首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The exposure of mouse splenic lymphocytes to the microtubule assembly-promoting drug taxol (10 microM for 4 h) results in an extensive reorganization of the microtubule system to form one to a few large bundles of microtubules, which extend from the centrosome. Lymphocytes pretreated with taxol for 4 h, or cultured in the continued presence of taxol, respond normally to the mitogen concanavalin A up to, and including, the stage of DNA replication. In contrast, the induction of DNA synthesis during the alloactivation of lymphocytes is inhibited when taxol is present in the mixed leukocyte culture. If the stimulators are pretreated with this drug, the mixed leukocyte reaction occurs normally, but pretreatment of the responders inhibits the proliferative response markedly. Microscopic observations of nuclear morphologies in these populations and autoradiography indicate that taxol inhibition occurs early in alloactivation, prior to DNA replication. The responding ability of taxol-treated lymphocytes is not restored to control levels by the addition of interleukin 2, leading to the suggestion that interleukin 2 receptors do not emerge or function normally in these cells. We conclude that the capacity to respond to allogeneic cells, but not to a mitogen, is dependent on the presence of the normal submembranous organization of the microtubule system.  相似文献   

2.
We have examined the changes in the microtubule and tubulin contents in populations of mouse splenic T lymphocytes stimulated by the mitogen concanavalin A. Indirect immunofluorescence staining with antiserum to tubulin indicated that a more extensive microtubule network was assembled from the centrosome in those cells which had increased in size in response to the mitogen. Direct counts of microtubules from electron micrographs of the centrosome regions of cells showed approximately a 2-fold increase in microtubule number in 48 h stimulated populations and up to a 5-fold increase in the large, fully stimulated, blast cells. Determinations of tubulin and actin contents were made by the measurement of peptides specific to those proteins. As a percentage of total cell protein both of these cytoskeletal proteins increased during the first 24 h of stimulation. Tubulin increased 50% by 24 h and remained high in populations stimulated for 48 h. The tubulin content per cell increased 2.5-fold, from 0.20 to 0.51 μg/106 cells, in the 48 h stimulated population. An increase in tubulin content was also seen following the stimulation of nude mouse B lymphocyte populations and of total splenic lymphocyte populations. Our results show that during lymphocyte stimulation there is a large increase in the numbers of microtubules assembled which is correlated with, and appears dependent on, a similar large increase in the cellular tubulin content.  相似文献   

3.
The involvement of high molecular weight microtubule-associated proteins (HMW-MAPs) in the process of taxol-induced microtubule bundling has been studied using immunofluorescence and electron microscopy. Immunofluorescence microscopy shows that HMW-MAPs are released from microtubules in granulosa cells which have been extracted in a Triton X-100 microtubule-stabilizing buffer (T-MTSB), unless the cells are pretreated with taxol. 1.0 microM taxol treatment for 48 h results in microtubule bundle formation and the retention of HMW-MAPs in these cells upon extraction with T-MTSB. Electron microscopy demonstrates that microtubules in control cytoskeletons are devoid of surface structures whereas the microtubules in taxol-treated cytoskeletons are decorated by globular particles of a mean diameter of 19.5 nm. The assembly of 3 X cycled whole microtubule protein (tubulin plus associated proteins) in vitro in the presence of 1.0 microM taxol, results in the formation of closely packed microtubules decorated with irregularly spaced globular particles, similar in size to those observed in cytoskeletons of taxol-treated granulosa cells. Microtubules assembled in vitro in the absence of taxol display prominent filamentous extensions from the microtubule surface and center-to-center spacings greater than that observed for microtubules assembled in the presence of taxol. Brain microtubule protein was purified into 6 s and HMW-MAP-enriched fractions, and the effects of taxol on the assembly and morphology of these fractions, separately or in combination, were examined. Microtubules assembled from 6 s tubulin alone or 6 s tubulin plus taxol (without HMW-MAPs) were short, free structures whereas those formed in the presence of taxol from 6 s tubulin and a HMW-MAP-enriched fraction were extensively crosslinked into aggregates. These data suggest that taxol induces microtubule bundling by stabilizing the association of HMW-MAPs with the microtubule surface which promotes lateral aggregation.  相似文献   

