in the hard-seeded Fabaceae and Pelargonium, and the nut-fruited Proteaceae. In this group, germinability was low and dormancy increased further following burial, resulting in a highly viable, dormant seed bank after three-year's burial. A second group with potentially long-term persistent seeds includes four taxa (Pseudopentameris, Passerina, Elegia and Restio) that either have low germinability or develop secondary dormancy following burial. Dormancy in the latter group was partially countered by exposure to smoke-seed primer. Of the small-seeded species, only two Erica species with high initial dormancy had long-term persistent seed banks. The other species mostly displayed high initial germinability and short-term persistent seed banks (i.e., seed bank half-life less than two years). This group included taxa with short to medium life-spans (Syncarpha, Roella) that were expected to have long-term persistent seeds in order to buffer against local extinction following average to long fire-return intervals. We hypothesize that light may play a role in overcoming secondary dormancy in those species, and could have resulted in an underestimate for seed persistence in this study. Alternatively, those short to medium life-span species persist via inter-fire recruitment in gaps or long-distance dispersal (of the smallest seed). No correlations were found between seed persistence and seed mass or variance in seed dimensions. Nor was a correlation found between seed persistence and phenol concentration. In fynbos, seed burial of larger seeds by ants and rodents are major processes that operate in conjunction with passive burial of small seeds. Selection for persistence can be expected to operate across all seed sizes and shapes in fire-prone communities.  相似文献   

11.
Yukio Honda 《Plant Ecology》2008,196(2):301-309
It was empirically showed that seed size and life history correlate with the formation of a soil seed bank. Although no empirical data are available that indicate a close relationship between seed dormancy and the soil seed bank, dormancy has been considered essential to the formation of a soil seed bank. I have considered the formation of the soil seed bank and survival of seeds for more than a year in the soil, and the persistence and survival of the seed bank for more than 5 years. These periods were derived from the definition of a persistent seed bank and the criterion for seed banks of long-term persistence. Plant traits that are closely related to the formation or persistence of a seed bank and their relationships to dormancy were analysed using two pre-existing databases of seed longevity in soil and comparative ecology. The integrated database comprised 18 plant traits and seed bank formation or persistence data. This approach was used to identify more reliable general empirical rules. The results of a regression tree analysis and common statistical tests of plant traits indicated that only life history and seed size were closely related to seed bank formation, and dormancy was not essential for the formation and persistence of a seed bank. However, the contribution of dormancy differed slightly between dormancy types. Scarification or dry storage requirements to break dormancy slightly enhanced the formation and persistence of a seed bank, whereas a chilling requirement decreased the formation and persistence of a seed bank. In contrast, fluctuating temperature requirements clearly contributed to the formation and persistence of a seed bank.  相似文献   

12.
  • Soil seed banks are essential elements of plant population dynamics, enabling species to maintain genetic variability, withstand periods of adversity and persist over time, including for cactus species. However knowledge of the soil seed bank in cacti is scanty. In this study, over a 5‐year period we studied the seed bank dynamics, seedling emergence and nurse plant facilitation of Polaskia chende, an endemic columnar cactus of central Mexico.
  • P. chende seeds were collected for a wild population in Puebla, Mexico. Freshly collected seeds were sown at 25 °C and 12‐h photoperiod under white light, far‐red light and darkness. The collected seeds were divided in two lots, the first was stored in the laboratory and the second was use to bury seeds in open areas and beneath a shrub canopy. Seeds were exhumed periodically over 5 years. At the same time seeds were sown in open areas and beneath shrub canopies; seedling emergence and survival were recorded over different periods of time for 5 years.
  • The species forms long‐term persistent soil seed banks. The timing of seedling emergence via germination in the field was regulated by interaction between light, temperature and soil moisture. Seeds entered secondary dormancy at specific times according to the expression of environmental factors, demonstrating irregular dormancy cycling.
  • Seedling survival of P. chende was improved under Acacia constricta nurse plants. Finally, plant facilitation affected the soil seed bank dynamics as it promoted the formation of a soil seed bank, but not its persistence.
  相似文献   

