首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
灌溉和种植方式对冬小麦耗水特性及干物质生产的影响   总被引:2,自引:1,他引:2  
董浩  陈雨海  周勋波 《生态学杂志》2013,24(7):1871-1878
于2008-2010年通过田间试验,以高产中筋冬小麦品种济麦22为材料,设等行距平作、宽窄行平作、沟播3种种植方式,每种种植方式下设不灌水(W0)、拔节水(W1)、拔节水+开花水(W2)、拔节水+开花水+灌浆水(W3)4种灌溉处理(每次灌水量为60 mm),研究不同灌溉和种植方式对冬小麦耗水特性及干物质积累与分配规律的影响.结果表明: 随灌水量的增加,3种植方式下农田总耗水量均增加,灌水量占总耗水量的比例也增加,而土壤贮水消耗量及其占总耗水量的比例显著降低;与W0处理相比,各灌水处理提高了开花后干物质的积累量、小麦籽粒产量,而水分利用效率(WUE)降低.同一灌溉条件下,与其他两种种植方式相比,沟播方式土壤贮水量消耗比例、籽粒产量和WUE均较高.综合考虑小麦的籽粒产量和WUE,沟播结合灌拔节水+开花水是华北平原冬麦区较适宜的节水种植方式.  相似文献   

2.
于2009—2011年通过田间试验,以高产中筋冬小麦品种济麦22为材料,设等行距平作、宽窄行平作、沟播3种种植方式,每种种植方式下设不灌水(W0)、灌拔节水(W1)、灌拔节水+开花水(W2)、灌拔节水+开花水+灌浆水(W3)4种灌溉处理(每次灌水量为60 mm),研究不同灌溉和种植方式对冬小麦生育后期旗叶光合特性和产量的影响.结果表明: 随冬小麦灌水量的增加,3种种植方式下小麦花后旗叶叶面积和光合速率均增加,光系统Ⅱ最大光化学效率和实际光化学效率也增加;与W0处理相比,各灌水处理提高了小麦籽粒产量,但水分利用效率(WUE)降低.同一灌溉条件下,与其他两种种植方式相比,沟播方式小麦花后旗叶光合速率、光系统Ⅱ最大光能转化效率和实际光化学效率均较高,且W2处理籽粒产量显著高于其他处理.统筹考虑冬小麦的籽粒产量和WUE,沟播结合灌拔节水+开花水是华北平原冬麦区较适宜的节水种植方式.  相似文献   

3.
在等灌水量和施氮量下,探索小麦-玉米一年两熟轮作区玉米秸秆还田后冬小麦生育期微喷灌水氮一体化模式对冬小麦生长发育和水肥利用效率的影响。2016—2018年通过2年田间大区试验,在生育期设6种微喷灌水氮一体化模式,其中,灌水设W1(越冬水+拔节水+灌浆水,各灌600 m3·hm-2)、W2(越冬水+返青水+拔节水+灌浆水,各灌450 m3·hm-2)和W3(越冬水、拔节水各灌600 m3·hm-2,返青水、灌浆水各灌300 m3·hm-2)3种模式;施氮设N1(基施氮60%+随拔节水追氮40%)和N2(基施氮60%+随拔节水追氮30%+随灌浆水追氮10%)2种模式,以W1下不施肥为对照(CK),共7个处理,调查群体动态、灌浆期干物质积累转移和成熟期养分积累规律。结果表明: 1)越冬水灌水量由450 m3·hm-2增至600 m3·hm-2,有利于越冬期植株总茎数和成穗数的增加而增产,灌返青水拔节期总茎数增加,对成穗数影响较小;拔节期施氮越多,单株茎数增加越多,但成穗数降低。2)生育期灌4水(W2和W3),配合拔节期和灌浆期分次水氮一体化(N2),有利于灌浆期总干物质积累、穗粒数和千粒重增加而增产。3)灌4水处理比灌3水处理生育期耗水量和氮、磷、钾素吸收量增加,水肥利用效率提高。灌4水处理(W2和W3)中N2的生育期耗水量低于N1,氮、磷、钾素吸收量高于N1,灌水和氮磷钾利用率显著提高,以W3N2效果最好。因此,W3N2处理,即玉米秸秆还田后播种冬小麦,微喷灌生育期灌4水,越冬水和拔节水灌水量增加到600 m3·hm-2,配合拔节水和灌浆水追施氮肥,使冬小麦成穗数和千粒重增加而增产,且水肥利用效率最高,是山西南部冬小麦微喷灌水肥一体化高产高效最佳水氮管理模式。  相似文献   

