首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 204 毫秒
1.
水分和温度对若尔盖湿地和草甸土壤碳矿化的影响   总被引:9,自引:0,他引:9  
王丹  吕瑜良  徐丽  张洪轩  王若梦  何念鹏 《生态学报》2013,33(20):6436-6443
土壤碳矿化及其温度和水分敏感性是研究生态系统碳循环的重要指标。本文以若尔盖高寒湿地和草甸为对象,在不同水分(70%,100%,130%饱和含水量(SSM))和温度(5,10,15,20,25℃)培养下定期测定土壤碳矿化速率(或土壤微生物呼吸速率),探讨水分和温度对高寒湿地和草甸土壤碳矿化的影响,为揭示未来暖干化对若尔盖地区碳贮存及其碳汇功能的潜在影响提供科学依据。实验结果表明:增温显著促进了高寒湿地和草甸土壤碳矿化,而水分过高会抑制土壤碳矿化;此外,高寒湿地土壤碳矿化速率高于高寒草甸。土壤水分和草地类型对土壤碳矿化温度敏感性(Q10)的影响比较复杂。高寒草甸Q10随水分升高而显著升高,培养7天时的Q10变化趋势为70% SSM(1.21)< 100% SSM(1.76)< 130% SSM(2.80),培养56天的Q10从1.17上升为4.53。高寒湿地的Q10在培养7天差异不显著,但整个56天培养期内Q10随水分升高而显著增加。在评估暖干化对若尔盖地区碳贮量和碳汇功能的影响时,应更加重视高寒草甸和高寒湿地Q10对水分和温度变化的不同响应。  相似文献   

2.
科尔沁草甸生态系统水分利用效率及影响因素   总被引:4,自引:0,他引:4  
生态系统水分利用效率(WUE)是衡量碳水循环耦合程度的重要指标。利用科尔沁温带草甸草地碳水通量观测数据,对该生态系统总初级生产力水分利用效率(WUEGPP)的日季变化规律及对环境和生理因子的响应进行分析。结果表明:(1)WUEGPP日变化呈下降-稳定-上升的变化趋势,最大值出现在日出后1—2 h,阴天条件下WUEGPP高于晴天,生长中期WUEGPP高于生长初期和末期;(2)总初级生产力、总蒸散和WUEGPP季节变化均呈夏季高、春秋低的形式,生长季平均值分别为0.57 mg m-2s-1、0.08 g m-2s-1和5.97 mg/g,最大值分别为1.49 mg m-2s-1、0.16 g m-2s1和13.62 mg/g;(3)总初级生产力与饱和差、气温和叶面积指数均呈二次曲线关系,与冠层导度呈对数曲线关系;总蒸散与气温呈二次曲线关系,与饱和差、叶面积指数和冠层导度相关性均不显著;(4)WUEGPP与饱和差、气温和叶面积指数均呈二次曲线关系,与冠层导度呈对数曲线关系,饱和差、冠层导度和叶面积指数分别为2.0 k Pa、0.0015 m/s和4.2是控制WUEGPP增加的阈值;(5)净生态系统生产力水分利用效率(WUENEP)和净初级生产力水分利用效率(WUENPP)季节变化规律与WUEGPP一致,均值分别为3.47和5.47 mg/g。  相似文献   

3.
青藏高原高寒草甸生态系统净二氧化碳交换量特征   总被引:31,自引:3,他引:31  
高寒草甸是青藏高原广泛分布的植被类型之一,面积约120万km2,地处青藏高原腹地的当雄草原站即位于该类植被的典型分布区。以2003年8~10月中旬在该站用涡度相关法连续观测的CO2通量数据资料为基础,分析了高寒草甸生态系统8~10月份净二氧化碳交换量(NEE)的日变化规律,及其与光合有效辐射、降水、温度等环境因子之间的关系。结果表明,8~10月份的日均NEE有明显的日变化,表现为单峰型,通常在地方时11:00~12:00左右达到碳吸收的最大值,平均为-0.2680mgCO2/(m2·s)(-6.0800μmolCO2/(m2·s))。白天的NEE与光合有效辐射之间符合很好的直角双曲线关系,表观量子产额平均为0.0203μmolCO2/μmolPAR,表观最大光合速率平均为9.7411μmolCO2/(m2·s)。夜晚的NEE与5cm地温有很好的指数函数关系。  相似文献   

