首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intestinal brush border vesicles of a Mediterranean sea fish (Dicentrarchus labrax) were prepared using the Ca2+-sedimentation method. The transport of glucose, glycine and 2-aminoisobutyric acid is energized by an Na+ gradient (out > in). In addition, amino acid uptake requires Cl? in the extravesicular medium (2-aminoisobutyric acid more than glycine). This Na+- and Cl?-dependent uptake is electrogenic, since it can be stimulated by negative charges inside the vesicles. The specific Cl? requirement of glycine and 2-aminoisobutyric acid transport is markedly influenced by pH, a change from 6.5 to 8.4 reducing the role played by Cl?. In the presence of Cl?, the Km of 2-aminoisobutyric acid uptake is reduced and its Vmax is enhanced. Cl? affects also a non-saturable Na+-dependent component of this amino acid uptake. Amino acid transport is also increased by intravesicular Cl? (2-aminoisobutyric acid less than glycine). This effect is more concerned with glucose uptake, which can be then multiplied by 2.3. A concentration gradient (in > out) as well as the presence of Na+ in the incubation medium seems to enter into this requirement. This intravesicular Cl? effect is not influenced by pH between 6.5 and 8.4.  相似文献   

2.
3.
The major glucose transporter protein expressed in skeletal muscle is GLUT4. Both muscle contraction and insulin induce translocation of GLUT4 from the intracellular pool to the plasma membrane. The intracellular pathways that lead to contraction- and insulin-stimulated GLUT4 translocation seem to be different, allowing the attainment of a maximal effect when acting together. Insulin utilizes a phosphatidylinositol 3-kinase-dependent mechanism, whereas the exercise signal may be initiated by calcium release from the sarcoplasmic reticulum or from autocrine- or paracrine-mediated activation of glucose transport. During exercise skeletal muscle utilizes more glucose than when at rest. However, endurance training leads to decreased glucose utilization during sub-maximal exercise, in spite of a large increase in the total GLUT4 content associated with training. The mechanisms involved in this reduction have not been totally elucidated, but appear to cause the decrease of the amount of GLUT4 translocated to the plasma membrane by altering the exercise-induced enhancement of glucose transport capacity. On the other hand, the effect of resistance training is controversial. Recent studies, however, demonstrated the improvement in insulin sensitivity correlated with increasing muscle mass. New studies should be designed to define the molecular basis for these important adaptations to skeletal muscle. Since during exercise the muscle may utilize insulin-independent mechanisms to increase glucose uptake, the mechanisms involved should provide important knowledge to the understanding and managing peripheral insulin resistance.  相似文献   

4.
Following amino acid or ammonium starvation, ppGpp is accumulated by Rhizobium meliloti strain 1021 but not by R. meliloti strain 41 or Rhizobium tropici. Azorhizobium caulinodans ORS571 produced ppGpp following amino acid deprivation; however, the free-living nitrogen-fixing bacteria Azotobacter vinelandii and Azomonas agilis did not produce ppGpp. Western blot analysis using anti-RelA antibody demonstrated that R. meliloti strain 1021, Azotobacter vinelandii and Azorhizobium caulinodans cross-reacted under conditions that detected RelA in Escherichia coli CF1648. Cross-reaction was not observed in R. meliloti strain 41, R. tropici, or Azomonas agilis. All strains that accumulated ppGpp also produced high intracellular levels of ATP. Received: 28 August 1998 / Accepted: 11 November 1998  相似文献   

5.
Amino acids are essential components in all organisms because they are building blocks of proteins. They are also produced industrially and used for various purposes. For example, L-glutamate is used as the component of “umami” taste and lysine has been used as livestock feed. Recently, many kinds of amino acids have attracted attention as biological regulators and are used for a healthy life. Thus, to clarify the mechanism of how amino acids are biosynthesized and how they work as biological regulators will lead to further effective utilization of them. Here, I review the leucine-induced-allosteric activation of glutamate dehydrogenase (GDH) from Thermus thermophilus and the relationship with the allosteric regulation of GDH from mammals. Next, I describe structural insights into the efficient production of L-glutamate by GDH from an excellent L-glutamate producer, Corynebacterium glutamicum. Finally, I review the structural biology of lysine biosynthesis of thermophilic bacterium and archaea.  相似文献   

6.
Glucose-limited and glucose-starved cultures of Trichoderma aureoviride were analyzed for the size and composition of the mycelial free amino acid pool. In glucoselimited mycelia the pool size increased as a function of the specific growth rate above a value of ca. 0.08 h-1 and this was due principally to increasing concentrations of alanine and glutamic acid. During glucose starvation, the net pool size decreased only by ca 20% although a transient elevation of free amino acids was observed, the latter being attributed to the turnover of mycelial proteins. The amino acid pool compositions were categorized according to their ionic nature and, although no particular group varied significantly in its percentage contribution to the total pool size of growing mycelia, the observed variations during starvation were mostly attributable to the basic and acidic amino acids. Comparisons are made of the results with those obtained for other species of filamentous fungi and some possible explanations for the observed variations are discussed.  相似文献   

