首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Schnarr NA  Chen AY  Cane DE  Khosla C 《Biochemistry》2005,44(35):11836-11842
Polyketide natural products are biosynthesized via successive chain-elongation events mediated by elaborate protein assemblies. Facile detection of protein-bound intermediates in these systems will increase our understanding of enzyme reactivity and selectivity. We have developed a tandem proteolysis/mass spectrometric method for monitoring substrate loading and elongation in 6-deoxyerythronolide B synthase (DEBS), responsible for production of the macrolide precursor to erythromycin. Information regarding ketosynthase loading and polyketide unit elongation is readily acquired without need for complex protein or small molecule labels. A panel of structurally related substrates is evaluated through competition experiments and kinetic assays using LC-MS to resolve closely related species. Strong stereochemical effects are observed for ketosynthase substrate specificity. Semiquantitative kinetic analyses allow the resolution of the effects of structural and stereochemical changes on the individual ketosynthase-catalyzed steps of acyl-enzyme formation and polyketide chain extension.  相似文献   

2.
Biosynthesis of sphinganine-analog mycotoxins   总被引:1,自引:0,他引:1  
Sphinganine-analog mycotoxins (SAMT) are polyketide-derived natural products produced by a number of plant pathogenic fungi and are among the most economically important mycotoxins. The toxins are structurally similar to sphinganine, a key intermediate in the biosynthesis of ceramides and sphingolipids, and competitive inhibitors for ceramide synthase. The inhibition of ceramide and sphingolipid biosynthesis is associated with several fatal diseases in domestic animals and esophageal cancer and neural tube defects in humans. SAMT contains a highly reduced, acyclic polyketide carbon backbone, which is assembled by a single module polyketide synthase. The biosynthesis of SAMT involves a unique polyketide chain-releasing mechanism, in which a pyridoxal 5'-phosphate-dependent enzyme catalyzes the termination, offloading and elongation of the polyketide chain. This leads to the introduction of a new carbon-carbon bond and an amino group to the polyketide chain. The mechanism is fundamentally different from the thioesterase/cyclase-catalyzed polyketide chain releasing found in bacterial and other fungal polyketide biosynthesis. Genetic data suggest that the ketosynthase domain of the polyketide synthase and the chain-releasing enzyme are important for controlling the final product structure. In addition, several post-polyketide modifications have to take place before SAMT become mature toxins.  相似文献   

3.
Sequence data arising from an increasing number of partial and complete genome projects is revealing the presence of the polyketide synthase (PKS) family of genes not only in microbes and fungi but also in plants and other eukaryotes. PKSs are huge multifunctional megasynthases that use a variety of biosynthetic paradigms to generate enormously diverse arrays of polyketide products that posses several pharmaceutically important properties. The remarkable conservation of these gene clusters across organisms offers abundant scope for obtaining novel insights into PKS biosynthetic code by computational analysis. We have carried out a comprehensive in silico analysis of modular and iterative gene clusters to test whether chemical structures of the secondary metabolites can be predicted from PKS protein sequences. Here, we report the success of our method and demonstrate the feasibility of deciphering the putative metabolic products of uncharacterized PKS clusters found in newly sequenced genomes. Profile Hidden Markov Model analysis has revealed distinct sequence features that can distinguish modular PKS proteins from their iterative counterparts. For iterative PKS proteins, structural models of iterative ketosynthase (KS) domains have revealed novel correlations between the size of the polyketide products and volume of the active site pocket. Furthermore, we have identified key residues in the substrate binding pocket that control the number of chain extensions in iterative PKSs. For modular PKS proteins, we describe for the first time an automated method based on crucial intermolecular contacts that can distinguish the correct biosynthetic order of substrate channeling from a large number of non-cognate combinatorial possibilities. Taken together, our in silico analysis provides valuable clues for formulating rules for predicting polyketide products of iterative as well as modular PKS clusters. These results have promising potential for discovery of novel natural products by genome mining and rational design of novel natural products.  相似文献   

