首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fatty acid compositions of the lipids and the lipid peroxide concentrations and rates of lipid peroxidation were determined in suspensions of liver endoplasmic reticulum isolated from rats fed on synthetic diets in which the fatty acid composition had been varied but the remaining constituents (protein, carbohydrate, vitamins and minerals) kept constant. Stock diet and synthetic diets containing no fat, 10% corn oil, herring oil, coconut oil or lard were used. The fatty acid composition of the liver endoplasmic reticulum lipid was markedly dependent on the fatty acid composition of the dietary lipid. Feeding a herring-oil diet caused incorporation of 8.7% eicosapentaenoic acid (C20:5) and 17% docosahexaenoic acid (C22:6), but only 5.1% linoleic acid (C18:2) and 6.4% arachidonic acid (C20:4), feeding a corn-oil diet caused incorporation of 25.1% C18:2, 17.8% C20:4 and 2.5% C22:6 fatty acids, and feeding a lard diet caused incorporation of 10.3% C18:2, 13.5% C20:4 and 4.3% C22:6 fatty acids into the liver endoplasmic-reticulum lipids. Phenobarbitone injection (100mg/kg) decreased the incorporation of C20:4 and C22:6 fatty acids into the liver endoplasmic reticulum of rats fed on a lard, corn-oil or herring-oil diet. Microsomal lipid peroxide concentrations and rates of peroxidation in the presence of ascorbate depended on the nature and quantity of the polyunsaturated fatty acids in the diet. The lipid peroxide content was 1.82±0.30nmol of malonaldehyde/mg of protein and the rate of peroxidation was 0.60±0.08nmol of malonaldehyde/min per mg of protein after feeding a fat-free diet, and the values were increased to 20.80nmol of malonaldehyde/mg of protein and 3.73nmol of malonaldehyde/min per mg of protein after feeding a 10% herring-oil diet in which polyunsaturated fatty acids formed 24% of the total fatty acids. Addition of α-tocopherol to the diets (120mg/kg of diet) caused a very large decrease in the lipid peroxide concentration and rate of lipid peroxidation in the endoplasmic reticulum, but addition of the synthetic anti-oxidant 2,6-di-t-butyl-4-methylphenol to the diet (100mg/kg of diet) was ineffective. Treatment of the animals with phenobarbitone (1mg/ml of drinking water) caused a sharp fall in the rate of lipid peroxidation. It is concluded that the polyunsaturated fatty acid composition of the diet regulates the fatty acid composition of the liver endoplasmic reticulum, and this in turn is an important factor controlling the rate and extent of lipid peroxidation in vitro and possibly in vivo.  相似文献   

2.
Four groups of adult sea bass were given diets containing about 8% of one of four different oils having a different fatty acid composition: linseed oil, grape-seed oil, containing high amounts of linolenic and linoleic acids respectively, hydrogenated coconut oil, mainly containing saturated fatty acids, and cod liver oil which was considered as reference. Total lipid, phospholipid and polar lipid contents of the brain of the different groups of sea bass were unaffected. The fatty acid composition of the brain agreed with the dietary history of sea bass: thus adult sea bass brain is capable of incorporating dietary fatty acids. Sea bass brain and structural lipids of the liver appeared to be similarly sensitive to the dietary input in contrast with mammalian brain which was reported to be more resistant than other tissues. The more striking dietary effect on liver total lipid fatty acid composition is ascribed to the incorporation of dietary fatty acids in depot fats.  相似文献   

3.
This study was designed to assess the effect of ambient temperature on lipid content, lipid classes and fatty acid compositions of heart, liver, muscle and brain in oviparous lizards, Phrynocephalus przewalskii, caught in the desert area of China. Significant differences could be observed in the contents of the total lipid and fatty acid compositions among different temperatures (4, 25 and 38 degrees C). The study showed that liver and muscle were principal sites of lipid storage. Triacylglycerol (TAG) mainly deposited in the liver, while phospholipids (PL) was identified as the predominant lipid class in the muscle and brain. Palmitic and stearic acid generally occupied the higher proportion in saturated fatty acids (SFA), while monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) consisted mainly of 16:1n-7, 18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6 and 22:6n-3 regardless of tissue and temperature. These predominant fatty acids proportion fluctuations caused by temperature affected directly the ratio of unsaturated to saturated fatty acids. There was a tendency to increase the degree of unsaturation in the fatty acids of TAG and PL as environmental temperature dropped from 38 to 4 degrees C, although the different extent in different tissues. These results suggested that lipid characteristics of P. przewalskii tissues examined were influenced by ambient temperature.  相似文献   

