首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Throughout life, neural stem cells (NSCs) in the adult hippocampus persistently generate new neurons that modify the neural circuitry. Adult NSCs constitute a relatively quiescent cell population but can be activated by extrinsic neurogenic stimuli. However, the molecular mechanism that controls such reversible quiescence and its physiological significance have remained unknown. Here, we show that the cyclin‐dependent kinase inhibitor p57kip2 (p57) is required for NSC quiescence. In addition, our results suggest that reduction of p57 protein in NSCs contributes to the abrogation of NSC quiescence triggered by extrinsic neurogenic stimuli such as running. Moreover, deletion of p57 in NSCs initially resulted in increased neurogenesis in young adult and aged mice. Long‐term p57 deletion, on the contrary, led to NSC exhaustion and impaired neurogenesis in aged mice. The regulation of NSC quiescence by p57 might thus have important implications for the short‐term (extrinsic stimuli‐dependent) and long‐term (age‐related) modulation of neurogenesis.  相似文献   

2.
Prion diseases are irreversible progressive neurodegenerative diseases, leading to severe incapacity and death. They are characterized in the brain by prion amyloid deposits, vacuolisation, astrocytosis, neuronal degeneration, and by cognitive, behavioural and physical impairments. There is no treatment for these disorders and stem cell therapy therefore represents an interesting new approach. Gains could not only result from the cell transplantation, but also from the stimulation of endogenous neural stem cells (NSC) or by the combination of both approaches. However, the development of such strategies requires a detailed knowledge of the pathology, particularly concerning the status of the adult neurogenesis and endogenous NSC during the development of the disease. During the past decade, several studies have consistently shown that NSC reside in the adult mammalian central nervous system (CNS) and that adult neurogenesis occurs throughout the adulthood in the subventricular zone of the lateral ventricle or the Dentate Gyrus of the hippocampus. Adult NSC are believed to constitute a reservoir for neuronal replacement during normal cell turnover or after brain injury. However, the activation of this system does not fully compensate the neuronal loss that occurs during neurodegenerative diseases and could even contribute to the disease progression. We investigated here the status of these cells during the development of prion disorders. We were able to show that NSC accumulate and replicate prions. Importantly, this resulted in the alteration of their neuronal fate which then represents a new pathologic event that might underlie the rapid progression of the disease.  相似文献   

3.
4.
Twenty years have past since the existence of neural stem cells (NSCs) within the walls of the adult lateral ventricles was discovered. During this period of time, great strides have been made in every facet of our understanding of this adult periventricular NSC population. In this review, some of the fields' major advancements regarding the nature and function of adult periventricular NSCs are examined. We bring attention to issues related to NSC identity, potential, and the role of Notch signaling in regulating quiescence and activation that warrant further investigation. Progress in the understanding of human adult NSCs will aid in the development of tools required to advance therapies not only for brain repair after injury or disease but may also lead to novel therapeutics for brain tumors.  相似文献   

5.
Alzheimer's disease (AD) is a devastating disorder that is clinically characterized by a comprehensive cognitive decline. Accumulation of the amyloid‐beta (Aβ) peptide plays a pivotal role in the pathogenesis of AD. In AD, the conversion of Aβ from a physiological soluble monomeric form into insoluble fibrillar conformation is an important event. The most toxic form of Aβ is oligomers, which is the intermediate step during the conversion of monomeric form to fibrillar form. There are at least two types of oligomers: oligomers that are immunologically related to fibrils and those that are not. In transgenic AD animal models, both active and passive anti‐Aβ immunotherapies improve cognitive function and clear the parenchymal accumulation of amyloid plaques in the brain. In this report we studied effect of immunotherapy of two sequence‐independent non‐fibrillar oligomer specific monoclonal antibodies on the cognitive function, amyloid load and tau pathology in 3xTg‐AD mice. Anti‐oligomeric monoclonal antibodies significantly reduce the amyloid load and improve the cognition. The clearance of amyloid load was significantly correlated with reduced tau hyperphosphorylation and improvement in cognition. These results demonstrate that systemic immunotherapy using oligomer‐specific monoclonal antibodies effectively attenuates behavioral and pathological impairments in 3xTg‐AD mice. These findings demonstrate the potential of using oligomer specific monoclonal antibodies as a therapeutic approach to prevent and treat Alzheimer's disease.  相似文献   