4.
Wu N  Cane DE  Khosla C 《Biochemistry》2002,41(15):5056-5066
6-Deoxyerythronolide B synthase (DEBS) is the modular polyketide synthase (PKS) responsible for the biosynthesis of 6-dEB, the aglycon core of the antibiotic erythromycin. The biosynthesis of 6-dEB proceeds in an assembly-line fashion through the six modules of DEBS, each of which catalyzes a dedicated set of reactions, such that the structure of the final product is determined by the arrangement of modules along the assembly line. This transparent relationship between protein sequence and enzyme function is common to all modular PKSs and makes these enzymes an attractive scaffold for protein engineering through module swapping. One of the fundamental issues relating to module swapping that still needs to be addressed is the mechanism by which intermediates are channeled from one module to the next. While it has been previously shown that short linker regions at the N- and C-termini of adjacent polypeptides play an important role in mediating intermodular transfer, the contributions of other protein-protein interactions have not yet been probed. Here, we investigate the roles of the linker interactions as well as the interactions between the donor acyl carrier protein (ACP) domain and the downstream ketosynthase (KS) domain in various contexts. Linker interactions and ACP-KS interactions make relatively equal contributions at the module 2-module 3 and the module 4-module 5 interfaces in DEBS. In contrast, modules 2 and 6 are more tolerant toward substrates presented by nonnatural ACP domains. This tolerance was exploited for engineering hybrid PKS-PKS and PKS-NRPS (nonribosomal peptide synthetase) junctions and suggests fundamental ground rules for engineering novel chimeric PKSs in the future.  相似文献   

5.
Chain initiation on many modular polyketide synthases is mediated by acyl transfer from the CoA ester of a dicarboxylic acid, followed by decarboxylation in situ by KSQ, a ketosynthase-like decarboxylase domain. Consistent with this, the acyltransferase (AT) domains of all KSQ-containing loading modules are shown here to contain a key arginine residue at their active site. Site-specific replacement of this arginine residue in the oleandomycin (ole) loading AT domain effectively abolished AT activity, consistent with its importance for catalysis. Substitution of the ole PKS loading module, or of the tylosin PKS loading module, for the erythromycin (ery) loading module gave polyketide products almost wholly either acetate derived or propionate derived, respectively, instead of the mixture found normally. An authentic extension module AT domain, rap AT2 from the rapamycin PKS, functioned appropriately when engineered in the place of the ole loading AT domain, and gave rise to substantial amounts of C13-methylerythromycins, as predicted. The role of direct acylation of the ketosynthase domain of ex-tension module 1 in chain initiation was confirmed by demonstrating that a mutant of the triketide synthase DEBS1-TE, in which the 4'-phosphopante-theine attachment site for starter acyl groups was specifically removed, produced triketide lactone pro-ducts in detectable amounts.  相似文献   

6.
Lau J  Cane DE  Khosla C 《Biochemistry》2000,39(34):10514-10520
The priming of many modular polyketide synthases is catalyzed by a loading acyltransferase-acyl carrier protein (AT(L)-ACP(L)) didomain which initiates polyketide biosynthesis by transferring a primer unit to the ketosynthase domain of the first module. Because the AT(L) domain influences the choice of the starter unit incorporated into the polyketide backbone, its specificity is of considerable interest. The AT(L)-ACP(L) didomain of the 6-deoxyerythronolide B synthase (DEBS) was functionally expressed in Escherichia coli. Coexpression of the Sfp phosphopantetheinyl transferase from Bacillus subtilis in E. coli leads to efficient posttranslational modification of the ACP(L) domain with a phosphopantetheine moiety. Competition experiments were performed with the holo-protein to determine the relative rates of incorporation of a variety of unnatural substrates in the presence of comparable concentrations of labeled acetyl-CoA. Our results showed that the loading didomain of DEBS can accept a surprisingly broad range of substrates, although it exhibits a preference for unbranched alkyl chain substrates over branched alkyl chain, polar, aromatic, and charged substrates. In particular, its tolerance toward acetyl- and butyryl-CoA is unexpectedly strong. The studies described here present an attractive prototype for the expression, analysis, and engineering of acyltransferase domains in modular polyketide synthases.  相似文献   