4.
测墒补灌对小麦旗叶光合特性及酶活性的影响   总被引:1,自引:1,他引:0  
以‘济麦20’为供试材料,通过田间试验,在拔节期和开花期设置土壤相对含水量为65%(W65)、70%(W70)和75%(W75)的测墒补灌处理,以全生育期不灌溉为对照(CK),研究不同测墒补灌水平对旗叶光合特性及酶活性的影响.结果表明: W70处理小麦旗叶净光合速率、蔗糖含量和磷酸蔗糖合成酶(SPS)活性在花后14~21 d均显著高于其他处理.成熟期W70处理干物质量与W75处理无显著差异,但显著高于W65处理和CK;W70处理单茎质量显著高于其他处理.W70处理超氧化物歧化酶和过氧化氢酶活性及可溶性蛋白含量在花后14~28 d显著高于其他处理,丙二醛含量在花后14~28 d显著低于CK和W65处理,与W75处理无显著差异.2012—2013年和2013—2014年W70处理小麦籽粒产量分别为8941.4和9125.4 kg·hm-2,与W75处理无显著差异,显著高于W65处理和CK;W70处理水分利用效率显著高于其他处理.在本试验条件下,拔节期和开花期0
~140 cm土层平均土壤相对含水量均以70%为节水高产高效的最佳灌溉处理.  相似文献   

5.
于2013—2014和2014—2015年两个小麦生长季进行田间试验,供试品种为‘济麦22’,设置5个处理,分别为W0(全生育期不灌水)、W1(越冬期不灌水,拔节期和开花期分别补灌至0~40 cm土层土壤相对含水量为65%和70%)、W2(越冬期、拔节期和开花期分别补灌至土壤相对含水量为70%、65%和70%)、W3(越冬期、拔节期和开花期分别补灌至土壤相对含水量为75%、65%和70%)和W4(越冬期、拔节期和开花期均定量灌溉60 mm),研究越冬期测墒补灌对小麦耗水特性和光合有效辐射截获利用的影响.结果表明: 总灌水量及其占总耗水量的比例为W4>W3>W2>W1>W0;土壤贮水消耗量占总耗水量的比例为W0>W1、W2>W3、W4;总耗水量和开花至成熟期的耗水量均为W4>W2、W3>W1>W0.两生长季小麦开花后冠层光合有效辐射(PAR)截获率为W4>W2、W3>W1>W0,而花后冠层PAR反射率各处理间的表现与之相反.灌水处理中干物质净积累量为W4处理最高,W1处理最低.两生长季小麦越冬期0~40 cm土层土壤相对含水量补灌至70%的W2处理籽粒产量仅低于定量灌溉的W4处理,水分利用效率和灌溉效益最高,是本试验条件下节水高产的最优处理.  相似文献   

6.
水分对苜蓿叶片光合特性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用田间试验, 对每茬灌水3次(W3)、2次(W2)、1次(W1)和不灌水(W0)四种条件下的土壤水分, 苜蓿(Medicago sativa)叶片的叶绿素荧光参数、气孔导度(Gs)、净光合速率(Pn)和蒸腾速率(Tr)进行测定。结果表明, 灌水提高了苜蓿叶片的原初光能转换效率(Fv/Fm)、PnTr, 并随着灌水量的增加而增加。苜蓿叶片的Fv/FmPnTr的日均值与土壤含水量均呈极显著正相关关系。苜蓿叶片的PnFv/Fm和光合有效辐射(PAR)的乘积呈正相关关系。灌水还改变了苜蓿叶片Pn的日变化格局。灌水较多的处理(W3和W2), 苜蓿叶片没有出现光合“午休”现象,Pn的日变化趋势呈现“单峰”型。而灌水较少和不灌水的处理(W1和W0), 苜蓿叶片出现了明显的光合“午休”现象, 其Pn的日变化进程呈现“双峰”型。在相同的水分条件下, 初花期苜蓿叶片的Pn高于再生期的, Tr则相反。  相似文献   