13.
Seed dormancy and size are two important life‐history traits that interplay as adaptation to varying environmental settings. As evolution of both traits involves correlated selective pressures, it is of interest to comparatively investigate the evolution of the two traits jointly as well as independently. We explore evolutionary trajectories of seed dormancy and size using adaptive dynamics in scenarios of deterministic or stochastic temperature variations. Ecological dynamics usually result in unbalanced population structures, and temperature shifts or fluctuations of high magnitude give rise to more balanced ecological structures. When only seed dormancy evolves, it is counter‐selected and temperature shifts hasten this evolution. Evolution of seed size results in the fixation of a given strategy and evolved seed size decreases when seed dormancy is lowered. When coevolution is allowed, evolutionary variations are reduced while the speed of evolution becomes faster given temperature shifts. Such coevolution scenarios systematically result in reduced seed dormancy and size and similar unbalanced population structures. We discuss how this may be linked to the system stability. Dormancy is counter‐selected because population dynamics lead to stable equilibrium, while small seeds are selected as the outcome of size‐number trade‐offs. Our results suggest that unlike random temperature variation between generations, temperature shifts with high magnitude can considerably alter population structures and accelerate life‐history evolution. This study increases our understanding of plant evolution and persistence in the context of climate changes.  相似文献   

14.
Abstract. To assess seed bank persistence of target species in endangered flood‐meadows (alliances Cnidion and Molinion), we investigated established vegetation and soil seed bank of 46 plots for 3 yr and 2 yr, respectively. As traits of seed persistence we calculated various continuous indices that refer to the frequency and abundance of species in above‐ground vegetation and at different soil depths. Furthermore, we tested the significance and soundness of easily observed traits such as maximum seed density per plot and seed attributes (mass, size and shape) as predictors of soil seed bank features. In linear regression, SAI, the seed accumulation index, showed the best agreement (R2= 0.64) with the seed longevity index that was derived from the database by Thompson et al. (1997) for a set of 115 species. The second best predictor (R2= 0.39) of the seed longevity index was maximum seed density per plot in the lower soil layer (5–10 cm). Depth distribution indices and seed attributes showed weaker but still significant relations. The dynamic character of flood‐meadows was reflected by a large proportion of species with a strong tendency to accumulate seeds in the soil relative to their importance in above‐ground vegetation. Most of these species have a ruderal strategy, exploiting gaps after flood disturbances, while the dominants of flood‐meadows tended to have short‐lived seed banks. Compared to other grassland types, a relatively large proportion of rare and endangered target species can be expected to form long‐term persistent seed banks. However, only under marginal conditions that facilitate seed survival in the soil (e.g. fallow) are these persistent seed banks likely to contribute to restoration. We conclude that easily observed traits of persistence such as seed weight, size and shape do not meet the accuracy needed in scientific and practical applications. Thus, there is a crucial demand for further seed bank studies in poorly investigated habitats and of rare species.  相似文献   

15.
Predicting changes in dormancy level in natural seed soil banks   总被引:1,自引:0,他引:1  
The possibility of accurately predicting timing and extent of seedling emergence from natural seed soil banks has long been an objective of both ecologist and agriculturalist. However, as dormancy is a common attribute of many wild seed populations, we should first be able to predict dormancy changes if we intend to predict seedling emergence in the field. In this paper, we discuss the most relevant environmental factors affecting seed dormancy of natural seed soil banks, and present a conceptual framework as an attempt to understand how these factors affect seed-bank dormancy level. Based on this conceptual framework we show approaches that can be used to establish quantitative functional relationship between environmental factors regulating dormancy and changes in the seed-bank dormancy status. Finally, we briefly explain how we can utilize population-based threshold models as a framework to characterize and quantify changes in seed sensitivity to environmental factors as a consequence of dormancy loss and/or induction.  相似文献   

16.
Variation in dormancy thresholds among species is rarely studied but may provide a basis to better understand the mechanisms controlling population persistence. Incorporating dormancy‐breaking temperature thresholds into existing trait frameworks could improve predictions regarding seed bank persistence, and subsequently species resilience in response to fire, climate change and anthropogenic management. A key ecological strategy for many species from fire‐prone ecosystems is the possession of a long‐lived seed bank, ensuring recovery after fire. Physical dormancy is dominant in these ecosystems and maintaining this dormancy is directly linked to seed bank persistence. We identified a suite of seed‐related factors relevant to maintaining populations in fire‐prone regions for 14 co‐occurring physically dormant species. We measured variation in initial levels of dormancy and then applied experimental heating treatments, based on current seasonal temperatures and those occurring during fires, to seeds of all study species. Additionally, higher seasonal temperature treatments were applied to assess response of seeds to temperatures projected under future climate scenarios. Levels of germination response and mortality were determined to assess how tightly germination response was bound to either fire or seasonal cues. Six species were found to have dormancy cues bound to temperatures that only occur during fires (80°C and above) and were grouped as having obligate pyrogenic dormancy release. The remaining species, classified as having facultative pyrogenic dormancy, had lower temperature dormancy thresholds and committed at least 30% of seeds to germinate after summer‐temperature treatments. Evidence from this study supports including dormancy‐breaking temperature thresholds as an attribute for identifying functional types. High temperature thresholds for breaking dormancy, found in our obligate pyrogenic group, appear to be a fire‐adapted trait, while we predict that species in the facultative group are most at risk to increased seed bank decay resulting from elevated soil temperatures under projected climate change.  相似文献   

