首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A common feature of severe Plasmodium falciparum infection is the increased systemic release of proinflammatory cytokines that contributes to the pathogenesis of malaria. Using human blood, we found that blood stage schizonts or soluble schizont extracts activated plasmacytoid dendritic cells (PDCs) to up-regulate CD86 expression and produce IFN-alpha. IFN-alpha production was also detected in malaria-infected patients, but the levels of circulating PDCs were markedly reduced, possibly because of schizont-stimulated up-regulation of CCR7, which is critical for PDC migration. The schizont-stimulated PDCs elicited a poor T cell response, but promoted gamma delta T cell proliferation and IFN-gamma production. The schizont immune stimulatory effects could be reproduced using murine DCs and required the Toll-like receptor 9 (TLR9)-MyD88 signaling pathway. Although the only known TLR9 ligand is CpG motifs in pathogen DNA, the activity of the soluble schizont extract was far greater than that of schizont DNA, and it was heat labile and precipitable with ammonium sulfate, unlike the activity of bacterial DNA. These results demonstrate that schizont extracts contain a novel and previously unknown ligand for TLR9 and suggest that the stimulatory effects of this ligand on PDCs may play a key role in immunoregulation and immunopathogenesis of human falciparum malaria.  相似文献   

2.
Dendritic cells (DC) play an important role in innate and adaptive immunity, interacting with T cells, NK, and NKT cells. A critical step in the interaction of the parasitic protozoa Leishmania with their host is the evasion of both innate and adaptive immunity, producing a long-lasting chronic infection. There is growing evidence that these parasites can modify the Ag-presenting and immunoregulatory functions of DCs. The cells and mechanisms involved in innate immune response against Leishmania are still poorly understood. In this study, we investigated how Leishmania infantum infection affects DC interactions with NK and invariant NKT (iNKTs) cells in humans. We found that infected immature DCs (iDCs) do not up-regulate HLA class I molecules. Despite this, iDCs become resistant to killing mediated by autologous NK cells due to the up-regulation of HLA-E expression, which protects target cells from NK-mediated lysis through interaction with the inhibitory receptor CD94/NKG2A. Furthermore, iDCs infected with L. infantum up-regulate CD1d cell surface expression and consequently can be efficiently recognized and killed by iNKT cells that produce IFN-gamma. These data suggest that L. infantum could be able to evade NK recognition; in contrast, iNKTs may play an important role in the immune response against Leishmania.  相似文献   

3.
In early human pregnancy, uterine decidual NK cells (dNK) are abundant and considered as cytokine producers but poorly cytotoxic despite their cytolytic granule content, suggesting a negative control of this latter effector function. To investigate the basis of this control, we examined the relative contribution to the cytotoxic function of different activating receptors expressed by dNK. Using a multicolor flow cytometry analysis, we found that freshly isolated dNK exhibit a unique repertoire of activating and inhibitory receptors, identical among all the donors tested. We then demonstrated that in fresh dNK, mAb-specific engagement of NKp46-, and to a lesser extent NKG2C-, but not NKp30-activating receptors induced intracellular calcium mobilization, perforin polarization, granule exocytosis and efficient target cell lysis. NKp46-mediated cytotoxicity is coactivated by CD2 but dramatically blocked by NKG2A coengagement, indicating that the dNK cytotoxic potential could be tightly controlled in vivo. We finally found that in dNK, mAb-specific engagement of NKp30, but not NKp46, triggered the production of IFN-gamma, TNF-alpha, MIP-1alpha, MIP-1beta, and GM-CSF proinflammatory molecules. These data demonstrate a differential, controlled role of NKp46- and NKp30-activating receptors expressed by dNK that could be critical for the outcome of pregnancy and the killing of uterine cells infected by pathogens.  相似文献   

