首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
石灰碳汇综述   总被引:1,自引:1,他引:0  
以“碳失汇”科学之谜和碳捕集与封存技术发展为背景,从石灰碳化原理、影响因素和石灰在化工、冶金、建筑以及石灰窑灰处理等领域的利用方式,综述了石灰物质流动过程的碳汇研究.结果发现: 石灰材料和环境条件是影响碳化的主要因素;石灰碳汇主要集中在化工、冶金和建筑领域;已有研究侧重分析石灰碳汇的机理、影响因素,但缺乏系统的碳汇核算方法.今后的研究工作应从以下几方面加强: 从物质流动的角度出发,建立系统完整的石灰碳汇核算方法;量化我国乃至全球的石灰碳汇量,阐明石灰生产过程中排放的CO2抵消比例;分析石灰碳汇对碳失汇的贡献比例,明晰部分失踪碳汇;推动石灰碳捕集与封存技术发展,为我国应对气候变化国际谈判提供科学依据.  相似文献   

2.
在全球温室气体浓度升高的背景下,如何减少碳排放、增加碳吸收是当前应对气候变化研究的热点.本研究基于我国1963—2016年粗钢产量,采用温室气体清单指南编制方法,建立了钢渣碳汇核算方法,核算了我国1963—2016年钢渣碳汇量,并进行了不确定性分析.结果表明: 1963—2016年间,我国钢渣的年碳汇量总体呈上升趋势,从3.75×103 t C增加至1359.32×103 t C.1963—2016年间我国钢渣累积碳汇量为15×106 t C,钢渣碳汇的总不确定性约为±30.4%.钢渣年碳汇量由当年产钢渣碳汇量和历年产钢渣碳汇量两部分组成.由于钢渣结构致密,年碳化速率较小,导致1963—2016年间当年产钢渣碳汇量较小,占钢渣碳汇总量的37%;历年产钢渣碳汇量较大,占钢渣碳汇总量的63%.虽然钢渣年碳汇量不大,但长期累积碳汇量非常可观,其碳汇作用不容忽视.今后研究应细化不同环境条件下钢渣碳化速率,降低钢渣碳汇核算的不确定性;推动以钢渣为原材料的碳捕集与封存技术发展,增加有效碳汇,为我国应对气候变化国际谈判提供科技支撑.  相似文献   

3.
在全球温室气体浓度升高的背景下,如何减少碳排放、增加碳吸收是当前应对气候变化研究的热点.本研究基于我国1963—2016年粗钢产量,采用温室气体清单指南编制方法,建立了钢渣碳汇核算方法,核算了我国1963—2016年钢渣碳汇量,并进行了不确定性分析.结果表明: 1963—2016年间,我国钢渣的年碳汇量总体呈上升趋势,从3.75×103 t C增加至1359.32×103 t C.1963—2016年间我国钢渣累积碳汇量为15×106 t C,钢渣碳汇的总不确定性约为±30.4%.钢渣年碳汇量由当年产钢渣碳汇量和历年产钢渣碳汇量两部分组成.由于钢渣结构致密,年碳化速率较小,导致1963—2016年间当年产钢渣碳汇量较小,占钢渣碳汇总量的37%;历年产钢渣碳汇量较大,占钢渣碳汇总量的63%.虽然钢渣年碳汇量不大,但长期累积碳汇量非常可观,其碳汇作用不容忽视.今后研究应细化不同环境条件下钢渣碳化速率,降低钢渣碳汇核算的不确定性;推动以钢渣为原材料的碳捕集与封存技术发展,增加有效碳汇,为我国应对气候变化国际谈判提供科技支撑.  相似文献   

4.
城市建设中的矿物质材料开发利用活动不仅导致大量碳排放,也产生了碳吸收.以往建筑矿物质材料的碳吸收过程一直没有得到重视和科学量化.本研究采用遥感影像阴影高度反演技术,提取地块的建筑容量,识别建筑类型,以此为依据确定矿物材料用量及碳含量参数,采用热重分析法测定碳化率,基于以上步骤构建城市建筑碳汇量的核算方法,并选取沈阳市蒲河新来测试这一核算方法,同时进行不确定性分析.结果表明: 1996—2016年,沈阳市蒲河新城各类型建筑产生的碳汇总量依次为:居住建筑>公共服务建筑>其他类建筑>商业金融建筑>工业建筑;各类建筑用地的碳汇容积率依次为:商业金融建筑>居住建筑>公共服务建筑>其他类建筑>工业建筑.本研究构建的基于建筑容量提取的城市尺度的建筑碳汇量核算方法,可以快速准确地估算不同类型城市建设用地无机材料产生的碳汇量.在城市自然碳汇有限条件下,利用建筑碳汇增加城市碳汇量,能够为我国城市低碳发展提供新的思路.  相似文献   