6.
Unlike unsaturated fatty acids, which almost fully activated purified brain protein kinase C in a phosphatidylserine- and Ca2(+)-free reaction, related methyl esters were poorly active in vitro. In contrast, methyl arachidonate was revealed to be as potent as arachidonic acid in activating protein kinase C in intact platelets. Arachidonic acid-mediated activation peaked at 20 s while methyl arachidonate-mediated activation plateaued at 2 min when both lipids were added at 50 microM. At concentrations higher than 0.3 mM, all tested unsaturated fatty acids and related methyl esters were weak activators of the enzyme, with the exception of linolenic acid and methyl linolenate which evoked strong enzyme activation. However, inhibitors of arachidonate metabolism blocked both arachidonic-acid and methyl-arachidonate-induced responses. At 5 microM arachidonic acid and methyl arachidonate, protein kinase C activation was due to a cyclooxygenase product(s) whereas at 50 microM the lipoxygenase pathway was mostly involved in the reaction. Therefore, arachidonic acid and its methyl ester activate protein kinase C in platelets mainly through action of their metabolites and eicosanoid synthesis. It is suggested that such indirect protein kinase C activation may account for the tumor-promoting activity of unsaturated fatty acids and related methyl esters.  相似文献   

7.
Docosahexaenoic acid (DHA, 22:6n-3) is specifically enriched in the brain and mainly anchored in the neuronal membrane, where it is involved in the maintenance of normal neurological function. Most DHA accumulation in the brain takes place during brain development in the perinatal period. However, hippocampal DHA levels decrease with age and in the brain disorder Alzheimer's disease (AD), and this decrease is associated with reduced hippocampal-dependent spatial learning memory ability. A potential mechanism is proposed by which the n-3 fatty acids DHA and eicosapentaenoic acid (20:5n-3) aid the development and maintenance of spatial learning memory performance. The developing brain or hippocampal neurons can synthesize and take up DHA and incorporate it into membrane phospholipids, especially phosphatidylethanolamine, resulting in enhanced neurite outgrowth, synaptogenesis and neurogenesis. Exposure to n-3 fatty acids enhances synaptic plasticity by increasing long-term potentiation and synaptic protein expression to increase the dendritic spine density, number of c-Fos-positive neurons and neurogenesis in the hippocampus for learning memory processing. In aged rats, n-3 fatty acid supplementation reverses age-related changes and maintains learning memory performance. n-3 fatty acids have anti-oxidative stress, anti-inflammation, and anti-apoptosis effects, leading to neuron protection in the aged, damaged, and AD brain. Retinoid signaling may be involved in the effects of DHA on learning memory performance. Estrogen has similar effects to n-3 fatty acids on hippocampal function. It would be interesting to know if there is any interaction between DHA and estrogen so as to provide a better strategy for the development and maintenance of learning memory.  相似文献   

8.
Emerging evidence suggests that dysregulation stress hormones, such as glucocorticoids, in aged persons put them at a higher risk to develop Alzheimer's disease (AD). However, the mechanisms underlying such vulnerability remain to be unraveled. Pharmacologic inhibition of 5‐lipoxygenase (5LO), an active player in AD pathogenesis whose protein level increases with aging in the human, has been shown to blunt glucocorticoid‐mediated amyloid β (Ab) formation in vitro. In this article, we investigated the role of this pathway in modulating the development of the corticosteroid‐dependent AD‐like phenotype in the triple transgenic mice (3xTg). Dexamethasone was administered for 1 week to 3xTg or 3xTg genetically deficient for 5LO (3xTg/5LO?/?) mice, and its effect on memory, amyloid‐β and tau levels, and metabolism assessed. At the end of the treatment, we observed that dexamethasone did not induce changes in behavior. Compared with controls, treated mice did not show significant alterations in brain soluble Aβ levels. While total tau protein levels were unmodified in all groups, we found that dexamethasone significantly increased tau phosphorylation at S396, as recognized by the antibody PHF‐13, which was specifically associated with an increase in the GSK3β activity. Additionally, dexamethasone‐treated mice had a significant increase in the tau insoluble fraction and reduction in the postsynaptic protein PDS‐95. By contrast, these modifications were blunted in the 3xTg/5LO?/? mice. Our findings highlight the functional role that 5LO plays in stress‐induced AD tau pathology and support the hypothesis that pharmacologic inhibition of this enzyme could be a useful tool for individuals with this risk factor.  相似文献   

