首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以小兴安岭原始阔叶红松林(对照)和经过轻度、中度和强度择伐干扰后形成的天然林林地表层(0~10 cm)土壤为对象,采用Sui修正后的Hedley磷素分级法对土壤样品进行连续浸提,研究不同林地土壤各形态磷素含量的差异及变化规律,分析择伐干扰对阔叶红松林土壤磷素有效性的影响.结果表明: 各林地土壤全磷含量为1.09~1.66 g·kg-1,以原始阔叶红松林最高,强度择伐林地最低,且不同处理间差异显著;各林地土壤有效磷和磷素活化系数的变化幅度分别为7.26~17.79 mg·kg-1和0.67%~1.07%,均表现出随择伐强度的增加而显著降低;除酸溶性有机磷(HCl-Po)外,经过择伐干扰的林地与原始林相比,土壤水溶性磷(H2O-Pi)、碳酸氢钠磷(NaHCO3-P)、氢氧化钠磷(NaOH-P)、酸溶性无机磷(HCl-Pi)和残留磷(Residual-P)含量均表现出随择伐强度的增加而降低的趋势.各组分间以水溶性(H2O-Pi)与土壤有效磷的相关系数最大(0.98),但其含量仅占磷素总量的1.5%~2.2%;氢氧化钠磷(NaOH-P)含量占磷素总量的48.0%以上,是土壤的潜在磷源.可以认为,择伐干扰通过显著降低土壤无机态磷和氢氧化钠有机磷(NaOH-Po)的含量,限制和影响了阔叶红松林土壤有效磷及潜在磷源的供应水平,并且其表现出随择伐强度的增加而逐渐降低的趋势.  相似文献   

2.
路明远  吕来新  金光泽 《生态学报》2024,44(3):1264-1272
台风对森林造成强烈干扰,改变森林生态系统的结构与功能。分析了2020年台风对小兴安岭地区阔叶红松(Pinus koraiensis)林中不同径级、功能群(耐阴性、生活型、针阔叶)树木破坏程度的影响和地形(海拔、坡向、坡度、凹凸度)在其中的作用。结果表明:台风对不同径级以及不同功能群树种的受损数量的影响具有显著差异,具体表现为径级Ⅰ(胸径<10 cm)>径级Ⅱ(10 cm≤胸径<50 cm)>径级Ⅲ(胸径≥50 cm),耐阴性强>耐阴性弱、乔木>灌木、阔叶树种>针叶树种;而其受损率则表现为径级Ⅱ>径级Ⅲ>径级Ⅰ,耐阴性弱>耐阴性强、乔木>灌木、针叶树种>阔叶树种;损坏程度很大程度上取决于坡向与海拔位置,处于阴坡与低海拔的受损木数量较高,阔叶树种、灌木与耐阴性强的受损木表现出在阳坡与海拔较高位置出现的可能性更大,针叶树种、乔木与耐阴性弱的受损木表现出在阴坡与海拔较低位置出现的可能性更大,阴坡和较低海拔处拔根倒的受损数量显著高于干基折和干中折的受损数量;地形对受损木的风倒方向具有显著影响。总体而言,台风对森林的破坏受到多种环境因素和生物因素共同作用的影响,处于不同地形的不同径级、功能群的树木,其对台风的抵抗能力有所不同,且大径级树木、耐阴性弱的树种、乔木和针叶树种对台风的抵抗能力相对较弱,迎风坡与阴坡的树木对台风的抵抗能力相对较弱,这为理解极端天气事件对森林动态的影响以及恢复提供理论依据与参考。  相似文献   

3.
择伐对小兴安岭针阔叶混交林土壤呼吸的影响   总被引:1,自引:0,他引:1  
利用LI-8100土壤CO2排放通量全自动测量系统,测定了黑龙江省带岭林业局东方红林场不同采伐强度林地的土壤表面CO2通量和土壤表层10 cm处的温度和湿度,研究了择伐作业后林地土壤表面CO2通量变化及影响因素.结果表明:伐后林分土壤温度和湿度与土壤表面CO2通量季节变化呈较好的相关关系,解释了土壤呼吸的68%~98%;择伐作业使林地表面CO2通量增加,年均增幅在7.17%~26.89%;采伐强度与土壤表面CO2通量呈显著的二次相关关系(R2=0.961).土壤有机质含量和采伐强度是导致择伐后土壤表面CO2通量变化的主要影响因子.  相似文献   