17.
Population genetics struggles to model extinction; standard models track the relative rather than absolute fitness of genotypes, while the exceptions describe only the short‐term transition from imminent doom to evolutionary rescue. But extinction can result from failure to adapt not only to catastrophes, but also to a backlog of environmental challenges. We model long‐term adaptation to long series of small challenges, where fitter populations reach higher population sizes. The population's long‐term fitness dynamic is well approximated by a simple stochastic Markov chain model. Long‐term persistence occurs when the rate of adaptation exceeds the rate of environmental deterioration for some genotypes. Long‐term persistence times are consistent with typical fossil species persistence times of several million years. Immediately preceding extinction, fitness declines rapidly, appearing as though a catastrophe disrupted a stably established population, even though gradual evolutionary processes are responsible. New populations go through an establishment phase where, despite being demographically viable, their extinction risk is elevated. Should the population survive long enough, extinction risk later becomes constant over time.  相似文献   

18.
Vegetative dormancy, that is the temporary absence of aboveground growth for ≥ 1 year, is paradoxical, because plants cannot photosynthesise or flower during dormant periods. We test ecological and evolutionary hypotheses for its widespread persistence. We show that dormancy has evolved numerous times. Most species displaying dormancy exhibit life‐history costs of sprouting, and of dormancy. Short‐lived and mycoheterotrophic species have higher proportions of dormant plants than long‐lived species and species with other nutritional modes. Foliage loss is associated with higher future dormancy levels, suggesting that carbon limitation promotes dormancy. Maximum dormancy duration is shorter under higher precipitation and at higher latitudes, the latter suggesting an important role for competition or herbivory. Study length affects estimates of some demographic parameters. Our results identify life historical and environmental drivers of dormancy. We also highlight the evolutionary importance of the little understood costs of sprouting and growth, latitudinal stress gradients and mixed nutritional modes.  相似文献   

19.
In plant ecology, characterising colonisation and extinction in plant metapopulations is challenging due to the non‐detectable seed bank that allows plants to emerge after several years of absence. In this study, we used a Hidden Markov Model to characterise seed dormancy, colonisation and germination solely from the presence–absence of standing flora. Applying the model to data from a long‐term survey of 38 annual weeds across France, we identified three homogeneous functional groups: (1) species persisting preferentially through spatial colonisation, (2) species persisting preferentially through seed dormancy and (3) a mix of both strategies. These groups are consistent with existing ecological knowledge, demonstrating that ecologically meaningful parameters can be estimated from simple presence–absence observations. These results indicate that such studies could contribute to the design of weed management strategies. They also open the possibility of testing life‐history theories such as the dormancy/colonisation trade‐off in natura.  相似文献   

20.
Soil seed banks are an important source of new individuals for many plant populations and contribute to future genetic variability. In general, the size and persistence of soil seed banks is predicted to be greater where growth occurs in unpredictable pulses, where opportunities for disturbance‐related recruitment are frequent and where the probability of recruitment failure is high. In savanna ecosystems, characterized by disturbance from fire and unpredictable water availability, soil seed banks should be relatively important sources of recruitment. However, the few studies conducted in savannas are inconclusive about the importance of soil seed banks and, more specifically, how seed banks should change across environmental gradients. We determined the number of viable seeds in the soil seed bank across savanna‐grasslands in the Serengeti, an ecosystem characterized by frequent fire and seasonal drought. Soils were exposed to a combination of smoke and heat, cues which may be required to break seed dormancy in such ecosystems. Our a priori expectation was to observe large seed banks in regions characterized by seasonal drought and comparatively smaller seed banks in regions of higher moisture availability and high fire frequencies. In contrast to our hypothesis, seed germination increased strongly with precipitation and fire frequency. In addition, there was a significant interaction effect between fire and rainfall: low rainfall sites with frequent fire had greater seed germination than low rainfall sites with low fire frequency. Moreover, in laboratory experiments, heat had a negative, smoke a positive effect on final seed germination numbers. Together, these findings suggest that fire may be a key factor in driving herbaceous seed bank dynamics in tropical savannas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号