7.
Abstract Type I polyketide synthases are known to produce a wide range of medically and industrially important polyketides. The ketosynthase (KS) domain is required for the condensation of an extender unit onto the growing polyketide chain during polyketide biosynthesis. KSs represent a superfamily of complex biosynthetic pathway-associated enzymes found in prokaryotes, fungi, and plants. Although themselves functionally conserved, KSs are involved in the production of a structurally diverse range of metabolites. Degenerate oligonucleotide primers, designed for the amplification of KS domains, amplified KS domains from a range of organisms including cyanobacterial and dinoflagellates. KS domains detected in dinoflagellate cultures appear to have been amplified from the less than 3-μm filtrate of the nonaxenic culture. Phylogenetic analysis of sequences obtained during this study enabled the specific identification of KS domains of hybrid or mixed polyketide synthase/peptide synthetase complexes, required for the condensation of an extender unit onto an amino acid starter unit. The primer sets described in this study were also used for the detection of novel KS domains directly from environmental samples. The ability to predict function based on primary molecular structure will be critical for future discovery and rational engineering of polyketides.  相似文献   

8.
Kim CY  Alekseyev VY  Chen AY  Tang Y  Cane DE  Khosla C 《Biochemistry》2004,43(44):13892-13898
The hallmark of a type I polyketide synthase (PKS), such as the 6-deoxyerythronolide B synthase (DEBS), is the presence of catalytic modules comprised of covalently fused domains acting together to catalyze one round of chain elongation. In addition to an obligate ketosynthase (KS), acyl transferase (AT), and acyl carrier protein (ACP), a module may also include a ketoreductase (KR), dehydratase (DH), and/or enoyl reductase (ER) domain. The size, flexibility, and fixed domain-domain stoichiometry of these PKS modules present challenges for structural, mechanistic, and protein-engineering studies. Here, we have harnessed the power of limited proteolysis and heterologous protein expression to isolate and characterize individual domains of module 3 of DEBS, a 150-kD protein consisting of a KS, an AT, an ACP, and an inactive KR domain. Two interdomain boundaries were identified via limited proteolysis, which led to the production of a 90-kD KS-AT, a 142-kD KS-AT-KR(0), and a 10-kD ACP as structurally stable stand-alone proteins. Each protein was shown to possess the requisite catalytic properties. In the presence of the ACP, both the KS-AT and the KS-AT-KR(0) proteins were able to catalyze chain elongation as well as the intact parent module. Separation of the KS from the ACP enabled direct interrogation of the KS specificity for both the nucleophilic substrate and the partner ACP. Malonyl and methylmalonyl extender units were found to be equivalent substrates for chain elongation. Whereas ACP2 and ACP4 of DEBS could be exchanged for ACP3, ACP6 was a substantially poorer partner for the KS. Remarkably, the newly identified proteolytic sites were conserved in many PKS modules, raising the prospect of developing improved methods for the construction of hybrid PKS modules by engineering domain fusions at these interdomain junctions.  相似文献   

9.
SEARCHPKS is a software for detection and analysis of polyketide synthase (PKS) domains in a polypeptide sequence. Modular polyketide synthases are unusually large multi-enzymatic multi-domain megasynthases, which are involved in the biosynthesis of pharmaceutically important natural products using an assembly-line mechanism. This program facilitates easy identification of various PKS domains and modules from a given polypeptide sequence. In addition, it also predicts the specificity of the potential acyltransferase domains for various starter and extender precursor units. SEARCHPKS is a user-friendly tool for correlating polyketide chemical structures with the organization of domains and modules in the corresponding modular polyketide synthases. This program also allows the user to extensively analyze and assess the sequence homology of various polyketide synthase domains, thus providing guidelines for carrying out domain and module swapping experiments. SEARCHPKS can also aid in identification of polyketide products made by PKS clusters found in newly sequenced genomes. The computational approach used in SEARCHPKS is based on a comprehensive analysis of various characterized clusters of modular polyketide synthases compiled in PKSDB, a database of modular polyketide synthases. SEARCHPKS can be accessed at http://www.nii.res.in/searchpks.html.  相似文献   