4.
科学评估目前的择伐方式对森林结构与功能的影响对区域森林资源的可持续利用具有重要意义。以择伐过的阔叶红松林为研究对象,并以原始林为对照,分析了择伐对物种组成、林分结构以及对木材生产的影响。结果表明,低强度择伐(≤20%)对物种组成和蓄积结构均没有显著影响,而高强度择伐则显著改变了物种组成和蓄积结构。择伐后林分蓄积量均显著小于原始林,不同择伐强度间没有显著差异。择伐显著影响了用材树种的数量和质量,导致择伐后样地中用材树种的株数和蓄积量均显著减少,严重影响了林分的木材持续生产能力。因此,从阔叶红松林木材可持续利用角度来看,需要重新思考红松不作为采伐树种的用材林经营技术模式。  相似文献   

5.
择伐干扰后长白山阔叶红松林乔木竞争强度变化   总被引:1,自引:0,他引:1  
以长白山区阔叶红松林为研究对象,采用空间代替时间的方法,对于不同年度进行中度择伐后形成的天然次生林进行群落学调查,并应用GIS软件将林木树干点位置及树冠投影数字化,得出树干点坐标及树干投影面积.运用Hegyi的竞争指数模型计算择伐干扰后不同恢复阶段红松阔叶林的竞争强度,从林分整体出发,分析和探讨了择伐干扰后28年恢复期间阔叶红松林乔木竞争强度变化.结果表明,中等强度择伐对阔叶红松林主林层竞争强度影响不大,择伐干扰后林分竞争主要发生在次林层,林分的竞争强度随时间推移不断增加,在28年后达到最大,树冠投影面积中重叠面积与非重叠面积比例的变化趋势与林分整体竞争强度的变化趋势相类似,从减弱林分对红松及其它珍贵阔叶树种的竞争角度看来,阔叶红松林的择伐周期至少应该在15年或更长一点,并应该在第一次择伐后15年时开始对次林层进行有针对性的抚育.  相似文献   

6.
小兴安岭阔叶红松林地表甲虫Metacommunity格局   总被引:1,自引:1,他引:1  
Metacommunity理论框架为理解生物群落的时空格局及其构建机制提供了一个强有力的方法。然而,少有研究揭示土壤动物metacommunity的格局及其构建机制,小尺度空间的研究更是少见。于2015年分别在凉水和丰林小兴安岭典型阔叶红松林长期动态监测样地内,通过空间直观定位调查监测的方法获得地表甲虫群落,揭示小尺度空间(300 m)地表甲虫metacommunity的格局,并进一步分析地形、土壤因子与这种metacommunity格局的相关性。结果表明:镶嵌型(nestedness)和随机型(random)是小尺度空间地表甲虫metacommunity的常见格局。地表甲虫的metacommunity格局具有类群依赖性,步行虫科和葬甲科多形成镶嵌型格局,而隐翅虫科则仅形成随机型格局。地表甲虫metacommunity格局具有季节波动性,在相对温暖的季节易形成显著的镶嵌型格局,而在相对寒冷的季节多为随机型格局。凉水和丰林地表甲虫的metacommunity格局没有明显差异。地形和土壤因子对地表甲虫metacommunity格局有重要的影响,该影响过程相对复杂,依类群和时间而异。本实验表明镶嵌型和随机型是小尺度空间小兴安岭典型阔叶红松林地表甲虫的常见格局,地形、土壤因子对这些格局的形成有重要的影响。  相似文献   

7.
小兴安岭阔叶红松林地表甲虫Beta多样性   总被引:2,自引:1,他引:2  
Beta多样性用来衡量集群内物种组成的变异性,可以被分解为空间物种转换和物种集群镶嵌两个组分,是揭示群落构建机制的重要基础。目前开展了较多的地上生态系统beta多样性研究,然而地下生态系统beta多样性进展缓慢。以小兴安岭凉水和丰林自然保护区为研究地区,于2015年8、10月采用陷阱法对阔叶红松林进行调查,揭示地表甲虫(步甲科、隐翅虫科、葬甲科)的beta多样性。结果表明:(1)凉水共发现39种、856只地表甲虫,丰林共发现43种、1182只地表甲虫。8月凉水明显具有较高的全部甲虫(三个科的总和)物种多样性和丰富度,10月正好相反。(2)凉水和丰林之间地表甲虫beta多样性的差异仅发现于8月的步甲科和葬甲科之间。(3)凉水和丰林地表甲虫的beta多样性主要由空间物种转换组成,物种集群镶嵌对beta多样性的贡献很小,说明地表甲虫物种组成变异主要由本地物种之间较高的转换引起。研究表明小兴安岭阔叶红松林地表甲虫的beta多样性主要由空间物种转换组成,在揭示群落构建机制过程中,其内部物种交换和环境调控不容忽视。  相似文献   