9.
Recent data support the role of oxidative stress in the pathogenesis of Alzheimer disease (AD). In particular, glutathione (GSH) metabolism is altered and its levels are decreased in affected brain regions and peripheral cells from AD patients and in experimental models of AD. In the past decade, interest in the protective effects of various antioxidants aimed at increasing intracellular GSH content has been growing. Because much experimental evidence suggests a possible protective role of unsaturated fatty acids in age-related diseases, we designed the synthesis of new S-acylglutathione (acyl-SG) thioesters. S-Lauroylglutathione (lauroyl-SG) and S-palmitoleoylglutathione (palmitoleoyl-SG) were easily internalized into the cells and they significantly reduced Abeta42-induced oxidative stress in human neurotypic SH-SY5Y cells. In particular, acyl-SG thioesters can prevent the impairment of intracellular ROS scavengers, intracellular ROS accumulation, lipid peroxidation, and apoptotic pathway activation. Palmitoleoyl-SG seemed more effective in cellular protection against Abeta-induced oxidative damage than lauroyl-SG, suggesting a valuable role for the monounsaturated fatty acid. In this study, we demonstrate that acyl-SG derivatives completely avoid the sharp lipoperoxidation in primary fibroblasts from familial AD patients occurring after exposure to Abeta42 aggregates. Hence, we put forward these derivatives as new antioxidant compounds which could be excellent candidates for therapeutic treatment of AD and other oxidative stress-related diseases.  相似文献   

10.
Duchenne muscular dystrophy (DMD) arises as a consequence of mutations in the dystrophin gene. Dystrophin is a membrane-spanning protein that connects the cytoskeleton and the basal lamina. The most distinctive features of DMD are a progressive muscular dystrophy, a myofiber degeneration with fibrosis and metabolic alterations such as fatty infiltration, however, little is known on lipid metabolism changes arising in Duchenne patient cells. Our goal was to identify metabolic changes occurring in Duchenne patient cells especially in terms of L-carnitine homeostasis, fatty acid metabolism both at the mitochondrial and peroxisomal level and the consequences on the membrane structure and function. In this paper, we compared the structural and functional characteristics of DMD patient and control cells. Using radiolabeled L-carnitine, we found, in patient muscle cells, a marked decrease in the uptake and the intracellular level of L-carnitine. Associated with this change, a decrease in the mitochondrial metabolism can be seen from the analysis of mRNA encoding for mitochondrial proteins. Probably, associated with these changes in fatty acid metabolism, alterations in the lipid composition of the cells were identified: with an increase in poly unsaturated fatty acids and a decrease in medium chain fatty acids, mono unsaturated fatty acids and in cholesterol contents. Functionally, the membrane of cells lacking dystrophin appeared to be less fluid, as determined at 37°C by fluorescence anisotropy. These changes may, at least in part, be responsible for changes in the phospholipids and cholesterol profile in cell membranes and ultimately may reduce the fluidity of the membrane. A supplementation with L-carnitine partly restored the fatty acid profile by increasing saturated fatty acid content and decreasing the amounts of MUFA, PUFA, VLCFA. L-carnitine supplementation also restored muscle membrane fluidity. This suggests that regulating lipid metabolism in DMD cells may improve the function of cells lacking dystrophin.  相似文献   

11.
摘要 目的:阿尔茨海默病(AD)中小胶质细胞的免疫监测和吞噬功能逐渐减弱并发生炎症激活。以往研究报道瞬时受体电位香草素1型(TRPV1)通道的激活可以缓解3xTg小鼠脑内小胶质细胞的炎症激活和吞噬功能障碍,作用机制尚不清楚。方法:首先,通过蛋白印迹法和免疫荧光实验测量3xTg小鼠大脑细胞核内组蛋白H4的12位赖氨酸乳酸化(H4K12la)的表达水平和细胞定位情况。其次,验证TRPV1的激活是否可以调控3xTg小鼠大脑细胞核内H4K12la的表达水平。最后,使用Imaris软件和流式细胞术分析TRPV1的激活对小胶质细胞炎症激活形态和生物标志物的影响。结果:蛋白印迹法显示3xTg小鼠大脑细胞核内H4K12la的表达水平上升,免疫荧光实验证明H4K12la与小胶质细胞共定位。TRPV1的激活可以减少3xTg小鼠脑内小胶质细胞中H4K12la的表达水平,缓解3xTg小鼠脑内小胶质细胞炎症激活。结论:TRPV1可以通过抑制组蛋白H4K12la表达缓解AD小胶质细胞炎症激活。  相似文献   