4.
T-killer cells eliminate infected and cancerous cells with precision by positioning their centrosome near the interface (immunological synapse) with the target cell. The mechanism of centrosome positioning has remained controversial, in particular the role of microtubule dynamics in it. We re-examined the issue in the experimental model of Jurkat cells presented with a T cell receptor-binding artificial substrate, which permits controlled stimulation and reproducible measurements. Neither 1-µM taxol nor 100-nM nocodazole inhibited the centrosome positioning at the “synapse” with the biomimetic substrate. At the same time, in micromolar taxol but not in nanomolar nocodazole the centrosome adopted a distinct peripheral rather than the normally central position within the synapse. This effect was reproduced in a computational energy-minimization model that assumed no microtubule dynamics, but only a taxol-induced increase in the length of the microtubules. Together, the experimental and computational results indicate that microtubule dynamics are not essential for the centrosome positioning, but that the fit of the microtubule array in the deformed body of the conjugated T cell is a major factor. The possibility of modulating the T-cell centrosome position with well-studied drugs and of predicting their effects in silico appears attractive for designing anti-cancer and antiviral therapies.  相似文献   

5.
Changes in the organization of centrosomes in mouse splenic T lymphocytes stimulated by concanavalin A (con A) were examined by electron microscopy of serial sections. In both resting and stimulated lymphocytes the single centrosome consists of a pair of centrioles, satellite bodies, and pericentriolar material. In resting cell centrosomes the satellite bodies are preferentially associated with, and appear to be attached by short stalks to, one of the centrioles. The satellite bodies are the primary sites of microtubule termination in the resting cell centrosome. During stimulation by con A there is a several-fold increase in microtubule content. This is correlated with an overall increase in centrosome size, an apparent increase in the size and in the number of satellite bodies, and a redistribution of satellite bodies to occupy a position between the two centrioles. Increased numbers of microtubules are detected terminating on the satellite bodies and in the pericentriolar material of the stimulated cell centrosome. Microtubule assembly from centrosomes in vitro was assessed by electron microscopy using detergent-permeabilized lymphocytes that had been pretreated to remove endogenous microtubules and supplied with purified bovine brain tubulin. These studies indicate that satellite bodies are major sites of microtubule assembly in both resting and stimulated cell centrosomes and show that the centrosomes of stimulated cells assemble more microtubules in vitro than resting cell centrosomes. This parallels the increase in microtubule content in intact lymphocytes stimulated by con A and suggests that the changes in centrosome organization and microtubule assembly capacity that occur during stimulation are causally related.  相似文献   

6.
Changes in the organization of centrosomes in mouse splenic T lymphocytes stimulated by concanavalin A (con A) were examined by electron microscopy of serial sections. In both resting and stimulated lymphocytes the single centrosome consists of a pair of centrioles, satellite bodies, and pericentriolar material. In resting cell centrosomes the satellite bodies are preferentially associated with, and appear to be attached by short stalks to, one of the centrioles. The satellite bodies are the primary sites of microtubule termination in the resting cell centrosome. During stimulation by con A there is a several-fold increase in microtubule content. This is correlated with an overall increase in centrosome size, an apparent increase in the size and in the number of satellite bodies, and a redistribution of satellite bodies to occupy a position between the two centrioles. Increased numbers of microtubules are detected terminating on the satellite bodies and in the pericentriolar material of the stimulated cell centrosome. Microtubule assembly from centrosomes in vitro was assessed by electron microscopy using detergent-permeabilized lymphocytes that had been pretreated to remove endogenous microtubules and supplied with purified bovine brain tubulin. These studies indicate that satellite bodies are major sites of microtubule assembly in both resting and stimulated cell centrosomes and show that the centrosomes of stimulated cells assemble more microtubules in vitro than resting cell centrosomes. This parallels the increase in microtubule content in intact lymphocytes stimulated by con A and suggests that the changes in centrosome organization and microtubule assembly capacity that occur during stimulation are causally related.  相似文献   