4.
Natural killer (NK) cells are an important element in the immune defense against the orthopox family members vaccinia virus (VV) and ectromelia virus (ECTV). NK cells are regulated through inhibitory and activating signaling receptors, the latter involving NKG2D and the natural cytotoxicity receptors (NCR), NKp46, NKp44 and NKp30. Here we report that VV infection results in an upregulation of ligand structures for NKp30 and NKp46 on infected cells, whereas the binding of NKp44 and NKG2D was not significantly affected. Likewise, infection with ectromelia virus (ECTV), the mousepox agent, enhanced binding of NKp30 and, to a lesser extent, NKp46. The hemagglutinin (HA) molecules from VV and ECTV, which are known virulence factors, were identified as novel ligands for NKp30 and NKp46. Using NK cells with selectively silenced NCR expression and NCR-CD3ζ reporter cells, we observed that HA present on the surface of VV-infected cells, or in the form of recombinant soluble protein, was able to block NKp30-triggered activation, whereas it stimulated the activation through NKp46. The net effect of this complex influence on NK cell activity resulted in a decreased NK lysis susceptibility of infected cells at late time points of VV infection when HA was expression was pronounced. We conclude that poxviral HA represents a conserved ligand of NCR, exerting a novel immune escape mechanism through its blocking effect on NKp30-mediated activation at a late stage of infection.  相似文献   

5.
6.
Inorganic arsenic, a well-known Nrf2 inducer, exerts immunosuppressive properties. In this context, we recently reported that the differentiation of human blood monocytes into immature dendritic cells (DCs), in the presence of low and noncytotoxic concentrations of arsenic, represses the ability of DCs to release key cytokines in response to different stimulating agents. Particularly, arsenic inhibits the expression of human interleukin-12 (IL-12, also named IL-12p70), a major proinflammatory cytokine that controls the differentiation of Th1 lymphocytes. In the present study, we determined if Nrf2 could contribute to these arsenic immunotoxic effects. To this goal, human monocyte-derived DCs were first differentiated in the absence of metalloid and then pretreated with arsenic just before DC stimulation with lipopolysaccharide (LPS). Under these experimental conditions, arsenic rapidly and stably activates Nrf2 and increases the expression of Nrf2 target genes. It also significantly inhibits IL-12 expression in activated DCs, at both mRNA and protein levels. Particularly, arsenic reduces mRNA levels of IL12A and IL12B genes which encodes the p35 and p40 subunits of IL-12p70, respectively. tert-Butylhydroquinone (tBHQ), a reference Nrf2 inducer, mimics arsenic effects and potently inhibits IL-12 expression. Genetic inhibition of Nrf2 expression markedly prevents the repression of both IL12 mRNA and IL-12 protein levels triggered by arsenic and tBHQ in human LPS-stimulated DCs. In addition, arsenic significantly reduces IL-12 mRNA levels in LPS-activated bone marrow-derived DCs from Nrf2+/+ mice but not in DCs from Nrf2−/− mice. Finally, we show that, besides IL-12, arsenic significantly reduces the expression of IL-23, another heterodimer containing the p40 subunit. In conclusion, our study demonstrated that arsenic represses IL-12 expression in human-activated DCs by specifically stimulating Nrf2 activity.  相似文献   

7.

Background

The natural cytotoxicity receptors (NCR) are important to stimulate the activity of Natural Killer (NK) cells against transformed cells. Identification of NCR ligands and their level of expression on normal and neoplastic cells has important implications for the rational design of immunotherapy strategies for cancer.

Methodology/Principal Findings

Here we analyze the expression of NKp30 ligand and NKp44 ligand on 30 transformed or non-transformed cell lines of different origin. We find intracellular and surface expression of these two ligands on almost all cell lines tested. Expression of NKp30 and NKp44 ligands was variable and did not correlate with the origin of the cell line. Expression of NKp30 and NKp44 ligand correlated with NKp30 and NKp44-mediated NK cell lysis of tumor cells, respectively. The surface expression of NKp30 ligand and NKp44 ligand was sensitive to trypsin treatment and was reduced in cells arrested in G2/M phase.