4.
Hepatic cholesterol synthesis was studied in rats after consuming diets of varying neutral lipid and cholesterol content. Cholesterol synthesis was evaluated by measuring 3-hydroxy-3-methylglutaryl-CoA reductase and by determining the rate of 3H-labeled sterol production from [3H]mevalonate. Results were correlated with sterol balance data and hepatic lipid content. Hepatic cholesterol synthesis was relatively great when cholesterol was excluded from the diet. The source of neutral dietary lipids, saturated vs. unsaturated, produced no change in hepatic sterol synthesis. Values for fecal sterol outputs and hepatic cholesterol levels were also similar in rats consuming either saturated or unsaturated fats. When 1% cholesterol was added to the diet, hepatic cholesterol synthesis was suppressed but the degree of suppression was greater in rats consuming unsaturated vs. saturated fats. This was associated with greater accumulation of cholesterol in livers from rats consuming unsaturates and a reduction in fecal neutral sterol output in this group as opposed to results from rats on saturated fats. Cholesterol consumption also altered the fatty acid composition of hepatic phospholipids producing decreases in the percentages of essential polyunsaturated fatty acids. It is concluded that dietary cholesterol alters cholesterol and fatty acid metabolism in the liver and that this effect is enhanced by dietary unsaturated fats.  相似文献   

5.
The effect of dietary fats with varying degrees of unsaturation in the presence of different concentrations of vitamin E on tissue lipid levels was studied in rats. Rats were fed either menhaden oil, olive oil or coconut oil at 15% levels with either 0.1, 0.3 or 0.6 mg/g of vitamin E as alpha-tocopherol for four weeks. Rat serum and liver were analyzed for total cholesterol, HDL-cholesterol, triacylglycerol and phospholipids. In addition, fatty acid composition of serum lipids was also analyzed. Serum total cholesterol and triacylglycerol were significantly lower in rats fed menhaden oil than in those fed olive or coconut oil, while the HDL-cholesterol was significantly higher in serum of rats fed menhaden and olive oil than in those fed coconut oil. Levels of vitamin E in the diet had only a significant effect on serum cholesterol and liver phospholipids. The Pearson correlation coefficient showed a significant positive relationship between serum triacylglycerol and total cholesterol, and a negative correlation between triacylglycerol and HDL-cholesterol, and between total and HDL-cholesterol.In the liver, total cholesterol was significantly higher in rats fed coconut oil than in rats fed menhaden oil. Total liver phospholipids were lower in rats fed either coconut oil or olive oil compared to those fed menhaden oil, especially with higher levels of vitamin E intake. Higher levels of vitamin E in the diet appear to increase triacylglycerol and phospholipids in livers of rats fed menhaden oil. In the liver a significant negative correlation was observed between phospholipids and cholesterol. The type and degree of unsaturation (polyunsaturated fatty acids in menhaden oil, monounsaturated fatty acids in olive oil and saturated fatty acids in coconut oil) significantly affected plasma and tissue lipids.  相似文献   