5.
高炉渣CO_2矿化利用技术,在减排CO_2的同时,可以实现固体废物的资源化,达到"以废治废"的目的,是具备环境与经济双重效益的CO_2捕集利用与封存(carbon dioxide capture,utilization and storage,CCUS)路线。本研究运用生命周期评价的方法,以消耗1 t高炉渣为研究单元,对不同CO_2捕集方式(燃烧后捕集系统和富氧燃烧捕集系统)与两种新型高炉渣CO_2矿化工艺进行组合,模拟出4种CCUS运行方案。对4种方案从CO_2捕集、运输、封存到产品生产的碳排放和成本进行了系统核算。结果表明:仅燃烧后系统矿化联产富铝产品、富氧燃烧系统矿化联产铵明矾、富氧燃烧系统矿化联产富铝产品3种方案能达到CO_2封存要求,碳封存效率分别为29%、32.7%、76.2%;这3种方案的生命周期运行成本分别为544、1384、530元。其中,富氧燃烧系统矿化联产铵明矾方案,不仅可以封存大量的CO_2,而且预期利润最大,约297元,工业化应用前景广阔。  相似文献   

6.
葡萄园生态系统是农业生态系统的重要组成部分, 集中连片栽培的葡萄园具有重要的生态价值。开展葡萄园生态系统碳源/汇的研究, 是完整探讨葡萄园生态系统碳循环必不可少的内容。随着葡萄生态学研究的进一步深入, 如何直观地揭示葡萄园生态系统碳循环规律和碳汇功能已经成为葡萄生态学领域关注的热点问题。研究发现, 葡萄园生态系统固定大量碳, 将碳封存在葡萄果实等一年生器官、主干等多年生器官以及土壤碳库中。葡萄园生态系统碳输入量大于碳输出量, 是碳汇; 土壤是葡萄园生态系统最大的碳库, 占总碳储量的70%, 尤其是土藤界面; 覆盖和免耕作为葡萄园的碳减排策略, 可以减少碳排放, 提高葡萄园土壤肥力。基于此, 为了阐明葡萄园生态系统的碳汇价值, 该文围绕葡萄生态学最新研究进展, 系统回顾了葡萄园生态系统中碳循环规律、碳汇研究进展及碳减排策略, 为葡萄生态学的研究提供理论基础, 并对本领域未来的研究方向和应用前景进行展望。  相似文献   

7.
葡萄园生态系统是农业生态系统的重要组成部分,集中连片栽培的葡萄园具有重要的生态价值。开展葡萄园生态系统碳源/汇的研究,是完整探讨葡萄园生态系统碳循环必不可少的内容。随着葡萄生态学研究的进一步深入,如何直观地揭示葡萄园生态系统碳循环规律和碳汇功能已经成为葡萄生态学领域关注的热点问题。研究发现,葡萄园生态系统固定大量碳,将碳封存在葡萄果实等一年生器官、主干等多年生器官以及土壤碳库中。葡萄园生态系统碳输入量大于碳输出量,是碳汇;土壤是葡萄园生态系统最大的碳库,占总碳储量的70%,尤其是土藤界面;覆盖和免耕作为葡萄园的碳减排策略,可以减少碳排放,提高葡萄园土壤肥力。基于此,为了阐明葡萄园生态系统的碳汇价值,该文围绕葡萄生态学最新研究进展,系统回顾了葡萄园生态系统中碳循环规律、碳汇研究进展及碳减排策略,为葡萄生态学的研究提供理论基础,并对本领域未来的研究方向和应用前景进行展望。  相似文献   

8.
王桃妮  张子莲  全为民 《生态学报》2024,44(7):2706-2716
牡蛎礁生境是指由聚集的牡蛎和其他生物及环境堆积形成的复合生态系统,其固碳和储碳潜力巨大,在海岸带生态系统中发挥着重要的作用。然而,目前对牡蛎礁生境碳源与汇的认识仍存在不足,主要在于牡蛎钙化和呼吸作用都释放CO2,而碳源与汇的评估忽视了钙化、同化和沉积过程带来的整体碳汇价值及牡蛎礁生态系统功能带来的碳汇效应。因此,有必要重新认识牡蛎礁生境的碳汇价值。一方面,牡蛎礁生境的碳源和碳汇需要从牡蛎礁自身的整体碳循环中进行评估,包括牡蛎礁系统中的沉积、钙化、呼吸作用及侵蚀、再悬浮和再矿化作用; 另一方面,牡蛎礁生态系统服务引起的碳汇效应需从牡蛎礁的生态系统服务价值角度进行评估,将生态系统服务价值及碳价值进行关联,从而纳入碳汇核算体系。从实现海岸带可持续增汇角度出发,综述了牡蛎礁生境中碳的源与汇;阐述了容易被人们忽视的微生物在牡蛎礁生境碳汇中的作用;以保护和生态修复为目的,进一步提出可实现牡蛎礁生境最大潜在碳汇的策略,以期为实现海洋负排放及践行"国家双碳战略"提供理论和技术支撑。  相似文献   