10.
The assembly‐line architecture of polyketide synthases (PKSs) provides an opportunity to rationally reprogram polyketide biosynthetic pathways to produce novel antibiotics. A fundamental challenge toward this goal is to identify the factors that control the unidirectional channeling of reactive biosynthetic intermediates through these enzymatic assembly lines. Within the catalytic cycle of every PKS module, the acyl carrier protein (ACP) first collaborates with the ketosynthase (KS) domain of the paired subunit in its own homodimeric module so as to elongate the growing polyketide chain and then with the KS domain of the next module to translocate the newly elongated polyketide chain. Using NMR spectroscopy, we investigated the features of a structurally characterized ACP domain of the 6‐deoxyerythronolide B synthase that contribute to its association with its KS translocation partner. Not only were we able to visualize selective protein–protein interactions between the two partners, but also we detected a significant influence of the acyl chain substrate on this interaction. A novel reagent, CF3‐S‐ACP, was developed as a 19F NMR spectroscopic probe of protein–protein interactions. The implications of our findings for understanding intermodular chain translocation are discussed.  相似文献   

11.
Bacterial siderophores assist pathogens in iron acquisition inside their hosts. They are often essential for achieving a successful infection, and their biosynthesis represents an attractive antibiotic target. Recently, several siderophore biosynthetic loci have been identified, and in vitro studies have advanced our knowledge of the biosynthesis of aryl-capped peptide and peptide–polyketide siderophores from Mycobacterium spp., Pseudomonas spp., Yersinia spp. and other bacteria. These studies also provided insights into the assembly of related siderophores and many secondary metabolites of medical relevance. Assembly of aryl-capped peptide and peptide–polyketide siderophores involves non-ribosomal peptide synthetase, polyketide synthase and non-ribosomal-peptide polyketide hybrid subunits. Analysis of these subunits suggests that their domains and modules are functionally and structurally independent. It appears that nature has selected a set of functional domains and modules that can be rearranged in different order and combinations to biosynthesize different products. Although much remains to be learned about modular synthetases and synthases, it is already possible to conceive strategies to engineer these enzymes to generate novel products.  相似文献   

12.
Soil bacteria live in a very competitive environment and produce many secondary metabolites; there appears to be strong selective pressure for evolution of new compounds. Secondary metabolites are the most important source of chemical structures for the pharmaceutical industry and an understanding of the evolutionary process should help in finding novel chemical entities. Modular polyketide synthases are a particularly interesting case for evolutionary studies, because much of the chemical structure can be predicted from DNA sequence. Previous evolutionary studies have concentrated on individual modules or domains and were not able to study the evolution of orthologues. This study overcame this problem by considering complete clusters as "organisms", so that orthologous modules and domains could be identified and used to characterise evolutionary pathways. Seventeen modular polyketide synthase clusters were identified that fell into six classes. Gene conversion within clusters was very common (affecting about 15?% of domains) and was detected by discordance in phylogenetic trees. An evolutionary model is proposed in which a single cross over between two different clusters (i.e. horizontal gene transfer) would generate a cluster of very different architecture with radically different chemical products; subsequent gene conversion and deletions would explore chemical variants. Two probable examples of such recombination were found. This model suggests strategies for detecting horizontal gene transfer in cluster evolution.  相似文献   

13.
ZhuH is a priming ketosynthase that initiates the elongation of the polyketide chain in the biosynthetic pathway of a type II polyketide, R1128. The crystal structure of ZhuH in complex with the priming substrate acetyl-CoA reveals an extensive loop region at the dimer interface that appears to affect the selectivity for the primer unit. Acetyl-CoA is bound in a 20 A-long channel, which placed the acetyl group against the catalytic triad. Analysis of the primer unit binding site in ZhuH suggests that it can accommodate acyl chains that are two to four carbons long. Selectivity and primer unit size appear to involve the side chains of three residues on the loops close to the dimer interface that constitute the bottom of the substrate binding pocket.  相似文献   