4.
温度、水分对湿地土壤有机碳矿化的影响   总被引:20,自引:0,他引:20  
采用密闭培养法,研究了小叶章(Deyeuxia angustifolia)湿地土壤有机碳的矿化动态,探讨了温度和水分条件对有机碳矿化的影响.结果表明:湿地土壤有机碳在培养初期(0~2 d)矿化速率较高,之后矿化速率逐渐降低;33 d培养期间,表层(0~10 cm)土壤的总矿化量为1.59~2.62 mg C·g-1,为下层(10~100 cm)的4~22倍;温度升高10℃使总矿化量分别增加60%~210%(75%WHC)和30%~200%(淹水);一级动力学方程能较好地描述湿地土壤有机碳矿化动态,其C0值随土壤深度呈指数递减变化,且C0和C0/SOC值均随温度的升高而升高;不同深度土壤Q10值分别变化为1.7~3.1(75% WHC)和1.2~3.0(淹水),且与土壤深度之间存在明显的二次抛物线相关;土壤深度、培养温度对湿地土壤有机碳矿化具有显著影响,而水分处理对有机碳矿化的影响不显著.  相似文献   

5.
青藏高原高寒湿地和草甸生态系统碳库对我国陆地生态系统碳循环具有极为重要的作用。本研究以青藏高原海北高寒湿地塔头、塔间以及高寒草甸3种生境为对象,分析了3种生境下植被碳库、土壤碳库(0~30 cm)以及生态系统总碳库的差异。结果表明:湿地塔头和塔间的植被碳库分别为1.54±0.11和1.57±0.20 kg·m~(-2),显著高于草甸植被碳库(0.83±0.05 kg·m~(-2)),尤其是植被地下碳库;湿地塔间的土壤有机碳(SOC)库为21.99±1.18 kg·m~(-2),显著高于湿地塔头和草甸的SOC库,湿地塔头与草甸的SOC库没有显著差异;湿地塔间的总碳库最大,为23.53±1.18 kg·m~(-2),湿地塔头总碳库为19.53±1.43kg·m~(-2),草甸总碳库为18.70±0.81 kg·m~(-2),湿地塔头与草甸的总碳库没有显著差异。因此,建议在未来的高寒湿地碳库估算中将湿地塔头和塔间碳库予以区分,有助于精确估算高寒湿地碳库。  相似文献   

6.
为探究草原生态系统固碳能力,利用锡林浩特国家气候观象台2018—2021年的涡动相关资料分析了锡林浩特草原生态系统CO2通量的变化特征以及环境因子对CO2通量的影响,并对通量源区分布进行了探讨。结果表明:研究区全年盛行西南风,生长季的源区面积大于非生长季,大气稳定条件下的源区面积大于不稳定条件;90%贡献率的源区最大长度接近400 m,与经典法则估算的长度一致。锡林浩特草原净生态系统碳交换量(NEE)具有明显的日变化和季节变化,生长季白天为碳汇,夜间为碳源,非生长季白天和夜间均为弱碳源。2018—2021年,年总NEE分别为-15.59、-46.28、-41.94和-78.14 g C·m-2·a-1,平均值为-45.49 g C·m-2·a-1,表明锡林浩特草原有较强的固碳能力。饱和水汽压差和光合有效辐射有助于草原生态系统吸收大气中CO2;夜间,当温度高于0℃时,气温和土壤温度升高会促进植被呼吸作用释放CO2。  相似文献   