Conclusion/Significance

These data demonstrate the ubiquitous expression of the ligands for NKp30 and NKp44 and give an important insight into the regulation of these ligands.  相似文献   

8.
It has been shown that lysis of tumor target cells caused by lymphokine-activated killers is possible both upon a direct contact and in the presence of isolated nongranular cytotoxic proteins. The contact of cytolytic lymphocytes with K-562 cells leads to Fas L activation on the lymphocyte membrane and secretion of a broad spectrum of soluble cytotoxic proteins immunologically related to Tag 7 described earlier. These proteins can form inactive complexes, which are reactivated upon heating and addition of ATP. The proteins induced discrete cytolytic processes in tumor cells, differing in the rate of cytolysis and the mechanism of the apoptotic signal transduction. Fast processes (revealed in 3 h) mediated by caspases, and slow ones (in 24 h) with the supposed involvement of mitochondria were detected. A scheme for the lymphokine-activated killer interaction with target tumor cells is proposed.  相似文献   

9.
In this study we have analyzed the interaction between in vitro cultured bone marrow stromal cells (BMSC) and NK cells. Ex vivo-isolated NK cells neoexpressed the activation Ag CD69 and released IFN-gamma and TNF-alpha upon binding with BMSC. Production of these proinflammatory cytokines was dependent on ligation of ICAM1 expressed on BMSC and its receptor LFA1 on NK cells. Furthermore, the NKp30, among natural cytotoxicity receptors, appeared to be primarily involved in triggering NK cells upon interaction with BMSC. Unexpectedly, autologous IL-2-activated NK cells killed BMSC. Again, LFA1/ICAM1 interaction plays a key role in NK/BMSC interaction; this interaction is followed by a strong intracellular calcium increase in NK cells. More importantly, NKG2D/MHC-I-related stress-inducible molecule A and/or NKG2D/UL-16 binding protein 3 engagement is responsible for the delivery of a lethal hit. It appears that HLA-I molecules do not protect BMSC from NK cell-mediated injury. Thus, NK cells, activated upon binding with BMSC, may regulate BMSC survival.  相似文献   

10.
Mouse mammary tumor virus (MMTV) is a milk-borne retrovirus that exploits the adaptive immune system. It has recently been shown that MMTV activates B cells via Toll-like receptor 4 (TLR4), a molecule involved in innate immune responses. Here, we show that direct virus binding to TLR4 induced maturation of bone marrow-derived dendritic cells and up-regulated expression of the MMTV entry receptor (CD71) on these cells. In vivo, MMTV increased the number of dendritic cells in neonatal Peyer's patches and their expression of CD71; both these effects were dependent on TLR4. Thus, retroviral signaling through TLRs plays a critical role in dendritic-cell participation during infection.  相似文献   

11.
Lysis of virus-infected and tumor cells by NK cells is mediated via natural cytotoxicity receptors (NCRs). We have recently shown that the NKp44 and NKp46 NCRs, but not the NKp30, recognize viral hemagglutinins. In this study we explored the nature of the cellular ligands recognized by the NKp30 and NKp46 NCRs. We demonstrate that target cell surface heparan sulfate proteoglycans (HSPGs) are recognized by NKp30 and NKp46 and that 6-O-sulfation and N-acetylation state of the glucose building unit affect this recognition and lysis by NK cells. Tumor cells expressing cell surface heparanase, CHO cells lacking membranal heparan sulfate and glypican-1-suppressed pancreatic cancer cells manifest reduced recognition by NKp30 and NKp46 and are lysed to a lesser extent by NK cells. Our results are the first clue for the identity of the ligands for NKp30 and NKp46. Whether the ligands are particular HSPGs, unusual heparan sulfate epitopes, or a complex of HSPGs and either other protein or lipid moieties remains to be further explored.  相似文献   

12.
The IgE-mediated and Th2-dependent late-phase reaction remains a mechanistically enigmatic and daunting element of human allergic inflammation. In this study, we uncover the FcεRI on dendritic cells (DCs) as a key in vivo component of this form of allergy. Because rodent, unlike human, DCs lack FcεRI, this mechanism could be revealed only by using a new transgenic mouse model with human-like FcεRI expression on DCs. In the presence of IgE and allergen, FcεRI(+) DCs instructed naive T cells to differentiate into Th2 cells in vitro and boosted allergen-specific Th2 responses and Th2-dependent eosinophilia at the site of allergen exposure in vivo. Thus, FcεRI on DCs drives the cascade of pathogenic reactions linking the initial allergen capture by IgE with subsequent Th2-dominated T cell responses and the development of late-phase allergic tissue inflammation.  相似文献   