14.
Customizing biosynthesis of natural products to yield biologically active derivatives has captivated scientists in the field of biosynthetic research. To substantiate this goal, there are scores of obstacles to consider. To create novel metabolites by mutating amino acid residues in wild-type enzymes, a researcher must broaden the range of the enzymes substrate tolerance and increase its turnover rate during reaction catalysis. In the past decade, numerous gene clusters responsible for the biosynthesis of notable natural products have been identified from a variety of organisms. Several genes coding for type III polyketide synthases, particularly the chalcone synthase superfamily enzymes, were recently uncovered and expressed in E. coli. Furthermore, it was observed and reported how these recombinant enzymes are capable of producing essential metabolites in vitro. Three of the type III polyketide synthases, chalcone synthase, octaketide synthase and pentaketide chromone synthase, have been characterized and their active sites subjected to rational engineering for biosynthetic production of their analogs. Because they are encoded in a single open reading frame and are post-translationally small in size, type III polyketide synthases are ideal targets for protein engineering. The relative ease with which these genes are expressed makes molecular biological manipulation to obtain mutated enzymes more procurable, ameliorating analysis of its biosynthetic pathway. In summary, time devoted to modification of biosynthetic proteins and unravelling of the detailed reaction mechanisms involved in biosynthesis will be shortened, paving the way for a much wider scope for metabolic engineers in future. This review focuses on the use of chalcone synthase, octaketide synthase and pentaketide chromone synthase for rational biosynthetic engineering to generate molecular diversity and pursue innovative, biologically potent compounds.  相似文献   

15.
Yuzawa S  Kapur S  Cane DE  Khosla C 《Biochemistry》2012,51(18):3708-3710
The role of interdomain linkers in modular polyketide synthases is poorly understood. Analysis of the 6-deoxyerythronolide B synthase (DEBS) has yielded a model in which chain elongation is governed by interactions between the acyl carrier protein domain and the ketosynthase domain plus an adjacent linker. Alanine scanning mutagenesis of the conserved residues of this linker in DEBS module 3 led to the identification of the R513A mutant with a markedly reduced rate of chain elongation. Limited proteolysis supported a structural role for this Arg. Our findings highlight the importance of domain-linker interactions in assembly line polyketide biosynthesis.  相似文献   

16.
Tse ML  Watts RE  Khosla C 《Biochemistry》2007,46(11):3385-3393
The epothilone synthetase is a decamodular megasynthase responsible for the biosynthesis of a class of polyketide natural products with clinically promising antitumor activity. Recently, we developed a system comprised of modules 6-9 of the epothilone synthetase for the precursor-directed biosynthesis of epothilones in Escherichia coli [Boddy, C. N., Hotta, K., Tse, M. L., Watts, R. E., and Khosla, C. (2004) J. Am. Chem. Soc. 126, 7436-7437]. To systematically explore the biosynthetic potential of this system, we have now investigated the ability of the crucial first module in this engineered pathway, EpoD-M6, to accept, elongate, and process unnatural substrates. EpoD-M6 was expressed, purified, and demonstrated to accept both acyl-CoA and acylSNAC substrates. Of the substrates that were tested, octanoylSNAC and 3-octenoylSNAC proved to be excellent substrates in addition to the more complex natural substrate. Thus, this polyketide synthase module showed considerable tolerance, a feature that bodes well for the precursor-directed biosynthesis of epothilone analogues and related complex polyketides.  相似文献   