12.
The brains of the adult mouse and human possess neural stem cells (NSCs) that retain the capacity to generate new neurons through the process of neurogenesis. They share the same anatomical locations of stem cell niches in the brain, as well as the prominent feature of rostral migratory stream formed by neuroblasts migrating from the lateral ventricles towards the olfactory bulb. Therefore the mouse possesses some fundamental features that may qualify it as a relevant model for adult human neurogenesis. Adult born young hippocampal neurons in the mouse display the unique property of enhanced plasticity, and can integrate physically and functionally into existing neural circuits in the brain. Such crucial properties of neurogenesis may at least partially underlie the improved learning and memory functions observed in the mouse when hippocampal neurogenesis is augmented, leading to the suggestion that neurogenesis induction may be a novel therapeutic approach for diseases with cognitive impairments such as Alzheimer's disease (AD). Research towards this goal has benefited significantly from the use of AD mouse models to facilitate the understanding in the impact of AD pathology on neurogenesis. The present article reviews the growing body of controversial data on altered neurogenesis in mouse models of AD and attempts to assess their relative relevance to humans.  相似文献   

13.
The developing brain is particularly sensitive to exposures to environmental contaminants. In contrast to the adult, the developing brain contains large numbers of dividing neuronal precursors, suggesting that they may be vulnerable targets. The postnatal day 7 (P7) rat hippocampus has populations of both mature neurons in the CA1–3 region as well as neural stem cells (NSC) in the dentate gyrus (DG) hilus, which actively produce new neurons that migrate to the granule cell layer (GCL). Using this well‐characterized NSC population, we examined the impact of low levels of methylmercury (MeHg) on proliferation, neurogenesis, and subsequent adolescent learning and memory behavior. Assessing a range of exposures, we found that a single subcutaneous injection of 0.6 µg/g MeHg in P7 rats induced caspase activation in proliferating NSC of the hilus and GCL. This acute NSC death had lasting impact on the DG at P21, reducing cell numbers in the hilus by 22% and the GCL by 27%, as well as reductions in neural precursor proliferation by 25%. In contrast, non‐proliferative CA1–3 pyramidal neuron cell number was unchanged. Furthermore, animals exposed to P7 MeHg exhibited an adolescent spatial memory deficit as assessed by Morris water maze. These results suggest that environmentally relevant levels of MeHg exposure may decrease NSC populations and, despite ongoing neurogenesis, the brain may not restore the hippocampal cell deficits, which may contribute to hippocampal‐dependent memory deficits during adolescence. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 936–949, 2013  相似文献   

14.
Proinflammatory factors from activated T cells inhibit neurogenesis in adult animal brain and cultured human fetal neural stem cells (NSC). However, the role of inhibition of neurogenesis in human neuroinflammatory diseases is still uncertain because of the difficulty in obtaining adult NSC from patients. Recent developments in cell reprogramming suggest that NSC may be derived directly from adult fibroblasts. We generated NSC from adult human peripheral CD34+ cells by transfecting the cells with Sendai virus constructs containing Sox2, Oct3/4, c-Myc and Klf4. The derived NSC could be differentiated to glial cells and action potential firing neurons. Co-culturing NSC with activated autologous T cells or treatment with recombinant granzyme B caused inhibition of neurogenesis as indicated by decreased NSC proliferation and neuronal differentiation. Thus, we have established a unique autologous in vitro model to study the pathophysiology of neuroinflammatory diseases that has potential for usage in personalized medicine.  相似文献   

15.
Antarctic notothenioid fishes possess large lipid stores that are important fuels for aerobic metabolism. Oxidative muscle tissues of these animals oxidize long-chain mono-unsaturated fatty acids more readily than saturated fatty acids. The mechanistic basis(es) for the substrate specificity of their fatty acid-oxidizing pathway is unknown. We examined the substrate specificity of fatty acyl coenzyme A synthetase (FACS) to determine whether the enzyme contributes to targeting unsaturated fatty acids for preferential transport into mitochondria as fuels for beta-oxidation. Maximal activities of FACS were measured in isolated mitochondria from Notothenia coriiceps and Chaenocephalus aceratus oxidative skeletal muscles in the presence of fatty acids differing in chain lengths and degrees of unsaturation. With the exception of C(22:6), maximal activities were greater with unsaturated substrates than with C(16:0), a saturated fatty acid. Monoenoic fatty acids did not produce the highest activities. Predicted amino acid sequences of FACS from Antarctic C. aceratus, Gobionotothen gibberifrons, and N. coriiceps and sub-Antarctic Notothenia angustata and Eleginops maclovinus were determined to identify amino acid candidates that may be important for determining the substrate specificity of FACS. Substitutions cysteine548 and polar threonine552 within the putative fatty acid binding pocket may contribute to preference for unsaturated fatty acyl substrates compared to saturated fatty acids.  相似文献   