7.
In chicken thymocytes isolated from 15–40 day-old chickens, after a 2 h incubation at 37°C, insulin stimulated amino isobutyric acid uptake (maximal response: 40–50% of increase at 1 μg insulin/ml and half maximal response at 60 ng/ml) by specifically stimulating the influx without altering the efflux. Insulin also stimulated glucose oxidation (maximal response: 11% of increase at 1 μg insulin/ml). Binding of 125I-labelled chicken insulin to thymocytes was rapid and higher at 15°C than at 37°C. At steady state, (90 min at 15°C), chicken, porcine and goose insulins were equipotent in inhibiting the binding of 125I-labelled chicken insulin. Maximal binding capacity was estimated at 1250 pg insulin/108 cells, i.e., 1250 binding sites/cell with an apparent dissociation constant of 200 ng insulin/ml at 15°C. Degradation of 125I-labelled chicken insulin in the incubation medium was negligible at 15°C but very noticeable at 37°C. Therefore, the low level of insulin binding at 15°C reflects a true scarcity of insulin receptors in chicken thymocytes as compared to rat thymocytes.  相似文献   

8.
9.
Studies on the surface area of microvilli (MV), fluidity of brush border membranes (BBM) and -glucose uptake were carried out in rat intestinal epithelial cells (IEC) during progressive starvation and under re-feed conditions. The surface area of MV, fluidity of BBM and -glucose transport through IEC membranes showed an increase during starvation when compared to well-fed controls. Re-feeding experiments restored the control values of all the three parameters within a short time. The results showed that the increase in -glucose transport through IEC membranes during starvation is due to increased surface area of MV and increased fluidity of BBM.  相似文献   

10.
11.
Embryonic chick heart cells in culture transport 2-deoxy-D-glucose and 3-O-methyl-D-glucose very rapidly. By direct measurements of uptake, it was not possible to estimate accurately transport rates, nor, with 2-deoxyglucose, to discriminate clearly between its transport and phosphorylation. In contrast, the technique of countertransport made it possible to determine precisely initial transport velocity and to make the following observations: (1) phosphorylation, and not transport, is rate-limiting in 2-deoxyglucose uptake; (2) hexose transport is stimulated 5-fold by removal of glucose from culture medium; and (3) this stimulation is followed by an increase in phosphorylation, but the effect is much less pronounced (2-fold stimulation only). In conclusion, the adaptative regulation of glucose transport described in many fibroblast cell lines exists also in cardiac cells.  相似文献   

12.
Abstract Ethanol and acetic acid, at concentrations which may occur during wine-making, inhibited the transport of l-malic acid in Schizosaccharomyces pombe . The inhibition was non-competitive, the decrease of the maximum initial velocity following exponential kinetics. Glucose transport was not significantly affected either by ethanol (up to 13%, w/v) or by acetic acid (up to 1.5%, w/v). The uptake of labelled acetic acid followed simple diffusion kinetics, indicating that a carrier was not involved in its transport. Therefore, the undissociated acid appears to be the only form that enters the cells and is probably responsible for the toxic effects. Accordingly, deacidification by Ss. pombe during wine fermentation should take place before, rather than after, the main alcoholic fermentation by Saccharomyces cerevisiae .  相似文献   

13.
Amino acid starvation causes an adaptive increase in the initial rate of transport of selected neutral amino acids in an established line of rat hepatoma cells in tissue culture. After a lag of 30 min, the initial rate of transport of alpha-aminoisobutyric acid (AIB) increases to a maximum after 4 to 6 h starvation of 2 to 3 times that seen in control cells. The increased rate of transport is accompanied by an increase in the Vmax and a modest decrease in the Km for this transport system, and is reversed by readdition of amino acids. The enhancement is specific for amino acids transported by the A or alanine-preferring system (AIB, glycine, proline); uptake of amino acids transported by the L or leucine-preferring system (threonine, phenylalanine, tyrosine, leucine) or the Ly+ system for dibasci amino acids (lysine) is decreased under these conditions. Amino acids which compete with AIB for transport also prevent the starvation-induced increase in AIB transport; amino acids which do not compete fail to prevent the enhancement. Paradoxically threonine, phenylalanine, tryptophan, and tyrosine, which do not compete with AIB for transport, block the enhancement of transport upon amino acid starvation. The starvation-induced enhancement of amino acid transport does not appear to be the result of a release from transinhibition. After 30 min of amino acid starvation, AIB transport is either unchanged or slightly decreased even though amino acid pools are already depleted. Furthermore, loading cells with high concentrations of a single amino acid following a period of amino acid starvation fails to prevent the enhancement of AIB transport, whereas incubation of the cells with the single amino acid for the entire duration of amino acid starvation prevents the enhancement; intracellular amino acid pools are similar under both conditions. The enhancement of amino acid transport requires concomitant RNA and protein synthesis, consistent with the view that the adaptive increase reflects an increased amount of a rate-limiting protein involved in the transport process. Dexamethasone, which dramatically inhibits AIB transport in cells incubated in amino acid-containing medium, both blocks the starvation-induced increase in AIB transport, and causes a time-dependent decrease in transport velocity in cells whose transport has previously been enhanced by starvation.  相似文献   