7.
青藏高原是地球上接收太阳辐射能最多的地区之一,具有世界上最高的高寒草甸生态系统,对区域乃至全球碳循环起着重要作用.为了探究太阳辐射变化对高寒草甸生态系统碳动态的影响,本研究利用涡度相关技术和微气象观测系统对高寒草甸生态系统CO2净交换(NEE)、太阳总辐射、散射辐射及其相关环境要素进行观测;根据晴空指数(CI,到达地面的太阳辐射与大气上界太阳辐射的比值)将天空状况划分为晴天(CI≥0.7)、多云(0.32·m-2·s-1)对应的光量子通量密度(PPFD)约为1400 μmol·m-2·s-1,出现在CI为0.6~0.7范围内的多云天空,高于CI≥0.7的最高值(-0.57 mg CO2·m-2·s-1)(NEE负值为碳吸收,正值为排放,为方便起见在此均用绝对值描述);CI<0.6条件下,NEE随散射辐射的增加呈显著的对数增加;CI在0.6~0.7范围内,NEE达到最大值,CI≥0.7时,NEE随CI的上升呈降低趋势,说明生态系统的光合作用可能出现了光抑制现象,且散射辐射的增加有利于提高生态系统固碳能力;生态系统呼吸(Re)随温度升高呈明显的指数上升趋势,高寒草甸NEE最高值对应的温度为15 ℃,当温度高于15 ℃时,NEE随温度的升高呈下降趋势.晴天状况下,温度升高增加了Re,进而降低了NEE.当饱和水汽压差(VPD)<0.6 kPa时,NEE随VPD增加呈增加趋势;当VPD>0.6 kPa时,NEE随VPD的升高呈缓慢下降趋势,说明相对较高的VPD抑制了生态系统的光合作用.晴天的强辐射并不能促进青藏高原高寒草甸的碳吸收能力,而晴空指数在0.6~0.7范围的多云天气最有利于生态系统碳固定.  相似文献   

8.
全球气候变暖将对陆地生态系统(尤其是高寒草甸生态系统)碳循环产生深远影响。该研究依托中国科学院地理科学与资源研究所藏北高原草地生态系统研究站(那曲站), 设置不同增温幅度实验, 模拟未来2 ℃增温和4 ℃增温的情景, 探究不同增温幅度对青藏高原高寒草甸净生态系统碳交换(NEE)的影响。研究结果显示: 1)在2015年生长季(6-9月), 不增温和2 ℃增温处理下NEE小于0, 总体表现为碳汇, 而4 ℃增温处理下NEE大于0, 总体表现为碳源; 2)在生长季的6月、8月及整个生长季, 与不增温相比, 4 ℃增温处理显著提高了NEE, 而2 ℃增温处理没有显著改变NEE; 7月, 2 ℃和4 ℃增温处理均显著提高了NEE; 3)在半干旱的高寒草甸生态系统, 土壤水分是决定NEE的关键因素, 增温通过降低土壤水分而导致高寒草甸生态系统碳汇能力下降。该研究可为青藏高原高寒草甸生态系统应对未来气候变化提供基础数据和理论依据。  相似文献   

9.
以科尔沁沙质草地为研究对象,利用开路涡度相关系统和LI-8150土壤呼吸自动观测系统,分析了生长季生态系统二氧化碳(CO_2)净交换量(NEE)的变化特征,土壤呼吸(R_s)对生态系统呼吸(R_(eco))的贡献率,以及生态系统总初级生产力(GPP)的大小。结果表明:生长季NEE存在明显的月均日变化特征,总体呈单峰型,其中7月的日变化最为明显,NEE月均日最大吸收速率(-5.62μmol·m~(-2)·s~(-1))和最大释放速率(3.14μmol·m~(-2)·s~(-1))均出现在7月份;生长季内生态系统总体表现为碳汇,固碳量为25.85 g C·m~(-2);R_s对R_(eco)的贡献率为78.39%,R_(eco)对GPP的贡献率为90.62%,生长季内GPP总累积量为275.51g C·m~(-2)。  相似文献   

