首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

Overexpression of CsHis in tobacco promoted chromatin condensation, but did not affect the phenotype. It also conferred tolerance to low-temperature, high-salinity, ABA, drought and oxidative stress in transgenic tobacco.

Abstract

H1 histone, as a major structural protein of higher-order chromatin, is associated with stress responses in plants. Here, we describe the functions of the Camellia sinensis H1 Histone gene (CsHis) to illustrate its roles in plant responses to stresses. Subcellular localization and prokaryotic expression assays showed that the CsHis protein is localized in the nucleus, and its molecular size is approximately 22.5 kD. The expression levels of CsHis in C. sinensis leaves under various conditions were investigated by qRT-PCR, and the results indicated that CsHis was strongly induced by various abiotic stresses such as low-temperature, high-salinity, ABA, drought and oxidative stress. Overexpression of CsHis in tobacco (Nicotiana tabacum) promoted chromatin condensation, while there were almost no changes in the growth and development of transgenic tobacco plants. Phylogenetic analysis showed that CsHis belongs to the H1C and H1D variants of H1 histones, which are stress-induced variants and not the key variants required for growth and development. Stress tolerance analysis indicated that the transgenic tobacco plants exhibited higher tolerance than the WT plants upon exposure to various abiotic stresses; the transgenic plants displayed reduced wilting and senescence and exhibited greater net photosynthetic rate (Pn), stomatal conductance (Gs) and maximal photochemical efficiency (Fv/Fm) values. All the above results suggest that CsHis is a stress-induced gene and that its overexpression improves the tolerance to various abiotic stresses in the transgenic tobacco plants, possibly through the maintenance of photosynthetic efficiency.  相似文献   

2.
To examine the function of linker histone variants, we produced transgenic tobacco plants in which major somatic histone variants H1A and H1B were present at approximately 25% of their usual amounts in tobacco chromatin. The decrease in these major variants was accompanied by a compensatory increase in the four minor variants, namely, H1C to H1F. These minor variants are smaller and less highly charged than the major variants. This change offered a unique opportunity to examine the consequences to a plant of major remodeling of its chromatin set of linker histones. Plants with markedly altered proportions of H1 variants retained normal nucleosome spacing, but their chromosomes were less tightly packed than those of control plants. The transgenic plants grew normally but showed characteristic aberrations in flower development and were almost completely male sterile. These features correlated with changes in the temporal but not the spatial pattern of expression of developmental genes that could be linked to the abnormal flower phenotypes. Preceding these changes in flower morphology were strong aberrations in male gametogenesis. The earliest symptoms may have resulted from disturbances in correct pairing or segregation of homologous chromosomes during meiosis. No aberrations were observed during mitosis. We conclude that in plants, the physiological stoichiometry and distribution of linker histone variants are crucial for directing male meiosis and the subsequent development of functional pollen grains.  相似文献   

3.
We studied the pathogenicity of five different genotypes (A to E) of highly pathogenic avian H5N1 viruses, which contained HA genes similar to those of the H5N1 virus A/goose/Guangdong/1/96 and five different combinations of "internal" genes, in a mouse model. Highly pathogenic, neurotropic variants of genotypes A, C, D, and E were isolated from the brain after a single intranasal passage in mice. Genotype B virus was isolated from lungs only. The mouse brain variants had amino acid changes in all gene products except PB1, NP, and NS1 proteins but no common sets of mutations. We conclude that the original H5N1/01 isolates of genotypes A, C, D, and E were heterogeneous and that highly pathogenic neurotropic variants can be rapidly selected in mice.  相似文献   

4.
A cytokinin mutant derived from cultured tobacco cells   总被引:1,自引:0,他引:1  
Tissues cultured from the leaf lamina of wild-type Nicotiana tabacum L. cv. "Havana 425" plants require an exogenous source of cytokinin for rapid growth. In contrast, leaf tissues of plants heterozygous or homozygous for the partially dominant, monogenic habituated leaf (H1-1) trait, exhibit a cytokinin-autotrophic phenotype in culture. Here we show that the H1 trait can arise in culture. Cytokinin autotrophic variants were obtained by culturing wild-type tissues of leaf lamina successively on media containing reduced concentrations of the cytokinin, kinetin. Plants regenerated from clones of these variants exhibited the H1 phenotype, which segregated in breeding tests as expected for a dominant, monogenic trait. This trait, designated H1-2, is inherited at a different locus than the H1-1 trait described earlier. Our results show that cytokinin mutants can arise in cell culture and that at least two genes regulate the cytokinin requirement of cultured tobacco tissues.  相似文献   