9.
在"碳达峰、碳中和"战略需求下,土壤有机碳汇作为生态系统碳汇的重要组成部分,土壤碳库容量以及如何开展土壤有机碳汇核算日益成为生态碳汇的研究热点。梳理了国内外土壤有机碳汇及核算相关研究成果,解析了土壤有机碳汇的概念内涵,提出了以稳定性有机碳作为土壤有机碳汇的表征指标及获取方法。从土壤发生学角度提出了土壤碳汇阈值的概念,土壤中有机碳的含量随着分解转化最终会达到动态平衡,此时稳定有机碳含量值约是常数,这个常数就是稳定碳库的库容,在特定的成土因素下,碳库的核算值不会超过平衡时的常态值。在客观上,体现在非人类干扰状态下不同土壤类型自然状态下的稳定性有机碳含量。参照土壤有机质平衡理论,提出了土壤碳汇核算的定量化方法,为土壤碳汇的度量和核算提供了一套技术思路。下一步土壤有机碳汇的核算应在科学研究基础上多角度凝聚共识,制定碳汇核算标准,确定不同尺度下可操作、可重复以及可复制的土壤有机碳汇核算技术与方法。  相似文献   

10.
农田生态系统碳汇研究进展   总被引:1,自引:0,他引:1  
赵明月  刘源鑫  张雪艳 《生态学报》2022,42(23):9405-9416
农田生态系统碳汇包括农作物生物量碳汇和农田土壤碳汇两个方面,中国农田生态系统面积大,碳储量高,是全球生态系统碳循环的重要组成部分。厘清中国农作物生物量和土壤有机碳含量、变化率和影响因素对于解析全球碳循环和维系粮食安全具有重要意义。梳理农田生态系统碳汇相关概念的基础上,比较农田生态系统碳汇研究方法的适用性及存在问题,通过以往研究和SoilGrids250数据研究中国农田生态系统碳库时空分布,并分析农田生态系统碳汇的影响因素及固碳方法。结果表明,中国近30年来农作物生物量呈现增加趋势,农田土壤有机碳含量普遍较低且空间分布不均,0-5cm土壤有机碳含量平均值在16.7 g/kg到86.5 g/kg之间,增加农田土壤有机碳含量是未来中国农田生态系统碳汇的重要方向。肥料和有机残留管理、保护性耕作、种植模式、灌溉等管理措施是增加土壤有机碳汇的主要措施,但农田生态系统碳汇潜力估算仍存在不确定性。最后,从农田生态系统碳汇潜力估算、影响因素厘定和增汇技术研发3个方面提出未来研究方向。研究结果有助于推动农田生态系统碳汇科学研究和技术推广,为实现农田生态系统助力"碳中和"寻求重要路径。  相似文献   

11.
中国国家森林公园碳储量及固碳速率的时空动态   总被引:1,自引:0,他引:1  
森林生态系统在调节气候变化和维持碳平衡中具有重要作用.国家森林公园是森林保护的主要载体,探明其碳储量和固碳速率的变化对于森林生态系统的固碳能力评估和可持续经营管理具有重要意义.本研究采用生态系统过程模型CEVSA2模型,模拟了1982-2017年中国881处国家森林公园的碳密度、碳储量和固碳速率的空间分布特征.结果 表...  相似文献   

12.
施肥措施与稻田生态系统净碳汇效应、经济收益的关系密切。本研究以长期(35年)定位施肥试验田为平台,分析了单独施用化肥(MF)、秸秆还田+化肥(RF)、30%有机肥+70%化肥(OM)和无肥对照(CK)4种不同施肥模式对我国南方双季稻田耕层土壤固碳速率、碳密度、年碳汇平衡和经济收益的影响。研究表明: 不同施肥处理双季稻田耕层土壤碳库变化范围为216.02~866.74 kg·hm-2·a-1,OM处理土壤碳年变化量显著高于MF、RF和CK处理;双季稻田土壤固碳速率为51.5~650.7 kg·hm-2·a-1,表土碳密度为55.64~78.42 t·hm-2,各施肥处理高低顺序均为OM>RF>MF>CK。各施肥处理双季稻田生态系统水稻的碳吸收为4.42~9.32 t C·hm-2·a-1,其高低顺序为OM>RF>MF>CK;与MF处理相比,OM和RF处理稻田土壤净碳汇量分别提高了27.6%和13.6%。各施肥处理双季稻田生态系统的碳成本物质投入变化范围为1.49~2.17 t C·hm-2·a-1,年经济收益变化范围为1.30×103~7.83×103元·hm-2·a-1,其高低顺序为RF>OM>MF>CK;OM、RF和MF处理双季稻田生态系统经济效益的净收益均显著高于CK处理。总之,长期施用有机肥、秸秆还田配施化肥措施均有利于增加双季稻田土壤固碳速率、碳汇效应和经济收益,是提高南方双季稻田土壤有机碳贮量的施肥模式。  相似文献   