7.
Taxol, a microtubule stabilizing agent, has been used to study changes in spindle microtubule organization during mitosis. PtK1 cells have been treated with 5 μg/ml taxol for brief periods to determine its effect on spindle architecture. During prophase taxol induces microtubules to aggregate, particularly evident in the region between the nucleus and cell periphery. Taxol induces astral microtubule formation in prometaphase and metaphase cells concomitant with a reduction in spindle length. At anaphase taxol induces an increase in length in astral microtubules and reduces microtubule length in the interzone. Taxol-treated telophase cells show a reduction in the rate of furrowing and astral microtubules lack a discrete focus and are arranged more diffusely on the surface of the nuclear envelope. In summary, taxol treatment of cells prior to anaphase produces an increase in astral microtubules, a reduction in kinetochore microtubules and a decrease in spindle length. Brief taxol treatments during anaphase through early G1 promotes stabilization of microtubules, an increase in the length of astral microtubules and a delayed rate of cytokinesis.  相似文献   

8.
We have used immunofluorescence to examine the organizational fate of vimentin and its spatial relationship to the microtubule system during antibody-induced redistribution of surface immunoglobulin (sIg) in control and drug-treated mouse splenic lymphocytes. In control cells, vimentin is relocalized as a diffuse accumulation underneath the site of the cap during sIg redistribution. Observations on cells that were treated with colcemid or taxol prior to induction of sIg redistribution have further shown that vimentin accumulation corresponds to a dynamic rearrangement of this filamentous system which is related to, but is not required for, the energy-dependent translocation of sIg.  相似文献   

9.
Indirect immunofluorescence and digital videomicroscopy were used to study gamma-tubulin distribution in normal mitotic and interphase HeLa cells and after their treatment with microtubule-stabilizing (taxol) and depolymerizing (nocodazole) drugs. In interphase HeLa cells, the affinity-purified antibodies against gamma-tubulin and monoclonal antibodies against acetylated tubulin stain one or two neighboring dots, centrioles. The gamma-tubulin content in two centrioles from the same cell differs insignificantly. Mitotic poles contain fourfold amount of gamma-tubulin as compared with the centrioles in interphase. The effect of nocodazole (5 microg/ml) on interphase cells resulted in lowering the amount of gamma-tubulin in the centrosome, and in 24 h it was reduced by half. Treatment with nocodazole for 2 h caused a fourfold decrease in the gamma-tubulin content in mitotic poles. Besides, the mitotic poles were unevenly stained, the fluorescence intensity in the center was lower than at the periphery. Upon treatment with taxol (10 microg/ml), the gamma-tubulin content in the interphase cell centrosome first decreased, then increased, and in 24 h it doubled as compared with control. In the latter case, bright dots appeared in the cell cytoplasm along the microtubule bundles. However, after 24 h treatment with taxol, the total amount of intracellular gamma-tubulin did not change. Treatment with taxol for 2-4 h halved the gamma-tubulin content in the centrosome as compared with normal mitosis. In some cells, antibodies against gamma-tubulin revealed up to four microtubule convergence foci. Other numerous microtubule convergence foci were not stained. Thus, the existence of at least three gamma-tubulin pools is suggested: (1) constitutive gamma-tubulin permanently associated with centrioles irrespective of the cell cycle stage and of their ability to serve as microtubule organizing centers; (2) gamma-tubulin unstably associated with the centrosome only during mitosis; (3) cytoplasmic gamma-tubulin that can bind to stable microtubules.  相似文献   

10.
In mammalian cells the centrosome or diplosome is defined by the two parental centrioles observed in electron microscopy and by the pericentriolar material immunostained with several antibodies directed against various centrosomal proteins (gamma-tubulin, pericentrin, centrin and centractin). Partial destabilization of the microtubule cytoskeleton by microtubule-disassembling substances induced a splitting and a slow migration of the two diplosome units to opposite nuclear sides during most of the interphase in several mammalian cell lines. These units relocated close together following drug removal, while microtubule stabilization by nM taxol concentrations inhibited this process. Cytochalasin slowed down diplosome splitting but did not affect its relocation after colcemid washing. These results account for the apparently opposite effects induced by microtubule poisons on centriole separation. Moreover, they provide new information concerning the centrosome cycle and stability. First, the centrosome is formed by two units, distinguished only by the number of attached stable microtubules, but not by pericentrin, gamma-tubulin, centrin and centractin and their potency to nucleate microtubules. Second, the centrosomal units are independent during most of the interphase. Third, according to the cell type, these centrosomal units are localized in close proximity because they are either linked or maintained close together by the normal dynamics of the microtubule cytoskeleton. Finally, the relocalization of the centrosomal units with their centrioles in cells possessing one or two centrosomes suggests that their relative position results from the overall tensional forces involving at least partially the microtubule arrays nucleated by each of these entities.  相似文献   

