首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
During G0 phase the p130, member of the pRb tumor suppressor protein family, forms a repressor complex with E2F4 which is inactivated in G1/S by hyperphosphorylation of the p130. The role of p130 after G1/S remains poorly investigated. We found that in nuclear extracts of T98G cells, the p130-E2F4-DNA (pp-E2F4) complex does not dissociate at G1/S transition, but instead reverts to the p130-E2F4-cyclin E/A-cdk2 (cyc/cdk-pp-E2F4) complex, which is detected in S and G2/M phases of the cell cycle. Hyperphosphorylation of the p130 at G1/S transition is associated with a decrease of its total amount; however, this protein is still detected during the rest of the cell cycle, and it is increasingly hyperphosphorylated in the cytosol, but continuously dephosphorylated in the nucleus. Both nuclear and cytosol cell fractions in T98G cells contain a hyperphosphorylated form of p130 in complex with E2F4 at S and G2/M cell cycle phases. In contrast to T98G cells, transformation of the p130 containing cyc/cdk-pp-E2F4 complex into the p130-pp-E2F4 repressor does not occur in HeLa cells under growth restriction conditions.  相似文献   

6.
The promoters of several E2F-regulated genes identified in plants contain a variety of E2F motifs, notably a composite element consisting of a "CDE-like element" C/GGCGG on one strand, described as repressor in animals, associated with an E2F element on the complementary strand. This detailed study throughout plant development using ribonucleotide reductase promoters, allows us to propose a model, where E2F and composite elements play a dual role. Such regulation is mainly conditioned by the availability of E2F factors in tissues and during the cell cycle in tobacco.  相似文献   

7.
8.
Intestinal gene regulation involves mechanisms that direct temporal expression along the vertical and horizontal axes of the alimentary tract. Sucrase-isomaltase (SI), the product of an enterocyte-specific gene, exhibits a complex pattern of expression. Generation of transgenic mice with a mutated SI transgene showed involvement of an overlapping CDP (CCAAT displacement protein)-GATA element in colonic repression of SI throughout postnatal intestinal development. We define this element as CRESIP (colon-repressive element of the SI promoter). Cux/CDP interacts with SI and represses SI promoter activity in a CRESIP-dependent manner. Cux/CDP homozygous mutant mice displayed increased expression of SI mRNA during early postnatal development. Our results demonstrate that an intestinal gene can be repressed in the distal gut and identify Cux/CDP as a regulator of this repression during development.  相似文献   

9.
E2F3-a novel repressor of the ARF/p53 pathway   总被引:3,自引:0,他引:3  
The Arf tumor suppressor is a key component of the p53 tumor surveillance pathway, and its expression is activated by abnormal proliferation signals. In a recent paper, Lees and coworkers investigate the regulation of Arf expression by E2Fs and demonstrate that in normal cells E2F3 is a pivotal repressor of Arf.  相似文献   

10.
11.
Mitogenic stimulation leads to activation of G(1) cyclin-dependent kinases (CDKs), which phosphorylate pocket proteins and trigger progression through the G(0)/G(1) and G(1)/S transitions of the cell cycle. However, the individual role of G(1) cyclin-CDK complexes in the coordinated regulation of pocket proteins and their interaction with E2F family members is not fully understood. Here we report that individually or in concert cyclin D1-CDK and cyclin E-CDK complexes induce distinct and coordinated phosphorylation of endogenous pocket proteins, which also has distinct consequences in the regulation of pocket protein interactions with E2F4 and the expression of p107 and E2F1, both E2F-regulated genes. The up-regulation of these two proteins and the release of p130 and pRB from E2F4 complexes allows formation of E2F1 complexes not only with pRB but also with p130 and p107 as well as the formation of p107-E2F4 complexes. The formation of these complexes occurs in the presence of active cyclin D1-CDK and cyclin E-CDK complexes, indicating that whereas phosphorylation plays a role in the abrogation of certain pocket protein/E2F interactions, these same activities induce the formation of other complexes in the context of a cell expressing endogenous levels of pocket and E2F proteins. Of note, phosphorylated p130 "form 3," which does not interact with E2F4, readily interacts with E2F1. Our data also demonstrate that ectopic overexpression of either cyclin is sufficient to induce mitogen-independent growth in human T98G and Rat-1 cells, although the effects of cyclin D1 require downstream activation of cyclin E-CDK2 activity. Interestingly, in T98G cells, cyclin D1 induces cell cycle progression more potently than cyclin E. This suggests that cyclin D1 activates pathways independently of cyclin E that ensure timely progression through the cell cycle.  相似文献   

12.
13.
14.
15.
16.
17.
A new human cyclin, named cyclin E, was isolated by complementation of a triple cln deletion in S. cerevisiae. Cyclin E showed genetic interactions with the CDC28 gene, suggesting that it functioned at START by interacting with the CDC28 protein. Two human genes were identified that could interact with cyclin E to perform START in yeast containing a cdc28 mutation. One was CDC2-HS, and the second was the human homolog of Xenopus CDK2. Cyclin E produced in E. coli bound and activated the CDC2 protein in extracts from human G1 cells, and antibodies against cyclin E immunoprecipitated a histone H1 kinase from HeLa cells. The interactions between cyclin E and CDC2, or CDK2, may be important at the G1 to S transition in human cells.  相似文献   

18.
19.
20.
A novel strategy for regulated expression of a cytotoxic gene.   总被引:3,自引:0,他引:3  
Y M Bi  S J Rothstein  A G Wildeman 《Gene》2001,279(2):175-179
The tetracycline (Tet) transactivator system is a powerful promoter system to control gene expression. However, expression of a cytotoxic gene in this system has been limited due to the lethal effect caused by low levels of basal expression of the toxic gene. In this report, we describe a novel strategy to express a toxic gene using the Tet system. The barstar gene is placed downstream of a minimal promoter and the barnase gene downstream of the tetracycline responsive element minimal promoter. When barnase is expressed at a basal level, its toxicity in human cell culture is offset by the similar basal level expression of barstar. However, when the barnase expression is induced with the transactivator protein, its overproduction leads to cell death. Therefore, this strategy allows cytotoxicity to be effectively regulated by tetracycline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号