8.
应用林窗模型(Forest Gap Model)及4种大气环流模式(General Girculation Models,GCMs) CO2加倍"平衡响应"数值试验结果模拟了小兴安岭阔叶红松林对未来气候变化的动态响应过程.结果表明,在美国高达空间研究实验室(Goddard Institute for Space Studies,简记GISS)和美国俄勒冈州立大学(Oregon State University,简记OSU)GCMs预测的CO2倍增未来气候情景下,与本底生物量(目前气候条件下)相比,阔叶红松林生物量逐渐升高,目前云冷杉阔叶红松林将逐渐向枫桦、紫椴和裂叶榆阔叶红松林演变;但在普林斯顿大学地球流体动力学实验室(Geophysical Fluid Dynamics Laboratory,Princeton University,简记GFDL)和英国气象局(United Kindom Meteorological Office,简记UKMO)GCMs预测的未来情景下,由于较大幅度的增温,云冷杉红松林将向以蒙古栎、紫椴和裂叶榆为主要树种的阔叶林演变.未来增温速率决定了阔叶红松林未来的演替方向.  相似文献   

9.
全球气候变化对小兴安岭阔叶红松林影响的动态模拟研究   总被引:19,自引:0,他引:19  
应用林窗模型(Forest Gap Model)及4种大气环流模式(General Girculation Models,GCMs)CO2加倍“平衡响应”数值试验结果模拟了小兴安岭阔叶红松林对未来气候变化的动态响应过程。结果表明,在美国高达空间研究实验室(Goddard Institute for Space Studies,简记GISS)和美国俄勒冈州大学(Oregon State Univer  相似文献   

10.
择伐对吉林蛟河阔叶红松林群落结构及动态的影响   总被引:1,自引:0,他引:1  
范春雨  张春雨  赵秀海 《生态学报》2017,37(20):6668-6678
科学的森林经营能够优化林分结构,是调控森林生产力和生物多样性的有效手段。择伐作为森林经营的重要方式之一,其对森林结构以及群落动态的影响一直未有定论,因此迫切需要利用更加全面的数据对择伐及伐后林分特征的变化进行长期监测。根据森林大样地建立规范,2010年在吉林蛟河建立了42hm~2阔叶红松林动态监测样地,2011年冬季截取部分面积进行择伐经营,以经营样地为研究对象,运用数值变量描述采伐活动并分析择伐前后群落结构的变化;同时结合2015年的二次调查数据,以立地条件基本一致的对照样地为参照,比较林分水平和物种水平上死亡率、更新率的差异,并利用线性混合效应模型探究择伐活动对个体径向生长的影响。研究结果显示:经营样地的择伐强度为5.4%,受采伐干扰影响较大的物种主要包括色木槭、白牛槭、裂叶榆、胡桃楸、千金榆、水曲柳以及紫椴,采伐主要集中于林冠层树种,亚林层和灌木层个体很少涉及。择伐前后物种组成、径级结构等并未发生明显改变。5年间,经营样地和对照样地的林分密度都降低,对比对照样地,经营样地的死亡率较低,但其更新状况并未优于对照样地。从胸高断面积来看,经营样地整体的年平均生长量高于对照样地,表明择伐导致的稀疏对个体生长和存活起到了一定的促进作用。将采伐强度纳入线性混合效应模型中分析发现,胸径始终是影响个体生长的最重要因素,其次是树木个体之间的非对称竞争;采伐所涉及到的7个主要树种的年平均生长量均高于对照样地,但仅有紫椴的径向生长表现出对采伐干扰的显著响应。综合来看,低强度择伐对群落结构和动态的影响较小,不同物种的径向生长对择伐的响应存在一定差异。  相似文献   