11.
Centrosomes are the major microtubule nucleating center in the cell; they also contribute to spindle pole organization and play a role in cell cycle progression as well as completing cytokinesis. Here we describe the molecular characterization of a novel human gene, CEP55, located in 10q23.33 that is expressed in multiple tissues and various cancer cell lines. Sequence analysis of the cDNA predicted a protein of 464 amino acids with several putative coiled-coil domains that are responsible for protein-protein interactions. Indeed, we found homodimerization of CEP55 by coimmunoprecipitation. Subcellular localization analysis revealed that endogenous CEP55 as well as an EGFP-CEP55 fusion protein is present at the centrosome throughout mitosis, whereas it also appears at the cleavage furrow in late anaphase and in the midbody in cytokinesis. Neither nocodazole nor taxol interfered with centrosome association of endogenous CEP55, suggesting that it directly interacts with centrosome components rather than with microtubules. In microtubule regrowth assays, overexpression of CEP55 did not enhance or inhibit microtubule nucleation. Together, these data suggest a possible involvement of CEP55 in centrosome-dependent cellular functions, such as centrosome duplication and/or cell cycle progression, or in the regulation of cytokinesis.  相似文献   

12.
We investigated the effects of androgen and taxol on the androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cell lines. Cells were treated for 48 and 72 h with 0.05-1 nM of the synthetic androgen R1881 and with 100 nM taxol. Treatment of LNCaP cells with 0.05 nM R1881 led to increased cell proliferation, whereas treatment with 1 nM R1881 resulted in inhibited cell division, DNA cycle arrest, and altered centrosome organization. After treatment with 1 nM R1881, chromatin became clustered, nuclear envelopes convoluted, and mitochondria accumulated around the nucleus. Immunofluorescence microscopy with antibodies to centrosomes showed altered centrosome structure. Although centrosomes were closely associated with the nucleus in untreated cells, they dispersed into the cytoplasm after treatment with 1 nM R1881. Microtubules were only faintly detected in 1 nM R1881-treated LNCaP cells. The effects of taxol included microtubule bundling and altered mitochondria morphology, but not DNA organization. As expected, the androgen-independent prostate cancer cell line DU145 was not affected by R1881. Treatment with taxol resulted in bundling of microtubules in both cell lines. Additional taxol effects were seen in DU145 cells with micronucleation of DNA, an indication of apoptosis. Simultaneous treatment with R1881 and taxol had no additional effects on LNCaP or DU145 cells. These results suggest that LNCaP and DU145 prostate cancer cells show differences not only in androgen responsiveness but in sensitivity to taxol as well.  相似文献   

13.
Centrosomes direct the organization of microtubules in animal cells. However, in the absence of centrosomes, cytoplasm has the potential to organize microtubules and assemble complex structures such as anastral spindles. During cell replication or following fertilization, centrioles that are incapable of organizing microtubules into astral arrays are introduced into this complex cytoplasmic environment. These centrioles become associated with pericentriolar material responsible for centrosome-dependent microtubule nucleation, and thus the centrosome matures to ultimately become a dominant microtubule organizing center that serves as a central organizer of cell cytoplasm. We describe the identification of a novel structure within the pericentriolar material of centrosomes called the centromatrix. The centromatrix is a salt-insoluble filamentous scaffold to which subunit structures that are necessary for microtubule nucleation and abundant in the cytoplasm bind. We propose that the centromatrix serves to concentrate and focus these subunits to form the microtubule organizing center. Since binding of these subunits to the centromatrix does not require nucleotides, we propose a model for centrosome assembly which predicts that the assembly of the centromatrix is a rate-limiting step in centrosome assembly and maturation.  相似文献   