14.
Depletion of energy stores of human red cells decreases the maximum transport capacity, Jm, for glucose transport to a value one-third or less of that found in red cells from freshly drawn blood. There is no change in Km. Hemolysis and resealing of red cells with ATP or ADP reverses the decrease in Jm. The maximum effect occurs at concentrations of ATP in the normal range for red cells, however, there is little effect from ADP concentrations in its normal range in freshly drawn red cells. Hemolysis and resealing with ATP gives an increase in Jm and an increase in differential labeling by photolytic labeling with tritiated cytochalasin B. Most of the activation is lost after a second hemolysis-reseal without ATP but about 25% of the activation remains.  相似文献   

15.
The active uptake of 2-aminoisobutyric acid (AIB) and several other amino acids in resting cells of Streptomyces hydrogenans was found to be stimulated by exogenously added adenosine cyclic monophosphate (cAMP). The uptake of glycerol, sorbose, and pyrimidine nucleosides remained unaffected. Among the various cAMP derivatives tested, the dibutyryl derivative was found to be most effective, followed by monobutyryl cAMP, and cAMP. Dibutyryl cGMP was also found to stimulate AIB transport, and its effectivity was as good as that of dibutyryl cAMP. The effect of dibutyryl cAMP is time dependent and attains its maximum after 40–60 min of incubation at 30°C in K-Na-phosphate buffer. Dibutyryl cAMP-dependent transport stimulation has a high temperature coefficient and is prevented by rifamycin SV or chloramphenicol. The rate of leucine incorporation into protein was rapidly increased upon addition of dibutyryl cAMP. Kinetic studies reveal that the stimulation of AIB transport is characterized by an increase in maximum uptake rate and an unaltered apparent Michaelis constant. Analysis of the unidirectional fluxes show that both influx and efflux are enhanced by dibutyryl cAMP. It is concluded that exogenous dibutyryl cAMP stimulates de novo synthesis of certain protein including the transport catalysts for various amino acids.  相似文献   

16.
The effects of cholinergic stimulation on glucose equilibrium exchange rate have been studied in human erythrocytes. Carbamylcholine increases the V of equilibrium exchange by 20% but has no significant effect on Km. The cholinergic effect is abolished by the muscarinic antagonist atropine or by alterations in intracellular calcium concentrations induced by the calcium ionophore A23187.  相似文献   

17.
Abstract Ethanol at concentrations above 12% (v/v) in mineral medium with glucose and with ammonium as the only nitrogen source induced rapid inactivation of the ammonium transport system in the strain IGC 3507 of Saccharomyces cerevisiae terminating protein synthesis. Subsequently, when glucose was present, the glucose transport system was irreversibly inactivated. This two-step mechanism may play a decisive role when ethanol stops fermentation by S. cerevisiae , before all the fermentable sugar has been consumed.  相似文献   

18.
19.
Transport of glucose by the isolated and perfused rat lung was studied using 2-deoxy-D-(1-14C)-glucose, 2-(1-14C)-DG, and 3-O-methyl-(U-14C)-glucose, 3-(U-14C)-MG. Uptake of 3-(U-14C)-MG was reduced by 20% in the lungs of fasting and diabetic rats, the uptake was restored by refeeding and insulin treatment, respectively. Although the intracellular accumulation of unphosphorylated 2-(1-14C)-DG in lungs was altered by a small amount in diabetes and fasting, the intracellular accumulation of phosphorylated 2-(1-14C)-DG was significantly reduced and restored by insulin treatment and refeeding, suggesting that phosphorylation was inhibited in these conditions. The reduction of glucose utilization in fasting or diabetic state was shown to be due to the inactivation of hexokinase II enzyme. Thus, a specific glucose-carrier system is present in the rat lung which appears to be insulin-sensitive and is under the nutritional and hormonal control.  相似文献   

20.
《Phytomedicine》2014,21(2):118-122
Curcumin has been reported to inhibit insulin signaling and translocation of GLUT4 to the cell surface in 3T3-L1 adipocytes. We have investigated the effect of curcumin on insulin signaling in primary rat adipocytes. Curcumin (20 μM) inhibited both basal and insulin-stimulated glucose transport (2-deoxyglucose uptake), but had no effect on insulin inhibition of lipolysis. Dose–response experiments demonstrated that curcumin (0–100 μM) inhibited basal and insulin-stimulated glucose transport, but even at the highest concentration tested did not affect lipolysis. Inhibition was equal in cells that had been pre-incubated with curcumin and in cells to which curcumin was added immediately before the glucose transport assay. Similarly, time-course experiments revealed that the inhibitory effect of curcumin was evident at the earliest time point tested (30 s). Thus it is unlikely that inhibition of insulin signaling or of translocation of GLUT4 to the cell surface is involved in the inhibitory effect of curcumin. Curcumin did not affect the stimulatory action of insulin on phosphorylation of Akt at serine 473. We conclude that curcumin is a direct inhibitor of glucose transporters in rat adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号