10.
沙漠化对科尔沁沙质草地生态系统碳氮储量的影响   总被引:1,自引:0,他引:1  
通过野外调查,研究了沙漠化对科尔沁沙质草地生态系统碳、氮储量的影响.结果表明:沙漠化对草地碳、氮含量和储量具有显著影响,随着草地沙漠化的进程,草地碳、氮含量和储量明显下降.与非沙漠化草地相比,轻度、中度、重度和严重沙漠化草地0~100cm深土壤有机碳和全氮含量分别下降了56.06%和48.72%、78.43%和74.36%、88.95%和84.62%、91.64%和84.62%,植物组分中的碳、氮含量分别下降了8.61%和6.43%、0.05%和25.71%、2.58%和27.14%、8.61%和27.86%;轻度、中度、重度和严重沙漠化草地地上植物组分中的碳、氮储量分别下降了25.08%和27.62%、30.90%和46.55%、73.84%和80.62%、90.89%和87.31%,0~100cm深地下植物组分中碳和全氮储量分别下降了50.95%和43.38%、75.19%和71.04%、86.76%和81.48%、91.17%和83.17%.2000年科尔沁沙地沙漠化草地总面积为30152.7km2,因沙漠化损失的碳、氮总储量高达107.53和9.97Mt.草地碳、氮含量的下降主要源于风蚀过程中土壤细颗粒的损失.土壤的粗化和贫瘠化最终导致了植物和凋落物中碳、氮储量的明显下降.  相似文献   

11.
开垦对黄河三角洲湿地净生态系统CO2交换的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
近年来, 由于对湿地的不合理利用, 自然湿地被大面积地垦殖为农田, 导致湿地生态系统碳循环的模式发生改变, 从而影响了湿地生态系统碳汇功能。该研究通过涡度相关法, 对山东省东营市黄河三角洲芦苇(Phragmites australis)湿地和开垦多年的棉花(Gossypium spp.)农田的净生态系统CO2交换(NEE)进行了对比观测, 以探讨该地区典型生态系统NEE的变化规律及其影响因子, 揭示开垦对芦苇湿地NEE和碳汇功能的影响。结果表明: 在生长季, 湿地和农田生态系统NEE的日平均值各月均呈明显的“U”型变化曲线, 非生长季NEE的变幅很小。生长季湿地生态系统日最大净吸收值和释放值分别为16.04 g CO2·m-2·d-1(8月17日)和14.95 g CO2·m-2·d-1(8月9日); 农田生态系统日最大净吸收值和释放值分别为18.99 g CO2·m-2·d-1 (8月22日)和12.23 g CO2·m-2·d-1 (7月29日)。生长季白天两个生态系统NEE与光合有效辐射(PAR)之间呈直角双曲线关系; 非生长季NEE主要受土壤温度(Ts)的影响; 生态系统生长季夜间NEETs和土壤含水量(SWC)的共同影响; 湿地和农田的生态系统呼吸熵(Q10)分别为2.30和3.78。2011年生长季, 黄河三角洲湿地和农田生态系统均表现为CO2的汇, 总净固碳量分别为780.95和647.35 g CO2·m-2, 开垦降低了湿地的碳吸收能力; 而在2011年非生长季, 黄河三角洲湿地和农田生态系统均表现为CO2的源, CO2总释放量分别为181.90和111.55 g CO2·m-2。全年湿地和农田生态系统总净固碳量分别为599.05和535.80 g CO2·m-2。  相似文献   

12.
《植物生态学报》2016,40(12):1219
AimsGlobal warming could have profound effects on ecosystem carbon (C) fluxes in alpine ecosystems. The aim of our study is to examine the effects of gradient warming on net ecosystem carbon exchange (NEE).MethodsIn the Northern Tibetan Grassland Ecosystem Research Station (Nagqu station), Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, we conducted various levels of temperature increasing experiments (i.e., 2 °C and 4 °C increments). The warming was achieved using open-top chambers (OTCs). In total, there were three levels of temperature treatments (control, 2 °C and 4 °C increment), and four replicates for each treatment. The ecosystem NEE was monitored every five days during the growing season in 2015.Important findings Our findings highlight the importance of soil moisture in mediating the responses of NEE to climatic warming in alpine meadow ecosystem. The 4 °C warming significantly stimulated NEE,except for July measurements. The 2 °C warming had no effects on NEE during the growing season. Compared to the 2 °C warming, the 4 °C warming significantly stimulated NEE. The results showed that our targeted ecosystem acts as a carbon sink under 2 °C warming, whereas will act as a net carbon source under 4 °C warming in the future. This study provides basic data and theoretical basis for evaluating the alpine ecosystem’s responses to climate change.  相似文献   