5.
The assembly of hybrid core particles onto long chicken DNA with histone H2B in the chicken histone octamer replaced with either wheat histone H2B(2) or sea urchin sperm histone H2B(1) or H2B(2) is described. All these histone H2B variants have N-terminal extensions of between 18 and 20 amino acids, although only those from sea urchin sperm have S(T)PXX motifs present. Whereas chicken histone octamers protected 167 base pairs (bp) (representing two full turns) of DNA against micrococcal nuclease digestion (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813), all the hybrid histone octamers protected an additional 17-bp DNA against nuclease digestion. This protection was more marked in the case of hybrid octamers containing sea urchin sperm histone H2B variants and similar to that described previously (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813) for hybrid histone octamers containing wheat histone H2A variants all of which also have S(T)PXX motifs present. Continued micrococcal nuclease digestion reduced the length of DNA associated with the core particle via 172-, 162-, and 152-bp intermediates until the 146-bp core particle was obtained. These DNA lengths were approximately 5 bp or half a helical turn longer than those reported previously for stripped chicken chromatin and for core particles containing histone octamers reconstituted using "normal" length histone H2B variants. This protection pattern was also found in stripped sea urchin sperm chromatin, demonstrating that the assembly/digestion methodology reflects the in vivo situation. The interaction between the N-terminal histone H2B extension and DNA of the "linker" region was confirmed by demonstrating that stripped sea urchin sperm chromatin precipitated between 120 and 500 mM NaCl in a manner analogous to unstripped chromatin whereas stripped chicken chromatin did not. Tryptic digestion to remove all the histone tails abolished this precipitation as well as the protection of DNA outside of the 167-bp core particle against nuclease digestion.  相似文献   

6.
No phytotoxic effect was seen following a pre-sowing spray of tobacco seed-beds with 27 lb./acre technical D.D.T. or after an application of the same material at 75.6 lb./acre to 3-week-old tobacco seedlings.
A pre-sowing application of parathion (diethyl para nitrophenyl thiophosphate) (2 % dust) at 1–8 lb. parathion per acre had no harmful effect. Used on 3-week-old tobacco seedlings at the excessive rate of 22.7 lb./acre it caused serious stunting and many deaths.
Toxaphene (chlorinated camphene: empirical formula C10H10Cl8), applied as a 25 % wettable powder in a pre-sowing spray at 6-4 lb. toxaphene per acre, did not injure tobacco seedlings.
No residual phytotoxic effects appeared in beds re-sown 4 months after being treated with parathion or toxaphene at the pre-sowing doses given above.
Benzene hexachloride, applied before sowing at doses above 1.6 lb. technical B.H.C. per acre, suppressed root development in newly germinated tobacco seedlings. B.H.C. dusts used on n-day-old seedlings at 2–25 lb. technical B.H.C. per acre caused temporary distortion and stunting. Up to 11 lb./acre these symptoms were transitory: at 37.5 lb./acre many plants were killed and the remainder severely stunted. Resistance to these phytotoxic effects increased with age of plant, but 3-week-old tobacco seedlings showed considerable mortality after the application of 75.6 lb./acre of technical B.H.C.
Beds re-sown 4 months after the application of 6-4 and 12.8 lb. respectively of technical B.H.C. per acre showed no phytotoxic effect, but, as tobacco seed is sown on the soil surface, the effect of the B.H.C. may have been merely masked, and it is not safe to assume that there was no residual effect. The actual persistence of B.H.C. in the soil was not determined.
The possible mechanism of action of the B.H.C. effect is discussed.  相似文献   