13.
Dendritic cells provide a critical link between innate and acquired immunity. In this study, we demonstrate that the bacterial pathogen Salmonella enterica serovar Typhimurium can efficiently kill these professional phagocytes via a mechanism that is dependent on sipB and the Salmonella pathogenicity island 1-encoded type III protein secretion system. Rapid phosphatidylserine redistribution, caspase activation, and loss of plasma membrane integrity were characteristic of dendritic cells infected with wild-type Salmonella, but not sipB mutant bacteria. Caspase-1 was particularly important in this process because Salmonella-induced dendritic cell death was dramatically reduced in the presence of a caspase-1-specific inhibitor. Furthermore, dendritic cells obtained from caspase-1-deficient mice, but not heterozygous littermate control mice, were resistant to Salmonella-induced cytotoxicity. We hypothesize that Salmonella have evolved the ability to selectively kill professional APCs to combat, exploit, or evade immune defense mechanisms.  相似文献   

14.
Plasmacytoid dendritic cells (pDC) are a specialized sensor of viral and bacterial nucleic acids and a major producer of IFN-α that promotes host defense by priming both innate and acquired immune responses. Although synthetic Toll-like receptor (TLR) ligands, pathogenic bacteria and viruses activate pDC, there is limited investigation of non-pathogenic microbiota that are in wide industrial dietary use, such as lactic acid bacteria (LAB). In this study, we screened for LAB strains, which induce pDC activation and IFN-α production using murine bone marrow (BM)-derived Flt-3L induced dendritic cell culture. Microbial strains with such activity on pDC were absent in a diversity of bacillary strains, but were observed in certain spherical species (Lactococcus, Leuconostoc, Streptococcus and Pediococcus), which was correlated with their capacity for uptake by pDC. Detailed study of Lactococcus lactis subsp. lactis JCM5805 and JCM20101 revealed that the major type I and type III interferons were induced (IFN-α, -β, and λ). IFN-α induction was TLR9 and MyD88-dependent; a slight impairment was also observed in TLR4(-/-) cells. While these responses occurred with purified pDC, IFN-α production was synergistic upon co-culture with myeloid dendritic cells (mDC), an interaction that required direct mDC-pDC contact. L. lactis strains also stimulated expression of immunoregulatory receptors on pDC (ICOS-L and PD-L1), and accordingly augmented pDC induction of CD4(+)CD25(+)FoxP3(+) Treg compared to the Lactobacillus strain. Oral administration of L. lactis JCM5805 induced significant activation of pDC resident in the intestinal draining mesenteric lymph nodes, but not in a remote lymphoid site (spleen). Taken together, certain non-pathogenic spherical LAB in wide dietary use has potent and diverse immunomodulatory effects on pDC potentially relevant to anti-viral immunity and chronic inflammatory disease.  相似文献   

15.
At an early phase of viral infection, contact and cooperation between dendritic cells (DCs) and NK cells activates innate immunity, and also influences recruitment, when needed, of adaptive immunity. Influenza, an adaptable fast-evolving virus, annually causes acute, widespread infections that challenge the innate and adaptive immunity of humanity. In this study, we dissect and define the molecular mechanisms by which influenza-infected, human DCs activate resting, autologous NK cells. Three events in NK cell activation showed different requirements for soluble mediators made by infected DCs and for signals arising from contact with infected DCs. IFN-alpha was mainly responsible for enhanced NK cytolysis and also important for CD69 up-regulation, whereas IL-12 was necessary for enhancing IFN-gamma production. Increased CD69 expression and IFN-gamma production, but not increased cytolysis, required recognition of influenza-infected DCs by two NK cell receptors: NKG2D and NKp46. Abs specific for these receptors or their known ligands (UL16-binding proteins 1-3 class I-like molecules for NKG2D and influenza hemagglutinin for NKp46) inhibited CD69 expression and IFN-gamma production. Activation of NK cells by influenza-infected DCs and polyinosinic:polycytidylic acid (poly(I:C))-treated DCs was distinguished. Poly(I:C)-treated DCs did not express the UL16-binding protein 3 ligand for NKG2D, and in the absence of the influenza hemagglutinin there was no involvement of NKp46.  相似文献   