13.
通过涡度相关和微气象观测技术,对黄河三角洲滨海湿地净生态系统CO2交换(NEE)以及环境、生物因子进行了观测,探究湿地NEE变化规律及环境和生物因子对NEE的影响. 结果表明: 在日尺度上,生长季NEE呈明显“U”型曲线,非生长季变幅较小;在季节尺度上,NEE生长季波动较大,表现为碳汇,非生长季波动较小,表现为碳源;在年尺度上,滨海湿地生态系统表现为碳汇,总净固碳量为-247 g C·m-2. 白天NEE主要受控于光合有效辐射(PAR),且生态系统表观量子产量(α)与白天生态系统呼吸(Reco,d)均于8月达到最大值,最大光合速率(Amax)于7月达到最大值;夜间NEE随气温(Ta)呈指数增加趋势,生态系统的温度敏感系数(Q10)为2.5,且土壤含水量(SWC)越高,Q10值越大.非生长季NEE只与净辐射(Rn)呈显著的线性负相关,与其他环境因子无显著相关关系.生长季NEE与RnTa、土壤10 cm温度(Ts 10)等环境因子以及叶面积指数(LAI)呈显著的线性负相关,但与地上生物量(AGB)无显著相关关系.多元回归分析表明,Rn和LAI对生长季NEE的协同影响达到52%.  相似文献   

14.
云量以及大气气溶胶含量变化引起的阴天和晴天会对局地的微气候环境产生综合效应, 影响地面接收的太阳辐射强度, 同时引起环境因子的变化, 最终对净生态系统CO2交换(NEE)产生影响。该文通过涡度相关系统以及微气象梯度观测系统, 对黄河三角洲芦苇(Phragmites australis)湿地NEE以及环境要素进行了观测。在自然条件下选择12对相邻阴天和晴天数据, 在生物要素(生物量、叶面积指数)、土壤水分以及养分特征保持不变的前提下, 揭示了阴天和晴天变化对湿地生态系统NEE的光响应和温度响应的影响。结果表明: 12对阴天和晴天生态系统NEE的日平均动态均呈“U”型曲线, 但阴天NEE的变幅较小。晴天条件下湿地生态系统NEE的日均值显著高于阴天(p < 0.01)。阴天和晴天湿地生态系统NEE与光合有效辐射(PAR)之间均呈直角双曲线关系, 但晴天条件下, 最大光合速率(Amax)显著大于阴天(p < 0.01), 同时白天生态系统呼吸(Reco,daytime)也显著大于阴天(p < 0.01)。不论阴天还是晴天, Reco,daytime与气温均呈显著的指数关系。晴天湿地生态系统呼吸的温度敏感系数Q10 (5.5)远大于阴天(1.9)。阴天和晴天昼间PAR差值以及气温差值对NEE差值的协同影响达到63%。  相似文献   

15.
潮汐作用作为盐沼湿地独特的水文特征能在短时间内强烈影响盐沼湿地的碳平衡.利用涡度相关和微气象监测技术,对黄河三角洲盐沼湿地净生态系统CO2交换(NEE)和环境因子进行监测,并同步监测潮汐变化,探究潮汐过程及潮汐作用下干湿交替对NEE的影响.结果表明: 潮汐过程促进了白天生态系统CO2的吸收但未对夜晚CO2的释放产生显著影响,潮汐淹水成为影响白天NEE的主要因子.干旱阶段和湿润阶段NEE的日平均动态均呈“U”型曲线,但干旱阶段NEE的变幅较小.干湿交替增强了白天生态系统CO2的吸收,干旱阶段最大光合速率(Amax)、表观量子产量(α)和生态系统呼吸(Reco)的均值均高于湿润阶段.此外,干湿交替减少了盐沼湿地夜晚NEE释放的同时增强了其温度敏感性.  相似文献   