7.
8.
At intermediate stages of male pronucleus formation, sperm-derived chromatin is composed of hybrid nucleoprotein particles formed by sperm H1 (SpH1), dimers of sperm H2A-H2B (SpH2A-SpH2B), and a subset of maternal cleavage stage (CS) histone variants. At this stage in vivo, the CS histone variants are poly(ADP-ribosylated), while SpH2B and SpH1 are phosphorylated. We have postulated previously that the final steps of sperm chromatin remodeling involve a cysteine-protease (SpH-protease) that degrades sperm histones in a specific manner, leaving the maternal CS histone variants unaffected. More recently we have reported that the protection of CS histones from degradation is determined by the poly(ADP-ribose) moiety of these proteins. Because of the selectivity displayed by the SpH-protease, the coexistence of a subset of SpH together with CS histone variants at intermediate stages of male pronucleus remodeling remains intriguing. Consequently, we have investigated the phosphorylation state of SpH1 and SpH2B in relation to the possible protection of these proteins from proteolytic degradation. Histones H1 and H2B were purified from sperm, phosphorylated in vitro using the recombinant alpha-subunit of casein kinase 2, and then used as substrates in the standard assay of the SpH-protease. The phosphorylated forms of SpH1 and SpH2B were found to remain unaltered, while the nonphosphorylated forms were degraded. On the basis of this result, we postulate a novel role for the phosphorylation of SpH1 and SpH2B that occurs in vivo after fertilization, namely to protect these histones against degradation at intermediate stages of male chromatin remodeling.  相似文献   

9.
At intermediate stages of male pronucleus formation, sperm‐derived chromatin is composed of hybrid nucleoprotein particles formed by sperm H1 (SpH1), dimers of sperm H2A‐H2B (SpH2A‐SpH2B), and a subset of maternal cleavage stage (CS) histone variants. At this stage in vivo, the CS histone variants are poly(ADP‐ribosylated), while SpH2B and SpH1 are phosphorylated. We have postulated previously that the final steps of sperm chromatin remodeling involve a cysteine‐protease (SpH‐protease) that degrades sperm histones in a specific manner, leaving the maternal CS histone variants unaffected. More recently we have reported that the protection of CS histones from degradation is determined by the poly(ADP‐ribose) moiety of these proteins. Because of the selectivity displayed by the SpH‐protease, the coexistence of a subset of SpH together with CS histone variants at intermediate stages of male pronucleus remodeling remains intriguing. Consequently, we have investigated the phosphorylation state of SpH1 and SpH2B in relation to the possible protection of these proteins from proteolytic degradation. Histones H1 and H2B were purified from sperm, phosphorylated in vitro using the recombinant α‐subunit of casein kinase 2, and then used as substrates in the standard assay of the SpH‐protease. The phosphorylated forms of SpH1 and SpH2B were found to remain unaltered, while the nonphosphorylated forms were degraded. On the basis of this result, we postulate a novel role for the phosphorylation of SpH1 and SpH2B that occurs in vivo after fertilization, namely to protect these histones against degradation at intermediate stages of male chromatin remodeling. J. Cell. Biochem. 76:173–180, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

10.
11.
We previously developed a quantitative assay for measuring the induction of ouabain-resistant (Ouar) variants in transformable C3H/20T1/2 Cl 8 mouse fibroblasts following treatment of the cells with chemical carcinogens. To further define the nature of the Ouar phenotype, we conducted microcell-mediated chromosome transfer studies using Ouar cell lines induced by chemical carcinogens in C3H/10T1/2 Cl 8 cells as donors and 8-azaguanine-resistant (Azgr) derivatives of the human cell lines, D98/AH2 and HT 1080, as recipients. Microcells prepared from one spontaneous and two carcinogen-induced Ouar mouse cell lines were able to transfer resistance to 0.01 and 1 mM Oua to ouabain-sensitive D98 and HT 1080 cells. The frequency of microcell hybrid formation ranged from 10(-6) to 10(-5). Karyotypic analysis of the microcell hybrids indicated that the Ouar phenotype of C3H/10T1/2 Cl 8 derivatives mapped to mouse chromosome 3, the chromosome to which the wild-type murine Oua-1 allele had previously been assigned. These studies show that both spontaneous and chemically induced high level Ouar phenotypes of C3H/10T1/2 Cl 8 mouse fibroblasts can be transferred via microcell-mediated chromosome transfer, and provide strong genetic evidence that chemically induced Ouar phenotypes of C3H/10T1/2 Cl 8 cells arise from mutations at Oua-1. In addition, this study sufficiently standardizes microcell-mediated chromosome transfer in the C3H/10T1/2 Cl 8 cell line so that this technique can be used to investigate the nature of other phenotypic changes in these cells, such as the chemically transformed phenotype.  相似文献   