14.
Taxol, a microtubule stabilizing agent, has been extensively investigated for its antitumor activity. The cytotoxic effect of taxol is generally attributed to its antimicrotubule activity and is believed to be cell cycle dependent. Herein, we report that taxol induces hyperphosphorylation and reorganization of the vimentin intermediate filament in 9L rat brain tumor cells, in concentration- and time-dependent manner. Phosphorylation of vimentin was maximum at 10−6 M of taxol treatment for 8 h and diminished at higher (10−5 M) concentration. Enhanced phosphorylation of vimentin was detectable at 2 h treatment with 10−6 M taxol and was maximum after 12 h of treatment. Taxol-induced phosphorylation of vimentin was largely abolished in cells pretreated with staurosporine and bisindolymaleimide but was unaffected by H-89, KT-5926, SB203580, genistein, and olomoucine. Thus, protein kinase C may be involved in this process. Hyperphosphorylation of vimentin was accompanied by rounding up of cells as revealed by scanning electron microscopy. Moreover, there was a concomitant reorganization of the vimentin intermediate filament in the taxol-treated cells, whereas the microtubules and the actin microfilaments were less affected. Taken together, our data demonstrate that taxol induces hyperphosphorylation of vimentin with concomitant reorganization of the vimentin intermediate filament and that this process may be mediated via a protein kinase C signaling pathway. J. Cell Biochem. 68:472–483, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
T cell antigen receptor–proximal signaling components, Rho-family GTPases, and formin proteins DIA1 and FMNL1 have been implicated in centrosome reorientation to the immunological synapse of T lymphocytes. However, the role of these molecules in the reorientation process is not yet defined. Here we find that a subset of microtubules became rapidly stabilized and that their α-tubulin subunit posttranslationally detyrosinated after engagement of the T cell receptor. Formation of stabilized, detyrosinated microtubules required the formin INF2, which was also found to be essential for centrosome reorientation, but it occurred independently of T cell receptor–induced massive tyrosine phosphorylation. The FH2 domain, which was mapped as the INF2 region involved in centrosome repositioning, was able to mediate the formation of stable, detyrosinated microtubules and to restore centrosome translocation in DIA1-, FMNL1-, Rac1-, and Cdc42-deficient cells. Further experiments indicated that microtubule stabilization was required for centrosome polarization. Our work identifies INF2 and stable, detyrosinated microtubules as central players in centrosome reorientation in T cells.  相似文献   

16.
Although termed central body, the centrosome is located off-center in many polarized cells. T cell receptor (TCR) engagement by antigens induces a polarity switch in T cells. This leads to the recruitment of the centrosome to the immunological synapse (IS), a specialized cell-cell junction. Despite much recent progress, how TCR signaling triggers centrosome repositioning remains poorly understood. In this paper, we uncover a critical requirement for the centrosomal casein kinase I delta (CKIδ) in centrosome translocation to the IS. CKIδ binds and phosphorylates the microtubule plus-end-binding protein EB1. Moreover, a putative EB1-binding motif at the C terminus of CKIδ is required for centrosome translocation to the IS. We find that depletion of CKIδ in T lymphocytes and inhibition of CKI in epithelial cells reduce microtubule growth. Therefore, we propose that CKIδ-EB1 complexes contribute to the increase in microtubule growth speeds observed in polarized T cells, a mechanism that might serve to generate long-stable microtubules necessary for centrosome translocation.  相似文献   

17.
Treatment of interphase apical cells of Sphacelaria rigidula Kützing with 10 μmol L?1 taxol for 4 h induced drastic changes in microtubule (MT) organization. In normal cells these MTs converge on the centrosomes and are nucleated from the pericentriolar area. After treatment, the endoplasmic, perinuclear and centrosome‐associated MT almost disappeared, and a massive assembly of cortical/subcortical, well‐organized MT bundles was observed. The bundles tended to be axially oriented, usually following the cylindrical wall, although other orientations were not excluded. The MTs in the apical part of the cell seemed to reach the cortex of the apical dome, sometimes bending to follow its curvature, whereas those in the basal portion of the cell terminated close to the transverse wall. Mitotic cells were also highly affected. Typical metaphase stages were very rarely found, and typical anaphase arrangements of chromosomes were completely absent. The chromosomes usually appeared to be dispersed singly or in small groups. Different atypical mitotic configurations were observed, depending on the stage of the cell cycle when the treatment started. The position and the orientation of the atypical mitotic spindles was disturbed. The nuclear envelope was completely disintegrated. The separation of the duplicated centrioles, as well as their usual perinuclear position, was also disturbed. Cortical MT bundles similar to those found in interphase cells were not found in the affected mitotic cells. In contrast, numerous MTs, without definite focal points, were found in the pericentriolar areas. Cytokinesis was inhibited by taxol treatment. The perinuclear and centrosome‐associated MTs found in mitotic cells were gradually replaced by a MT system similar to that of interphase cells. When the cytokinetic diaphragm had already been initiated when taxol treatment began, MTs were found on the cytokinetic plane, a phenomenon not observed in normal untreated cells. The results show clearly that: (i) in interphase cells the ability of centrosomes to nucleate MTs is intensely disturbed by taxol; (ii) centrosome dynamics in MT nucleation vary during the cell cycle; and (iii) taxol strongly affects mitosis and cytokinesis. In addition, it seems that the cortical/subcortical cytoplasm of interphase cells assumes the capacity to form numerous MT bundles.  相似文献   