13.

Summary

Growing industrialization and the desire for a better economy in countries has accelerated the emission of greenhouse gases (GHGs), by more than the buffering capacity of the earth's atmosphere. Among the various GHGs, carbon dioxide occupies the first position in the anthroposphere and has detrimental effects on the ecosystem. For decarbonization, several non‐biological methods of carbon capture, utilization and storage (CCUS) have been in use for the past few decades, but they are suffering from narrow applicability. Recently, CO2 emission and its disposal related problems have encouraged the implementation of bioprocessing to achieve a zero waste economy for a sustainable environment. Microbial carbonic anhydrase (CA) catalyses reversible CO2 hydration and forms metal carbonates that mimic the natural phenomenon of weathering/carbonation and is gaining merit for CCUS. Thus, the diversity and specificity of CAs from different micro‐organisms could be explored for CCUS. In the literature, more than 50 different microbial CAs have been explored for mineral carbonation. Further, microbial CAs can be engineered for the mineral carbonation process to develop new technology. CA driven carbonation is encouraging due to its large storage capacity and favourable chemistry, allowing site‐specific sequestration and reusable product formation for other industries. Moreover, carbonation based CCUS holds five‐fold more sequestration capacity over the next 100 years. Thus, it is an eco‐friendly, feasible, viable option and believed to be the impending technology for CCUS. Here, we attempt to examine the distribution of various types of microbial CAs with their potential applications and future direction for carbon capture. Although there are few key challenges in bio‐based technology, they need to be addressed in order to commercialize the technology.  相似文献   

14.
农林复合系统作为一种土地综合利用体系,可以有效吸收和固定CO2、增加碳储量,在达到收获目的的同时,可有力减轻温室效应.农林复合系统对CO2的调控作用,使人们认识到农林复合系统较单一作物系统有着明显优势,因此,深入了解不同农林复合系统的碳汇功能及其影响因素,对全球碳循环研究及碳收支准确评估具有重要意义.本文综述了农林复合系统的概念与分类,探讨了农林复合系统不同组分的碳固存潜力及其影响因子,得出不同区域、不同类型农林复合系统内植被的固碳速率相差很大(0.59~11.08 t C·hm-2·a-1),其主要受到气候因子和农林复合系统自身特性(物种组成、林木密度和林龄)的影响.农林复合系统内土壤的固碳潜力受到系统内树木和非树木成分输入的生物量多少和质量、土壤质地、土壤结构的影响.不同地区的任何一个农林复合系统的碳储量多少主要依赖于复合系统中各组分的结构和功能.针对目前的研究现状,指出应重点加强农林复合系统优化结构的碳汇功能研究,以及加强农林复合系统碳储量的时空分布格局及其固碳机制的长期研究.  相似文献   

15.
邵桂兰  刘冰  李晨 《生态学报》2019,39(7):2614-2625
随着海水养殖业的碳汇功能逐渐被认识和肯定,海水养殖不再单是一项经济活动,而是对环境具有正向影响的碳汇生态活动。以我国沿海9个省份为例,选取海水养殖业碳汇主要贡献的贝类和藻类海产品,并按照各自的碳汇方式对我国沿海地区2008—2015年海水养殖碳汇能力测算,进一步将9个沿海省份按照主要海域划分为渤海、黄海、东海、南海,利用LMDI模型从海水养殖的结构效应和规模效应角度分析碳汇能力的区域差异和主要影响因素。研究结果显示,黄海沿岸海水养殖碳汇能力最强,南海沿岸海水养殖的碳汇转化比例最高,规模效应与我国沿海地区海水养殖碳汇能力始终呈正相关,结构效应的作用显著但不稳定。基于上述结论,我国沿海地区碳汇养殖业应首先提升碳汇养殖技术、稳定海水养殖产量,其次注重优化养殖结构,对碳汇潜力巨大的贝类多加关注。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号