12.
The ectoenzyme ENPP1 (also termed membrane glycoprotein PC-1 or ENPP1/PC-1) is an inhibitor of insulin-induced activation of the insulin receptor. There is evidence from previous studies that coding variants of ENPP1/PC-1 (K121Q) are associated with type 2 diabetes (T2D) and obesity. Studies in the general Turkish population have demonstrated: unique plasma lipid characteristics, a high prevalence of cardiovascular risk factors, and an increased prevalence of obesity and T2D. We investigated, therefore, the association of ENPP1/PC-1 variants with obesity and T2D in Turkish individuals. The TaqMan allelic discrimination assay was used for genotyping the relationship of ENPP1/PC-1 variants to obesity and T2D in a genetic association study of 1,553 genotyped, randomly selected subjects from the Turkish Heart Study. The K121Q (rs1044498) variant and other previously reported variants (rs997509, rs1799774, rs1044548, rs11964389, rs7754561) were analyzed. In this cohort, the minor allele frequency (MAF) of the K121Q variant was associated with obesity in male, but not in female subjects (male, odds ratio 1.64, 95% confidence interval 1.004-2.698, P = 0.048; female, odds ratio 1.003, 95% confidence interval 0.684-1.471, P = ns). In addition, the previously reported ENPP1/PC-1 "risk haplotype" (Q (rs1044498), delT (rs1799774), and G (rs7754561) alleles) was found to be associated with obesity in male, but not in female, subjects (P = 0.035). In contrast, there was no association of either the K121Q variant or the ENPP1/PC-1 haplotype with T2D. We find evidence that variants of ENPP1/PC-1 are associated with obesity in the male Turkish population; thus, these variants may contribute to the development of the obesity in these individuals.  相似文献   

13.
Sørmo CG  Brembu T  Winge P  Bones AM 《PloS one》2011,6(4):e18530
MIRO GTPases have evolved to regulate mitochondrial trafficking and morphology in eukaryotic organisms. A previous study showed that T-DNA insertion in the Arabidopsis MIRO1 gene is lethal during embryogenesis and affects pollen tube growth and mitochondrial morphology in pollen, whereas T-DNA insertion in MIRO2 does not affect plant development visibly. Phylogenetic analysis of MIRO from plants revealed that MIRO 1 and 2 orthologs in dicots cluster in two separate groups due to a gene/genome duplication event, suggesting that functional redundancy may exists between the two MIRO genes. To investigate this possibility, we generated miro1(+/-)/miro2-2(-/-) plants. Compared to miro1(+/-) plants, the miro1(+/-)/miro2-2(-/-) plants showed increased segregation distortion. miro1(+/-)/miro2-2(-/-) siliques contained less aborted seeds, but more than 3 times the number of undeveloped ovules. In addition, reciprocal crosses showed that co-transmission through the male gametes was nearly absent, whereas co-transmission through the female gametes was severely reduced in miro1(+/-)/miro2-2(-/-) plants. Further investigations revealed that loss of MIRO2 (miro2(-/-)) function in the miro1(+/-) background enhanced pollen tube growth defects. In developing miro1(+/-)/miro2(-/-) embryo sacs, fusion of polar nuclei was further delayed or impaired compared to miro1 plants. This phenotype has not been reported previously for miro1 plants and coincides with studies showing that defects in some mitochondria-targeted genes results in the same phenotype. Our observations show that loss of function in MIRO2 in a miro1(+/-) background enhances the miro1(+/-) phenotype significantly, even though miro2(-/-) plants alone does not display any phenotypes. Based on these findings, we conclude that MIRO1 and MIRO2 are unequally redundant and that a proportion of the miro1(+/-)/miro2(-/-) plants haploid gametes displays the complete null phenotype of MIRO GTPase function at key developmental stages.  相似文献   

14.
15.
The tpd1 (from tobacco pollen development 1) insertion mutant of tobacco (Nicotiana tabacum L., cv. Samsun) with extended flowering period was investigated in detail in the course of plant development, and the inheritance of the mutant phenotype was established. The wild-type and mutant plants did not differ in basic developmental indices until the floral transition; later they diverged in the characteristics of male reproductive organs, particularly in anther development and pollen maturation. The pollen of tpd1 plants was underdeveloped and sterile, resulting in a characteristic seedless phenotype with extended flowering period. When mutant flowers were pollinated with wild-type pollen, the tpd1 phenotype was maintained in at least two seed generations, indicating that this trait was heritable. The tpd1 phenotype was closely linked with kanamycin resistance; it follows that the developmental anomalies observed in our experiments immediately depended on the vector DNA insert. Our data presume that tpd1 is a rare dominant monogenic mutation with a narrowly directed physiological manifestation. A model is presented to describe the effect of TPD1. The tpd1 mutant would help identify and clone the new TPD1 gene crucial for viable pollen development.  相似文献   