7.
于2012—2014年两个冬小麦生长季,在大田条件下设置:全生育期不灌水(W0)处理,当地定量节水灌溉(拔节期和开花期均灌水60 mm,W1)处理,依据0~20 cm (W2)、0~40 cm (W3)、0~60 cm (W4)和0~140 cm (W5)土层土壤含水量测墒补灌处理,于拔节期和开花期补灌至土壤相对含水量为田间持水量的65%和70%,研究依据不同土层土壤含水量测墒补灌对冬小麦耗水特性、光合速率和籽粒产量的影响.结果表明:各处理拔节期灌水量为W1、W4>W3>W2、W5,开花期灌水量和总灌水量均为W5>W1、W4>W3>W2,W3总耗水量显著高于W2处理,与W1、W4和W5处理无显著差异.W3土壤贮水消耗量高于W1、W4和W5处理,其中,W3在拔节至开花阶段和开花至成熟阶段对40~140 cm和60~140 cm土层土壤贮水消耗量均显著高于其余灌水处理.灌浆中期W3处理小麦旗叶光合速率、蒸腾速率和水分利用效率最高,W1和W4处理次之,W0处理最低.W3处理两个生长季的籽粒产量分别为9077和9260 kg·hm-2,水分利用效率分别为20.7和20.9 kg·hm-2·mm-1,均显著高于其余处理,灌溉水生产效率最高.综合考虑灌水量、籽粒产量和水分利用效率,小麦拔节期和开花期适宜进行测墒补灌的土层深度为0~40 cm.  相似文献   

8.
于2016—2018年小麦生长季,在山东省兖州市史家王子村进行田间试验,供试品种为‘济麦22’,在150(N1)、180(N2)和210(N3) kg·hm-2 3个施氮量下,拔节期设置畦灌和撒施追氮(W1)及微喷带灌溉和追氮水肥一体化(W2)两种灌溉施氮方式,研究了测墒补灌条件下灌溉施氮方式对小麦水分利用、光合特性及干物质积累与转运的影响.结果表明: 同一施氮量条件下,W2两年度灌浆期7日平均棵间蒸发量均显著低于W1处理,60~160 cm 土层土壤水分消耗量显著高于W1处理;W2两年度开花后14、21和28 d的旗叶净光合速率、气孔导度和蒸腾速率均显著高于W1处理;W2开花期和成熟期干物质积累量及小麦开花后干物质积累在籽粒中的分配显著高于W1处理;W2两年度总耗水量与W1处理均无显著差异,籽粒产量、水分利用效率和氮肥利用效率显著高于W1处理,施氮量为210 kg·hm-2的籽粒产量、水分利用效率和氮肥利用效率最高.综合考虑,同一施氮量水平下,微喷带灌溉和追氮水肥一体化处理优于畦灌和撒施追氮处理,总施氮量210 kg·hm-2、拔节期采用微喷带灌溉和追氮水肥一体化的N3W2处理是本试验条件下节水节肥的最优处理.  相似文献   

9.
不同灌溉量对小麦-玉米轮作农田生态系统净碳汇的影响   总被引:3,自引:0,他引:3  
灌溉对农田温室效应与碳足迹贡献产生重要影响.本文采用静态暗箱-气相色谱法对关中平原小麦-玉米轮作(2014—2015年)农田温室气体(CO2、CH4和N2O)排放通量进行了监测,并用净增温潜势(NGWP)和碳足迹两个指标评估不同灌溉量对关中平原农田温室效应、作物生产碳足迹的分布和构成的影响.试验在作物关键需水期(冬小麦越冬期和拔节期、夏玉米出苗期和拔节期)设置W0(0 mm)、W120(120 mm)、W180(180 mm)、W240(240 mm)4个处理.结果表明: 与W0处理相比,W120、W180、W240处理下小麦产量分别增加了31.3%、44.3%、33.7%,玉米产量分别增加了9.9%、22.6%、33.8%; CO2的年际排放总量分别增加了22.2%、24.3%、15.1%,N2O的年际排放总量分别增加了18.6%、67.8%、91.5%,但CH4的年际吸收总量分别降低了51.7%、79.6%、97.8%;NGWP分别增加了20.1%、31.6%、31.4%.W120处理下碳足迹较W0处理降低了19.1%,但W180、W240处理与W0处理相比无显著性差异;W120、W240处理单位产量碳足迹较W0处理分别增加了44.5%、23.3%,而W180处理与W0处理无显著性差异.综合考虑不同灌溉量的经济效应和环境效应,180 mm的灌水量更有利于关中平原小麦-玉米轮作系统的节水及固碳减排.  相似文献   

