共查询到8条相似文献,搜索用时 0 毫秒
1.
2.
Suzuki T Kurahashi H Ichinose H 《Biochemical and biophysical research communications》2004,315(2):389-396
Neurotrophins are essential for the development and survival of catecholaminergic neurons. However, the critical pathway for expression of the tyrosine hydroxylase (TH) gene induced by neurotrophin is still unclear. Here we found that Ras/MEK pathway is required for NGF-induced expression of the TH gene in PC12D cells. Induction of TH mRNA by NGF was abolished by pretreatment of the cells with U0126, an inhibitor for MEK1/2, but not with inhibitors for p38 MAPK, PI3K, and PKA. U0126 inhibited TH promoter activity at the same concentration as it acted on ERK1/2 phosphorylation. A dominant-negative form of Ras suppressed the NGF-induced activation of the TH reporter gene, and transient transfection of cells with wild-type Ras and an active form of MEK1 increased the TH promoter activity. The reporter assay also demonstrated that the Ras/MEK pathway acted on both the AP-1-binding motif and the cAMP-responsive element in the TH promoter. 相似文献
3.
Chao Li Yu-hua Chen Zhen-wang Zhang Cheng-liang Gong Hong-yan Han Wei-an Xu 《Process Biochemistry》2013,48(11):1665-1673
In this study, silkworm (Bombyx mori) tyrosine hydroxylase was expressed in Escherichia coli. The enzymatic characteristics of the recombinant wild silkworm tyrosine hydroxylase were similar to that of native silkworm tyrosine hydroxylase (BmTH). We investigated the role of the amino acid residue Glu434 of BmTH using site-directed mutagenesis. The activity of the E434A mutant was approximately 35.6 percent of that exhibited by BmTH. Furthermore, the mutation dramatically reduced its substrate affinity for tetrahydrobiopterin and decreased its activation by Fe2+. The E434A mutation impaired the conformational structure of BmTH, resulting in a partially unfolded state with more hydrophobic exposure, a tendency to aggregate and structural instability during environmental stresses. This mutation did not significantly affect a three-step transitional folding process involving two intermediate states in GdnHCl. However, it did affect the structural compactness of the folding intermediates. The results suggest that the Glu434 residue is an important determinant of the activity, stability and conformational structure of BmTH. 相似文献
4.
Activation of Tyrosine Hydroxylase in PC12 Cells by the Cyclic GMP and Cyclic AMP Second Messenger Systems 总被引:2,自引:4,他引:2
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is subject to regulation by a variety of agents. Previous workers have found that cyclic AMP-dependent protein kinase and calcium-stimulated protein kinases activate tyrosine hydroxylase. We wanted to determine whether cyclic GMP might also be involved in the regulation of tyrosine hydroxylase activity. We found that treatment of rat PC12 cells with sodium nitroprusside (an activator of guanylate cyclase), 8-bromocyclic GMP, forskolin (an activator of adenylate cyclase), and 8-bromocyclic AMP all produced an increase in tyrosine hydroxylase activity measured in vitro or an increased conversion of [14C]tyrosine to labeled catecholamine in situ. Sodium nitroprusside also increased the relative synthesis of cyclic GMP in these cells. In the presence of MgATP, both cyclic GMP and cyclic AMP increased tyrosine hydroxylase activity in PC12 cell extracts. The heat-stable cyclic AMP-dependent protein kinase inhibitor failed to attenuate the activation produced in the presence of cyclic GMP. It eliminated the activation produced in the presence of cyclic AMP. Sodium nitroprusside also increased tyrosine hydroxylase activity in vitro in rat corpus striatal synaptosomes and bovine adrenal chromaffin cells. In all cases, the cyclic AMP-dependent activation of tyrosine hydroxylase was greater than that of the cyclic GMP-dependent second messenger system. These results indicate that both cyclic GMP and cyclic AMP and their cognate protein kinases activate tyrosine hydroxylase activity in PC12 cells. 相似文献
5.
6.
Piech-Dumas KM Best JA Chen Y Nagamoto-Combs K Osterhout CA Tank AW 《Journal of neurochemistry》2001,76(5):1376-1385
Tyrosine hydroxylase (TH) gene promoter activity is increased in PC12 cells that are treated with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA). Mutagenesis of either the cAMP responsive element (CRE) or the activator protein-1 element (AP1) within the TH gene proximal promoter leads to a dramatic inhibition of the TPA response. The TH CRE and TH AP1 sites are also independently responsive to TPA in minimal promoter constructs. TPA treatment results in phosphorylation of cAMP responsive element binding protein (CREB) and activation of cAMP-dependent protein kinase (PKA) in PC12 cells; hence, we tested whether CREB and/or PKA are essential for the TPA response. In CREB-deficient cells, the response of the full TH gene proximal promoter or the independent response of the TH CRE by itself to TPA is inhibited. The TPA-inducibility of TH mRNA is also blocked in CREB-deficient cells. Expression of the PKA inhibitor protein, PKI, also inhibits the independent response of the TH CRE to TPA. Our results support the hypothesis that TPA stimulates the TH gene promoter via signaling pathways that activate either the TH AP1 or TH CRE sites. Both signaling pathways are dependent on CREB and the TH CRE-mediated pathway is dependent on PKA. 相似文献
7.