11.
刘琦  蔡慧颖  金光泽 《生态学杂志》2013,24(10):2709-2716
准确量化森林碳密度和净初级生产力(NPP)对于评价森林生态系统在全球碳循环中的作用至关重要.本研究以小兴安岭原始阔叶红松林和择伐(择伐强度30%,择伐对象为大径级红松)34年后的阔叶红松林为对象,采用样地清查和异速生长方程法测定了不同林分的碳密度和NPP.结果表明: 原始林和择伐林的碳密度总量分别为(397.95±93.82)和(355.61±59.37) t C·hm-2,其中植被碳密度、碎屑碳密度、土壤碳密度分别占总碳库的31.0%、3.1%、65.9%和31.7%、2.9%、65.4%,两者的总碳密度和各组分的分配比例均无显著差异. 原始林和择伐林的NPP总量分别为(6.27±0.36 )和(6.35±0.70) t C·hm-2·a-1,乔木层、灌木和草本层、细根所占比例分别为60.3%、2.0%、37.7%和66.1%、2.0%、31.2%,两者的总NPP和各组分的贡献率均无显著差异.而原始林和择伐林中针、阔叶的NPP比例分别为4724∶52.76和20.48∶79.52,两者差异显著.择伐34年后阔叶红松林的碳密度和NPP均达到了择伐前水平.  相似文献   

12.
择伐对阔叶红松林主要树种径向与纵向生长的影响   总被引:2,自引:0,他引:2  
蒋子涵  金光泽 《生态学报》2010,30(21):5843-5852
对择伐37a后的阔叶红松(Pinus koraiensis)林与原始林主要组成树种的年轮和树高数据进行分析,旨在了解择伐对其径向与纵向生长的影响。结果表明:(1)择伐显著促进了主要树种的径向生长(P0.01),但生长增加量在树种间存在显著差异(P0.01),其反应的强弱与耐荫性有关(r=-0.79,P0.01),因择伐所导致的生长加速会持续26—29a。(2)择伐显著减小了主要树种的树高-胸径比(P0.01),即同等胸径时择伐林的树木较矮,因此在计算择伐林蓄积量时应对树高进行实测。(3)径向生长率与树高、胸径之间存在显著相关性(原始林:r=0.65*,r=0.58*;择伐林:r=0.53*,r=0.48*),择伐林内每一树高级的径向生长率均高于原始林,其中树高级在10m以下的树木差异最大(0.69),说明择伐有利于林下树木的生长。择伐显著增加了DBH40cm树木的径向生长率,其中胸径在20—40cm之间的树木有较大的伐后生长率,应予以保护。  相似文献   

13.
王睿智  国庆喜 《生态学报》2016,36(13):4091-4098
种-面积关系研究是了解植物群落结构的重要途径,是群落生态学的基本问题。不同的研究方法对种-面积关系影响很大。利用黑龙江省小兴安岭两个10.4 hm2样地和5个1.0 hm2样地的调查数据,采用移动窗口法确定各样地的最小取样面积,避免了巢式取样法及随机样方法的不足。并采用4种种-面积关系模型进行拟合,评价各关系模型的适合度。在此基础上,基于最小面积进行模拟随机取样,探讨取样大小对物种数估计精度的影响。研究结果表明:由于拟合曲线模型的适用性及曲线外推可靠性问题的存在,采用拟合曲线的方法所估计的最小面积与实际值偏差较大。实际调查得到的各样地最小面积40 m×40 m—45 m×45 m,说明小兴安岭地区阔叶红松林群落所需的最小面积基本一致,但各样地群落结构的差异却在对取样数量的要求上体现出来。其中丰林与大亮子河样地物种数分布相对均匀,所需最小样方数量较少;而方正与胜山样地物种数分布异质性较大,差异的机理还有待于进一步研究。  相似文献   