10.
为探明内蒙古西部旱区机采棉膜下滴灌水氮耦合对棉花生长发育、产量、品质,以及水分与氮素利用效率的影响,在内蒙古阿拉善盟阿拉善左旗,设置3种灌溉定额(216、288、360 mm,分别记为W1、W2、W3)和3种施氮水平(127.5、195、262.5 kg·hm-2,分别记为N1、N2、N3)的完全组合处理,进行了大田棉花膜下滴灌试验.结果表明: 水分是膜下滴灌棉花生长的决定因素,增加灌水量可以促进棉花株高增加,提高棉花各部分干物质积累量,但降低生殖器官与地上部干物质比例.W3处理单株成铃数较W1和W2分别提高25.4%和17.5%,单铃质量分别降低5.8%和4.6%,籽棉产量分别增加18.1%和11.9%;单株成铃数提高是籽棉产量增加的主要因素.水氮调控对籽棉产量的互作效应显著,W1与W2灌水量下N1处理籽棉产量最高;W3灌水量下N2处理较N1、N3籽棉产量分别增加8.5%和31.9%.水氮调控对纤维品质整体无显著影响.W1N1处理水分利用效率最高,为1.37 kg·m-3,与W3N2处理差异不显著;W3N1处理氮肥偏生产力最高,为51.35 kg·kg-1.在本试验条件下,灌水增产效应显著,施氮则在水分充足条件下对籽棉产量形成有促进作用.其中,灌水360 mm、施氮195 kg·hm-2处理显著促进地上部干物质积累,籽棉产量最高,水分利用效率和氮肥偏生产力分别达1.30 kg·m-3和36.41 kg·kg-1,节水增产效果显著,是内蒙西部旱区较理想的机采棉水氮调控模式.  相似文献   

11.
减氮补水对小麦高产群体光合性能及产量的影响   总被引:1,自引:0,他引:1  
在大田条件下,设自然降水(W1)、适量补水(W2,拔节后土壤相对含水量维持在70%±5%)、充足补水(W3,拔节后土壤相对含水量维持在85%±5%)3个水分处理和不施氮(N1)、减氮(N2,195 kg N·hm-2)、高氮((N3,270 kg N·hm-2)3种氮肥水平,研究了减氮补水对小麦高产群体光照环境、光合性能和产量构成的影响.结果表明: 减氮补水(N2W2)处理在灌浆期明显改善了群体的光照环境,距冠层顶部20~30 cm处的光合有效辐射(PAR)较高氮补水(N3W2、N3W3)处理提高34.5%,透光率提高10.8%;N2W2处理孕穗期叶面积指数最高,灌浆期下降速率最慢,高值(大于7.6)持续期较高氮和无氮处理延长3~4 d,光合势平均提高9.7%;减氮补水(N2W2、N2W3)处理灌浆期旗叶的光合速率仍较高,但与N3W2处理差异不显著.N2W2处理旗叶的表观量子效率达0.101 μmol CO2·m-2·s-1Pn维持在27.692 μmol CO2·m-2·s-1,光补偿点(LCP)较低,表现出较高的光合生产力;籽粒产量以N2W2处理最高.  相似文献   

12.
为明确不同穗型小麦冠层光能利用和13C同化物分配特性的差异及对补灌水平的响应,以中穗型品种‘青农2号’和‘济麦22’、大穗型品种‘山农23’和‘山农30’为材料,设置3个水分处理:小麦全生育期不灌水(W0)、节水灌溉(W1,拔节期和开花期0~40 cm土层土壤相对含水量分别补灌至65%和70%)和充分灌溉(W2,拔节期和开花期0~40 cm土层土壤相对含水量分别补灌至85%和90%),研究了不同处理对两种穗型小麦冠层光能利用和旗叶13C同化物分配特性的影响.结果表明:W1处理两种穗型小麦品种开花后2、11、20和31 d的叶面积指数、冠层PAR截获率和利用率均显著高于W0处理,再增加灌水至W2处理,上述各指标无显著变化.13C示踪表明,济麦22和山农23的W1旗叶13C同化物在籽粒中的分配量比W0分别高159.34和171.1 g·hm-2,分配比例分别高6.5%和6.5%,与W2无显著差异;两种穗型品种W1的籽粒产量亦显著高于W0,与W2无显著差异.不同穗型品种比较,节水灌溉条件下中穗型品种在开花后2和11 d、大穗型品种在开花后20和31 d具有较高的冠层光合有效辐射(PAR)截获和利用能力;中穗型品种济麦22旗叶13C同化物在籽粒的分配量和分配比例比大穗型品种山农23分别低6.8%和2.7%.  相似文献   