16.
Groups of CBA mice were administered [35S] methionine (1 mCi/mouse). Non-histone proteins, H1 and H10 histones and nucleosomal core histones were isolated from different issues by selective extractions. The measurements of radioactivity of individual bands and autoradiography of dry gels were used to identify methionine-containing and methionine-free histone variants. H1A and H1B histone variants extracted with 5% perchloric acid were methionine-free. However, minor sub-fractions of these histones which are more tightly bound to DNA (and which can be extracted only with 0.25 N HC1) contained [35S] methionine and did show a higher specific activity than methionine-containing nucleosomal hitones. Cyanogen Bromide reaction which destroys non-histone proteins and methionine-containing nucleosomal histones removes radioactivity but does not alter the position of methionine-containing H1 minor bands. This indicates that the radioactive methionine occupies only the N-terminus of the H1 molecules. It is suggested that this methionine is an uncleaved initiator methionine. The presence of these methionine-containing minor H1 subfractions varies in different tissues.  相似文献   

17.
Cyclins and cyclin-associated cdc kinases are key regulators of oocyte maturation (Maller, J. L. (1990) in The Biology and Medicine of Signal Transduction (Nishizuka, Y., Endo, M., and Tanaka, C., eds) pp. 323-328, Raven Press, New York), yeast cell cycles (Nurse, P. (1990) Nature 344, 503-508), DNA replication in cell-free systems (D'Urso, F., Marraccino, R. L., Marshak, R. R., and Roberts, J. M. (1990) Science 250, 786-791), and amphibian cell proliferative transitions (Hunt, T. (1991) Nature 350, 462-463). The extent to which these regulatory molecules participate in the growth control of differentiated epithelial cells like hepatocytes is unknown. Therefore, we investigated the expression of "G1" (E, C, and D) and "G2/M" (A, B1, and B2) cyclin mRNAs, the relative levels of cyclin A- and B1-associated histone H1-kinase activity, and the appearance of cyclin-associated kinases (p32/p33cdk2 and p33/p34cdc2) in regenerating rat liver and in control tissues from sham hepatectomized rats. To do this, we exploited a battery of human cyclin cDNAs and cyclin antisera that recognize rat molecules. The results suggest an apparent sequence of regeneration-specific changes: 1) elevated and induced expression of cyclins E (2.1 kilobases (kb)) and C (4 kb), and D mRNAs (4 kb), within 12 h, respectively; 2) induction of cyclins A (3.4 and 1.8 kb), B1 (2.5 and 1.8 kb), and B2 (1.9 kb) mRNAs at 24 h; 3) induction of cyclin A- and B1-associated nuclear histone H1 kinase at 24 h; and 4) enhanced levels of PSTAIRE-containing proteins of Mr approximately 32-33 and 33-34 kDa in nuclear extracts from 24-h regenerating liver that co-immunoprecipitate with cyclin A and B1 antisera, respectively. These observations provide an intellectual framework that unifies the biology of hepatocyte mitogenesis, proto-oncogene expression, and the machinery of the cell cycle.  相似文献   

18.
19.
To develop a new system for inducible male sterility without any modification of the floral architecture in tobacco plants, a mutated ethylene receptor gene Cm-ERS1/H70A was fused either to the tobacco Nin88 promoter known to function mainly in the tapetum and microspore or to the CaMV 35S promoter known to be a constitutive promoter. The fusion genes pNin88::Cm-ERS1/H70A and p35S::Cm-ERS1/H70A were introduced in tobacco plants, which generated two independent transformants. Transformants with 35S::Cm-ERS1/H70A produced less normal pollen and had modified floral architecture while those with Nin88::Cm-ERS1/H70A produced less normal pollen without modification of floral architecture. Histological observations of anthers at stage 2 showed that tapetum degeneration in NH70A #8 and H70A #2 transformants occurred later than in wild types, strongly indicating that the expression of the mutated gene was involved in this delay. These results suggest that the tapetum-specific expression of a mutated ethylene receptor gene is a potential strategy for inducing male sterility in transgenic plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号