14.
乔志宏  侯宏宇  高梅香  卢廷玉 《生态学报》2020,40(14):4994-5007
全球变化背景下,气候变化引起的降水异常变化对诸多生态过程和功能均有重要影响,但目前关于极端降水事件对土壤动物群落组成及多样性的影响研究非常有限。2018年7月24—25日,凉水国家自然保护区发生以大到暴雨为主的连续降雨,日降雨量达到50—100 mm,造成较严重的破坏,属于极端降水事件(短时暴雨)级别。在凉水国家级自然保护区阔叶红松林内,分别于暴雨发生前期(7月19日—24日)、暴雨结束初期(7月29日—8月3日)和后期(8月4日—8月14日),采用陷阱法捕获地表甲虫,阐明短时暴雨对地表甲虫群落组成及多样性的影响。结果表明:此次实验共捕获650只、35种,地表甲虫群落、步甲科和隐翅虫科的个体数量在暴雨发生前期、暴雨结束初期和后期并没有显著差异,说明短时暴雨对上述群落个体数量没有显著影响,而葬甲科的个体数量在暴雨结束初期显著少于暴雨发生前期和暴雨结束后期。因土壤动物群落不同类群生活习性不同,短时暴雨对地表甲虫群落不同类群与优势种的影响各不相同。例如:优势种Pterostichus maoershanensis、Pterostichus adstrictus和Aulonocarabus canaliculatus暴雨结束初期的个体数量均显著少于暴雨发生前期的个体数量,优势种P.maoershanensis暴雨结束后期的个体数量极显著少于暴雨结束初期和暴雨发生前期,优势种Nicrophorus tenuipes暴雨结束初期的个体数量极显著少于暴雨发生前期。地表甲虫群落和步甲科在暴雨发生前期、暴雨结束初期和后期的的多样性指数(H′)和优势度指数(D)呈逐渐减少的趋势,步甲科暴雨结束后期的多样性指数(H′)、优势度指数(D)和均匀度指数(J)均显著少于暴雨发生前期(P0.05)。地表甲虫群落在暴雨结束初期和后期的beta多样性均显著高于暴雨发生前期,说明地表甲虫群落在暴雨结束初期和后期存在较高的群落物种替换,即暴雨导致地表甲虫群落较大的物种组成差异。本文表明,短时暴雨对小兴安岭凉水阔叶红松林的地表甲虫群落物种组成和多样性产生一定的影响,对群落不同类群及优势物种产生不同的影响,并导致地表甲虫群落在暴雨后较大的物种替换。  相似文献   

15.
王大伟  国庆喜 《生态学报》2019,39(21):8126-8134
利用小兴安岭凉水自然保护区内10.4 hm2样地的调查数据,统计并分析样地内乔木树种的组成与分布,借助混交度计算方法探究大径级个体周围同种邻木分布情况,并分析其产生的原因及大径级个体在其中发挥的作用,研究结果表明:(1)大径级个体(DBH ≥ 50.0 cm)与其周围5-6 m范围内的邻木的混交程度最低,易形成围绕大径级个体(以下简称中央木)的同种邻木环形结构,该环形结构在一定程度上推动着未来的森林演替与更新;(2)距离中央木15 m范围内的中小径级个体(1级木(1.0 cm ≤ DBH < 5.0 cm)、2级木(5.0 cm ≤ DBH < 10.0 cm)、3级木(10.0 cm ≤ DBH < 30.0 cm))与中央木均保持较高的混交程度,而4级木(30.0 cm ≤ DBH < 50.0 cm)、5级木(DBH ≥ 50.0 cm)与中央木的混交程度明显下降,以5级木最低,这种现象的产生与密度制约及物种共存机制存在密切关系。通过研究不同物种及不同生长阶段(不同径级)的林木分布,揭示了凉水地区阔叶红松林中大径级个体周围邻木分布格局特征及其成因,论证了大径级个体在控制周围林分结构、维持物种多样性及推动森林演替中的重要作用,为阔叶红松林的经营及管理提供了数据支撑。  相似文献   

16.
林隙对小兴安岭阔叶红松林树种更新及物种多样性的影响   总被引:2,自引:0,他引:2  
研究了小兴安岭阔叶红松林不同林隙梯度(林隙中心、林隙近中心、林隙边缘)中主要树种的数量特征,以及林隙大小对树种更新的影响.结果表明:不同梯度林隙内灌木树种的密度均明显高于非林隙,同种灌木密度的比值在1.08~18.15之间;随林隙面积增加,乔木幼苗更新密度逐渐增大,幼树Ⅰ(高度H≥1 m,胸径DBH≤2 cm)和幼树Ⅱ(H≥1 m,2 cm<DBH≤5 cm)的更新密度呈多峰曲线.林隙灌木总体更新密度主要随幼苗和幼树Ⅰ数量而变化.林隙内不同位置幼苗的平均树高、平均基径、种密度和个体密度有所差异.从林隙中心到非林隙,更新层乔木幼苗重要值的大小顺序为:林隙中心>林隙近中心>林隙边缘>非林隙;物种均匀度呈高-低-高的变化,物种多样性的变化为早期林隙>中期林隙>晚期林隙.  相似文献   