13.
不同施氮水平下灌水量对小麦水分利用特征和产量的影响   总被引:10,自引:3,他引:7  
在田间高产条件下,研究了不同施氮水平[180 kg·hm-2(N180)和240 kg·hm-2(N240)]下灌水量对小麦耗水特征和旗叶水分生理特性及产量的影响.结果表明:不灌水的W0处理100 cm以下土层的土壤贮水消耗量低于各灌水处理,W1(灌底墒水60 mm)和W2(灌底墒水和拔节水各60 mm)处理100~200 cm土层和0~200 cm土层土壤贮水消耗量高于W3(灌底墒水、拔节水和开花水各60 mm)处理;N240处理0~80 cm土层土壤贮水消耗量、开花至成熟阶段耗水模系数和农田耗水量高于N180. W2和W3处理灌浆中后期旗叶相对含水量和水势高于W0和W1处理;灌浆后期旗叶相对含水量和水势为N240W0和N240W1处理分别高于N180W0和N180W1处理,N240W2和N240W3处理与N180W2和N180W3处理之间无显著差异.施氮180 kg·hm-2,底墒水和拔节水分别灌60 mm的W2处理籽粒产量、水分和氮素利用效率高,农田耗水量较低;增加灌水量,籽粒产量无显著变化,农田耗水量增高,土壤贮水消耗量、水分利用效率、灌溉水利用效率和灌溉效益降低.  相似文献   

14.
水氮互作对冬小麦田氨挥发损失和产量的影响   总被引:6,自引:0,他引:6  
2015-2017年利用水肥渗漏研究池,以‘石麦15’(SM15)为材料,采用随机区组设计,设置2个氮肥类型(尿素和有机肥牛粪)、2个施氮水平(180和90 kg·hm-2)、2个灌溉水平(500和250 mm)进行试验,探讨水、氮及其互作对冬小麦田土壤氨挥发损失量和籽粒产量的影响.结果表明: 施肥以后土壤氨挥发持续7 d左右.2015-2016年施肥后各处理土壤氨挥发损失总量为13.36~46.04 kg·hm-2,氨挥发氮肥损失率为8.9%~41.1%,2016-2017年各处理土壤氨挥发损失总量为14.78~52.99 kg·hm-2,氨挥发氮肥损失率为9.2%~45.8%;两年试验内氨挥发损失量最多的处理为W2U1(施尿素N 180 kg·hm-2,灌溉量250 mm),氨挥发损失率最高的处理为W2U2(施尿素N 90 kg·hm-2,灌溉量250 mm),合理的水氮管理可以显著降低土壤氨挥发损失率,施用尿素造成的土壤氨挥发损失为有机肥的2~3倍.两年试验均以W1M1(施牛粪N 180 kg·hm-2,灌溉量500 mm)的小麦产量最高,灌溉量、肥料类型和施氮量互作对冬小麦产量影响极显著.综合氨挥发损失量和冬小麦籽粒产量,本试验条件下,水氮互作效应显著,冬小麦生育期内总灌溉量500 mm、施有机肥180 kg·hm-2时冬小麦季土壤氨挥发损失率较低,产量最高,施用有机肥的增产效果优于尿素,可作为黄淮海地区冬小麦实际生产中增产增效的水肥优化管理方式.  相似文献   

15.
不同土层测墒补灌对冬小麦耗水特性及产量的影响   总被引:2,自引:0,他引:2  
于2010-2011年选用高产小麦品种济麦22进行大田试验,设置0~20 cm(W1)、0~40 cm(W2)、0~60 cm(W3)和0~140 cm(W4)4个测墒补灌土层,于越冬期(目标相对含水量均为75%)、拔节期(目标相对含水量均为70%)和开花期(目标相对含水量均为70%)进行测墒补灌,以全生育期不灌水处理(W0)为对照,研究不同土层测墒补灌对冬小麦耗水特性及产量的影响.结果表明: 小麦越冬期、拔节期和开花期补充灌水量为W3>W2>W1,W4处理小麦越冬期和拔节期补充灌水量较少,但开花期补灌量显著高于其他处理;全生育期补灌量占总耗水量的比例为W4、W3>W2>W1.土壤水消耗量占总耗水量的比例为W1>W2>W3>W4;随测墒补灌土层深度的增加,土壤水消耗量占总耗水量的比例减少;W2处理80~140 cm和160~200 cm土层土壤水消耗量显著高于W3和W4处理.各处理的总补灌量为W3>W4>W2>W1;籽粒产量为W2、W3、W4>W1>W0,W2、W3、W4间无显著差异;水分利用效率为W2、W4>W0、W1>W3,W2与W4之间无显著差异.综合考虑灌水量、籽粒产量和水分利用效率,W2处理是本试验条件下的最佳处理,即以0~40 cm土层测墒补灌效果最优.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号