16.
Allergic disorders are characterized by allergen-specific Th2-biased responses. Signals controlling Th2 cell polarization, especially those acting by polarizing dendritic cells (DC) into Th2-promoting DC (DC2), are not well known. Histamine, a mediator released by allergen-stimulated mast cells from allergic subjects, has been reported to activate human immature DC. We have therefore tested whether histamine affects DC polarization. We report here that histamine inhibits LPS-induced IL-12 production and polarizes uncommitted maturing DC into effector DC2. DC matured in the presence of histamine fail to produce IL-12 upon subsequent stimulation and prime Th2 responses, even in presence of IFN-gamma, a potent DC1-driving factor. All these effects are mediated through both H1 and H2 receptors. These data show that histamine is a potent DC2-polarizing factor and provide evidence for a novel mechanism that explains the initiation and maintenance of a predominant Th2 response in allergic disorders.  相似文献   

17.
Targeting of human dendritic cells by autologous NK cells   总被引:7,自引:0,他引:7  
NK cells have the capacity to spontaneously kill tumor cell lines, in particular cell lines of hemopoietic origin. In contrast, they do not generally kill nontransformed autologous cells. However, here we demonstrate that short-term activated polyclonal human NK cells, as well as human NK cell lines, efficiently lyse autologous dendritic cells (DC) derived from peripheral blood monocytes as well as Langerhans-like cells derived from CD34+ stem cells isolated from umbilical cord blood. Lysis of autologous DC by short-term activated NK cells and NK cell lines was dependent on granule exocytosis, since total abrogation of lysis was observed in the presence of EGTA. Induction of DC maturation by LPS, monocyte conditioned media (MCM), or stimulation through CD40 ligand (CD40L) rendered the DC less susceptible to lysis by NK cells. Infection of DC with influenza virus was likewise associated with a reduced susceptibility to lysis by NK cells. Thus, susceptibility to lysis by autologous NK cells is a particular property of immature DC. The present results are discussed in relation to the ability of DC to interact with NK cells and to the ability of NK cells to regulate development of specific immunity.  相似文献   

18.
19.
Cell division cycle 42 (Cdc42) is a member of the Rho guanosine triphosphatase family and has pivotal functions in actin organization, cell migration, and proliferation. To further study the molecular mechanisms of dendritic cell (DC) regulation by Cdc42, we used Cdc42-deficient DCs. Cdc42 deficiency renders DCs phenotypically mature as they up-regulate the co-stimulatory molecule CD86 from intracellular storages to the cell surface. Cdc42 knockout DCs also accumulate high amounts of invariant chain–major histocompatibility complex (MHC) class II complexes at the cell surface, which cannot efficiently present peptide antigens (Ag’s) for priming of Ag-specific CD4 T cells. Proteome analyses showed a significant reduction in lysosomal MHC class II–processing proteins, such as cathepsins, which are lost from DCs by enhanced secretion. As these effects on DCs can be mimicked by chemical actin disruption, our results propose that Cdc42 control of actin dynamics keeps DCs in an immature state, and cessation of Cdc42 activity during DC maturation facilitates secretion as well as rapid up-regulation of intracellular molecules to the cell surface.  相似文献   

20.
Four new members of the ERF (ethylene-response factor) family of plant-specific DNA-binding (GCC box) factors were isolated from tomato fruit (LeERF1–4). Phylogenetic analysis indicated that LeERF2 belongs to a new ERF class, characterized by a conserved N-terminal signature sequence. Expression patterns and cis/trans binding affinities differed between the LeERFs. Combining experimental data and modeled three-dimensional analysis, it was shown that binding affinity of the LeERFs was affected by both the variation of nucleotides surrounding the DNA cis-element sequence and the nature of critical amino acid residues within the ERF domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号