17.
中国东北小兴安岭阔叶红松林更新及其恢复研究   总被引:24,自引:2,他引:22  
李俊清  李景文 《生态学报》2003,23(7):1268-1277
研究了中国东北小兴安岭地区阔叶红松林的更新和红松的生长及其影响因素。研究结果表明由于成树树冠的遮蔽作用所导致的光照减少是制约幼树生长和存活的关键因素。阔叶红松林是该区最典型和稳定的植被类型,但是在过去的50a中,由于皆伐和更新不良导致了它的分布面积和蓄积量的减少。阔叶红松林是地带性“顶极”植被,并通过具有连续性年龄结构的树种有规律的替代和演替过程中不同阔叶树种组成而处于优势地位。这种林型无疑应作为一种重要的基因库加以保护。次生阔叶林是在阔叶红松林受干扰后出现的,但它的种类组成简单,而且结构也很不稳定。因此,必须对现有的林分结构加以调整以利于林分的长期稳定和高产。同时,提出了红松阔叶林的恢复和重建的经营方式。  相似文献   

18.
小兴安岭阔叶红松林凋落物产量及动态的研究   总被引:7,自引:0,他引:7  
小兴安岭阔叶红松林凋落物产量及动态的研究刘传照,李景文,潘桂兰,李传荣(东北林业大学红松研究所,黑龙江带岭153106)LitterProductionandDynamicsinBroadleavcd-KoreanPineForestsinXiaoxinganMountaiils¥LiuChuanzhao;LiJingwen;PanGuilan;LiChuanrong(InstituteofKoreanPineStudies,NortbeastForestryUniversity,Dailing,Heilongjiang153106).ChneseJournalofEcology,1993,12(6):29-33.Three-yearstudywasdoneonlitterproductionanddynamicsunderbroadleaved-KoreanpineforestsintheXiaoxinganMountains。Resultsshowedthatannuallitterfallis4.25±0.17t.ha ̄(-1).yr ̄(-1).Amongtotallitterfall,leaflit  相似文献   

19.
枯落物覆盖对阔叶红松林土壤蒸发的影响   总被引:2,自引:0,他引:2  
通过对枯落物覆盖下森林土壤蒸发的观测,研究了不同干重及类型的枯落物对土壤蒸发的影响,及其与含水率的关系。结果表明:土壤含水率相同,枯落物覆盖量越大,土壤蒸发量越小;不同类型的枯落物对土壤蒸发的抑制作用不同,在相同干重的枯落物覆盖下,未分解、半分解和分解的枯落物对土壤蒸发的抑制能力依次减弱。土壤蒸发量与枯落物质量呈对数关系。随土壤含水率的降低,土壤蒸发量减少,含水率在41%~38%时,每下降1%,75g、45g、15g枯落物覆盖下的土壤蒸发量依次减少2.38g、1.43g、1.30g,且在土壤含水率下降过程中,覆盖的枯落物分解程度越高,土壤蒸发速率降低越不显著。  相似文献   

20.
择伐对阔叶红松林主要组成树种种内、种间竞争的影响   总被引:5,自引:1,他引:5  
以择伐37 年后的阔叶红松林为对象,研究择伐对林内主要树种种内、种间竞争的影响.结果表明:择伐对阔叶红松林主要树种的种群结构、分布格局和竞争指数均产生了极显著影响.各树种的竞争指数变化值与其耐荫性指数存在极显著负相关关系(r=-0.8821).种内竞争强度与聚集强度、个体数呈极显著线性关系,择伐区内枫桦、紫椴等阳性树种的聚集强度最大,种内竞争强度远大于种间竞争,有利于树种之间的共存.择伐降低了红松对其伴生树种的竞争,而阳性树种对其他树种的竞争压力有所上升.择伐37 年后,红松所受的竞争压力变化较小,有利于红松的稳定生长;由于自疏作用,枫桦、紫椴的优势度将有所下降;冷杉所受的竞争压力有所减弱,有利于其种群数量的恢复.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号