16.
The discovery of neurogenesis and neural stem cells (NSC) in the adult CNS has overturned a long-standing and deep-routed "dogma" in neuroscience, established at the beginning of the 20(th) century. This dogma lasted for almost 90 years and died hard when NSC were finally isolated from the adult mouse brain. The scepticism in accepting adult neurogenesis has now turned into a rush to find applications to alleviate or cure the devastating diseases that affect the CNS. Here we highlight a number of methodological, technical and conceptual drawbacks responsible for the historical denial of adult neurogenesis. Furthermore, we discuss old and new issues that need to be faced before NSC or endogenous neurogenesis can safely enter into the doctor's bag for therapies.  相似文献   

17.
Activation of rat brain protein kinase C by lipid oxidation products   总被引:3,自引:0,他引:3  
The unsaturated fatty acid components of membrane lipids are susceptible to oxidation in vitro and in vivo. The initial oxidation products are hydroperoxy fatty acids that are converted spontaneously or enzymatically to a variety of products. Hydroperoxy derivatives of oleic, linoleic, or arachidonic acids stimulate the activity of protein kinase C (PKC) purified from rat brain. The hydroperoxy acids satisfy the requirement of PKC for phospholipid (e.g., phosphatidylserine). Activation is observed in the presence or absence of 1 mM Ca2+. Reduction of the hydroperoxides to alcohols or dehydration of the hydroperoxides to ketones increases the Ka for activation three- to fourfold but does not significantly reduce the maximal extent of PKC activation. The Ka's for activation by hydroperoxy acids are approximately half the values exhibited by the unoxidized fatty acids. Since oxidation of unsaturated fatty acids to hydroperoxides is the first event in lipid peroxidation, activation of PKC by hydroperoxy fatty acids may be an early cellular response to oxidative stress.  相似文献   

18.
Preclinical and clinical evidence suggests that docosahexaenoic acid (DHA), an omega-3 fatty acid derived from diet or synthesized in the liver, decreases the risk of developing Alzheimer’s disease (AD). DHA levels are reduced in the brain of subjects with AD, but it is still unclear whether human dementias are associated with dysregulations of DHA metabolism. A systems biological view of omega-3 fatty acid metabolism offered unexpected insights on the regulation of DHA homeostasis in AD [1]. Results of multi-organ lipidomic analyses were integrated with clinical and gene-expression data sets to develop testable hypotheses on the functional significance of lipid abnormalities observed and on their possible mechanistic bases. One surprising outcome of this integrative approach was the discovery that the liver of AD patients has a limited capacity to convert shorter chain omega-3 fatty acids into DHA due to a deficit in the peroxisomal d-bifunctional protein. This deficit may contribute to the decrease in brain DHA levels and contribute to cognitive impairment.  相似文献   

19.
Diets supplemented with high levels of either saturated fatty acids or unsaturated fatty acids were fed to adult rats for a period of 9 weeks and changes in the liver mitochondrial membrane phospholipid fatty acid composition and thermal behaviour of succinate: cytochrome c reductase were determined. The dietary treatment induced a change in the omega 6 to omega 3 unsaturated fatty acid ratio in the membrane lipids, with the ratio being highest with the unsaturated fatty acid and lowest with the saturated fatty acid diet. Arrhenius plots of succinate: cytochrome c reductase activity exhibited differences in both critical temperature (Tf) and Arrhenius activation energy (Ea) depending on the type of dietary treatment. The Tf was elevated from 23 degrees C in control to 32 degrees C in the saturated fatty acid-supplemented group. No significant effect on the Tf was observed in the unsaturated fatty acid-supplemented group however higher Ea values were observed due to the unsaturated fatty acid diet. The changes in succinate: cytochrome c reductase are probably due to changes in the lipid-protein interactions in the membrane, induced by the dietary lipid supplementation.  相似文献   

20.
Synaptosomes isolated from the adult rat hippocampus contain the alpha- and beta-subspecies of protein kinase C (PKC), but not the gamma-subspecies which is abundantly expressed in the pyramidal cells in this brain region. Although the gamma-subspecies is known to respond significantly to free arachidonic acid, it is found that both the alpha- and beta-subspecies are also activated dramatically by arachidonic acid in synergistic action with diacylglycerol. Oleic, linoleic, and linolenic acids are all active. It is possible that unsaturated fatty acids may take part in the activation of alpha- and beta-subspecies of PKC which are present in the presynaptic nerve endings terminating at the hippocampal pyramidal cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号