17.
Analysis of fungal polyketide synthase gene sequences suggested that these might be divided into two subclasses, designated WA-type and MSAS-type. Two pairs of degenerate PCR primers (LC1 and LC2c, LC3 and LC5c) were designed for the amplification of ketosynthase domain fragments from fungal PKS genes in each of these subclasses. Both primer pairs were shown to amplify one or more PCR products from the genomes of a range of ascomycetous Deuteromycetes and Southern blot analysis confirmed that the products obtained with each pair of primers emanated from distinct genomic loci. PCR products obtained from Penicillium patulum and Aspergillus parasiticus with the LC1/2c primer pair and from Phoma sp. C2932 with both primer pairs were cloned and sequenced; the deduced protein sequences were highly homologous to the ketosynthase domains of other fungal PKS genes. Genes from which LC1/2c fragments were amplified (WA-type) were shown by a phylogenetic analysis to be closely related to fungal PKS genes involved in pigment and aflatoxin biosynthetic pathways, whereas the gene from which the LC3/5c fragment was amplified (MSAS-type) was shown to be closely related to genes encoding 6-methylsalicylic acid synthase (MSAS). The phylogenetic tree strongly supported the division of fungal PKS genes into two subclasses. The LC-series primers may be useful molecular tools to facilitate the cloning of novel fungal polyketide synthase genes.  相似文献   

18.
Ligon J  Hill S  Beck J  Zirkle R  Molnár I  Zawodny J  Money S  Schupp T 《Gene》2002,285(1-2):257-267
A genomic DNA region of over 80 kb that contains the complete biosynthetic gene cluster for the synthesis of the antifungal polyketide metabolite soraphen A was cloned from Sorangium cellulosum So ce26. The nucleotide sequence of the soraphen A gene region, including 67,523 bp was determined. Examination of this sequence led to the identification of two adjacent type I polyketide synthase (PKS) genes that encode the soraphen synthase. One of the soraphen A PKS genes includes three biosynthetic modules and the second contains five additional modules for a total of eight. The predicted substrate specificities of the acyltransferase (AT) domains, as well as the reductive loop domains identified within each module, are consistent with expectations from the structure of soraphen A. Genes were identified in the regions flanking the two soraphen synthase genes that are proposed to have roles in the biosynthesis of soraphen A. Downstream of the soraphen PKS genes is an O-methyltransferase (OMT) gene. Upstream of the soraphen PKS genes there is a gene encoding a reductase and a group of genes that are postulated to have roles in the synthesis of methoxymalonyl-acyl carrier protein (ACP). This unusual extender unit is proposed to be incorporated in two positions of the soraphen polyketide chain. One of the genes in this group contains distinct domains for an AT, an ACP, and an OMT.  相似文献   

19.
The recombinant polyketide synthase thioesterase domains from the pimaricin and 6-deoxyerythronolide B biosynthetic pathways catalyze hydrolysis of a number of simple N-acetylcysteamine thioester derivatives. This study demonstrates that thioesterases are not highly substrate selective in formation of the acyl-enzyme intermediate, in contrast to non-ribosomal peptide synthase thioesterase domains that show very high specificity for substrate loading. This observation has important implications for the engineering of biosynthetic pathways to produce polyketide products.  相似文献   

20.
Admiraal SJ  Khosla C  Walsh CT 《Biochemistry》2002,41(16):5313-5324
Rifamycin synthetase assembles the chemical backbone that members of the rifamycin family of antibiotics have in common. The synthetase contains a mixed biosynthetic interface between its loading module, which uses a nonribosomal peptide synthetase mechanism, and its initial elongation module, which uses a polyketide synthase mechanism. Biochemical studies of the loading and initial elongation modules of rifamycin synthetase reveal that this bimodular protein (LM-M1) catalyzes the formation of the phenyl ketide 3-hydroxy-2-methyl-3-phenylpropionate via a series of reactions that require benzoate, Mg.ATP, methylmalonyl-CoA, and NADPH. The overall rate of phenyl ketide production appears to be determined by the covalent loading of benzoate onto LM-M1, rather than by subsequent steps such as intermodular transfer of benzoate or condensation of benzoate and methylmalonate. Substituted benzoates that have previously been shown to be substrates for the loading module alone can also be incorporated into the corresponding aryl ketides by LM-M1, suggesting that the bimodular protein has a broad substrate tolerance. Discrimination between the substituted benzoates appears to reside in the benzoate loading reaction, and preincubation of LM-M1 with substituted benzoates and Mg.ATP allows faster downstream reactions to be unmasked. LM-M1 may be a useful biochemical system for exploring interactions between nonribosomal peptide synthetase and polyketide synthase modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号