16.
Net ecosystem exchange (NEE) of C varies greatly among Arctic ecosystems. Here, we show that approximately 75 per cent of this variation can be accounted for in a single regression model that predicts NEE as a function of leaf area index (LAI), air temperature and photosynthetically active radiation (PAR). The model was developed in concert with a survey of the light response of NEE in Arctic and subarctic tundras in Alaska, Greenland, Svalbard and Sweden. Model parametrizations based on data collected in one part of the Arctic can be used to predict NEE in other parts of the Arctic with accuracy similar to that of predictions based on data collected in the same site where NEE is predicted. The principal requirement for the dataset is that it should contain a sufficiently wide range of measurements of NEE at both high and low values of LAI, air temperature and PAR, to properly constrain the estimates of model parameters. Canopy N content can also be substituted for leaf area in predicting NEE, with equal or greater accuracy, but substitution of soil temperature for air temperature does not improve predictions. Overall, the results suggest a remarkable convergence in regulation of NEE in diverse ecosystem types throughout the Arctic.  相似文献   

17.
通过涡度相关和微气象观测技术,对黄河三角洲滨海湿地净生态系统CO2交换(NEE)以及环境、生物因子进行了观测,探究湿地NEE变化规律及环境和生物因子对NEE的影响. 结果表明: 在日尺度上,生长季NEE呈明显“U”型曲线,非生长季变幅较小;在季节尺度上,NEE生长季波动较大,表现为碳汇,非生长季波动较小,表现为碳源;在年尺度上,滨海湿地生态系统表现为碳汇,总净固碳量为-247 g C·m-2. 白天NEE主要受控于光合有效辐射(PAR),且生态系统表观量子产量(α)与白天生态系统呼吸(Reco,d)均于8月达到最大值,最大光合速率(Amax)于7月达到最大值;夜间NEE随气温(Ta)呈指数增加趋势,生态系统的温度敏感系数(Q10)为2.5,且土壤含水量(SWC)越高,Q10值越大.非生长季NEE只与净辐射(Rn)呈显著的线性负相关,与其他环境因子无显著相关关系.生长季NEE与RnTa、土壤10 cm温度(Ts 10)等环境因子以及叶面积指数(LAI)呈显著的线性负相关,但与地上生物量(AGB)无显著相关关系.多元回归分析表明,Rn和LAI对生长季NEE的协同影响达到52%.  相似文献   

18.
We investigated the effects of elevated CO(2) (EC) [ambient CO(2) (AC) + 190 ppm] and elevated temperature (ET) [ambient temperature (AT) + 3.6 degrees C] on net ecosystem exchange (NEE) of seedling Douglas fir (Pseudotsuga menziesii) mesocosms. As the study utilized seedlings in reconstructed soil-litter-plant systems, we anticipated greater C losses through ecosystem respiration (R(e)) than gains through gross photosynthesis (GPP), i.e. negative NEE. We hypothesized that: (1) EC would increase GPP more than R(e), resulting in NEE being less negative; and (2) ET would increase R(e) more than GPP, resulting in NEE being more negative. We also evaluated effects of CO(2) and temperature on light inhibition of dark respiration. Consistent with our hypothesis, NEE was a smaller C source in EC, not because EC increased photosynthesis but rather because of decreased respiration resulting in less C loss. Consistent with our hypothesis, NEE was more negative in ET because R(e) increased more than GPP. The light level that inhibited respiration varied seasonally with little difference among CO(2) and temperature treatments. In contrast, the degree of light inhibition of respiration was greater in AC than EC. In our system, respiration was the primary control on NEE, as EC and ET caused greater changes in respiration than photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号