18.
The action of carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and ouabain results in significant increase of the quantity of microtubules with attached and free proximal end around the centrosome. The majority of free microtubules are oriented with their proximal ends towards the heads of pericentriolar satellites or towards the walls of centriolar cylinders. The increasing of total number of microtubules is the result of the increasing of microtubules attached to or oriented towards the pericentriolar satellites. Comparing the action of FCCP and ouabain from one side and taxol from the other side it is possible to conclude that FCCP and ouabain promote the initiation of microtubule growth in the centrosome of they have an influence on the frequency of separation of the microtubules from microtubule nucleating centers.  相似文献   

19.
We used reliable and relatively inexpensive equipment to make sequential sets of measurements of antitubulin immunofluorescence, Feulgen staining, and autoradiography on the same cells. This was done to evaluate tubulin conformations, DNA content, and [3H]-thymidine incorporation in cell lines sensitive (HL60) and resistant (K562) to the novel anti-tubulin chemotherapeutic agent taxol. Numbers of cells with microtubule bundles have been found to correlate with sensitivity to taxol by clonogenic assay for several leukemic cell lines. We have found that cells with "asters" produced by taxol exposure are in mitosis and that cells with taxol-induced "bundles" are in G0/G1, S, and G2 phases. We further found that S-phase cells with microtubule bundles in both sensitive (HL60) and resistant (K562) cell lines were able to incorporate [3H]-thymidine after 4-hr exposure to taxol. As microtubule bundles and asters occur in cells of the same cell cycle phases in both lines, we conclude that the greater frequency of cells with microtubule bundles reported for sensitive cells after taxol treatment cannot result from drug exclusion nor from different effects of the drug on cell microtubules in these two leukemic lines.  相似文献   

20.
Freezing, dehydration, and supercooling cause microtubules in mesophyll cells of spinach (Spinacia oleracea L. cv Bloomsdale) to depolymerize (ME Bartolo, JV Carter, Plant Physiol [1991] 97: 175-181). The objective of this study was to determine whether the LT50 (lethal temperature: the freezing temperature at which 50% of the tissue is killed) of spinach leaf tissue can be changed by diminishing the extent of microtubule depolymerization in response to freezing. Also examined was how tolerance to the components of extracellular freezing, low temperature and dehydration, is affected by microtubule stabilization. Leaf sections of nonacclimated and cold-acclimated spinach were treated with 20 micromolar taxol, a microtubule-stabilizing compound, prior to freezing, supercooling, or dehydration. Taxol stabilized microtubules against depolymerization in cells subjected to these stresses. When pretreated with taxol both nonacclimated and cold-acclimated cells exhibited increased injury during freezing and dehydration. In contrast, supercooling did not injure cells with taxol-stabilized microtubules. Electrolyte leakage, visual appearance of the cells, or a microtubule repolymerization assay were used to assess injury. As leaves were cold-acclimated beyond the normal period of 2 weeks taxol had less of an effect on cell survival during freezing. In leaves acclimated for up to 2 weeks, stabilizing microtubules with taxol resulted in death at a higher freezing temperature. At certain stages of cold acclimation, it appears that if microtubule depolymerization does not occur during a freeze-thaw cycle the plant cell will be killed at a higher temperature than if microtubule depolymerization proceeds normally. An alternative explanation of these results is that taxol may generate abnormal microtubules, and connections between microtubules and the plasma membrane, such that normal cellular responses to freeze-induced dehydration and subsequent rehydration are blocked, with resultant enhanced freezing injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号