6.
We investigated how dietary fats and oils of different fatty acid composition influence the seasonal change of body mass, fur colour, testes size and torpor in Djungarian hamsters, Phodopus sungorus, maintained from autumn to winter under different photoperiods and temperature regimes. Dietary fatty acids influenced the occurrence of spontaneous torpor (food and water ad libitum) in P. sungorus maintained at 18°C under natural and artificial short photoperiods. Torpor was most pronounced in individuals on a diet containing 10% safflower oil (rich in polyunsaturated fatty acids), intermediate in individuals on a diet containing 10% olive oil (rich in monounsaturated fatty acids) and least pronounced in individuals on a diet containing 10% coconut fat (rich in saturated fatty acids). Torpor in P. sungorus on chow containing no added fat or oil was intermediate between those on coconut fat and olive oil. Dietary fatty acids had little effect on torpor in animals maintained at 23°C. Body mass, fur colour and testes size were also little affected by dietary fatty acids. The fatty acid composition of brown fat from hamsters maintained at 18°C and under natural photoperiod strongly reflected that of the dietary fatty acids. Our study suggests that the seasonal change of body mass, fur colour and testes size are not significantly affected by dietary fatty acids. However, dietary fats influence the occurrence of torpor in individuals maintained at low temperatures and that have been photoperiodically primed for the display of torpor.Abbreviations BAT brown adipose tissue - bm body mass - FA fatty acid(s) - MR metabolic rate - MUFA monounsaturated fatty acid(s) - PUFA polyunsaturated fatty acid(s) - SFA saturated fatty acid(s) - T a air temperature - T b body temperature - Ts body surface temperature(s) - TNZ thermoneutral zone - UFA unsaturated fatty acid(s)  相似文献   

7.
This study examined the effect of dietary polyunsaturated fatty acids (PUFA) that were supplemented with vitamin E on lipid peroxidation, glutathione-dependent detoxifying enzyme system activity, and lipogenic fatty acid synthase (FAS) expression in rat liver. Male Sprague-Dawley rats were fed semipurified diets containing either 1% (w/w) corn oil or 10% each of beef tallow, corn oil, perilla oil, and fish oil for 4 wk. Alpha-tocopherol was supplemented in perilla oil (0.015%) and fish oil (0.019%). Hepatic thiobarbituric acid reactive substances, an estimate of lipid peroxidation, were not significantly different among the dietary groups. The glutathione peroxidase, glutathione reductase, and glutathione S-transferase activities were all elevated by the polyunsaturated fats, especially fish oil. The activity of FAS was reduced in the polyunsaturated fat-fed groups in the order of fish oil, perilla oil, and corn oil. The mRNA contents decreased in rats that were fed the 10% fat diets, particularly polyunsaturated fats, compared with the rats that were fed the 1% corn oil diet. Similarly, the inhibitory effect was the greatest in fish oil. These results suggest that lipid peroxidation can be minimized by vitamin E; PUFA in itself has a suppressive effect on lipogenic enzyme.  相似文献   

8.
Two nutritional models, an essential fatty acid deficiency model and the feeding of saturated versus unsaturated fats, were used in a feeding study in order to assess the relationship between tissue fatty acid composition and the activities of some membrane-associated enzymes. Purified diets containing 7% hydrogenated coconut oil, 7% corn oil, 10% safflower oil or butter were fed to rats for a total of 49 weeks (1 week of pregnancy, 3 weeks of lactation and 45 weeks post-weaning). Tissue homogenates from submandibular salivary glands and kidneys were analyzed for fatty acid composition of total lipids and phospholipids. Changes in fatty acid patterns typical of essential fatty acid deficiency such as an increase in the levels of 16:1 and 18:1, a decrease in 18:2 and 20:4 and an accumulation of 20:3 omega 9 were observed in salivary glands and kidneys of rats fed the deficient diet. Tissues of rats fed 10% butter also showed fatty acid compositional changes which were somewhat similar to those in essential fatty acid deficiency, but to a lesser degree. The activities of ouabain-sensitive (Na+ + K+)-ATPase were higher in homogenates of salivary glands and kidneys of the deficient rats and those fed butter as compared with their controls. The results suggest a relationship between the double bond index of fatty acids as an indication of membrane lipid fluidity and allosteric modification of (Na+ + K+)-ATPase activity. However, other explanations for the observed changes in (Na+ + K+)-ATPase activity cannot be ruled out. There were no diet-related differences in the activities of gamma-glutamyltranspeptidase or 5'-nucleotidase.  相似文献   

9.
Diets rich in mono or polyunsaturated fats have been associated with a healthy phenotype, but there is controversial evidence about coconut oil (CO), which is rich in saturated medium-chain fatty acids. Therefore, the purpose of the present work was to study whether different types of oils rich in polyunsaturated (soybean oil, SO), monounsaturated (olive oil, OO), or saturated fatty acids (coconut oil, CO) can regulate the gut microbiota, insulin sensitivity, inflammation, mitochondrial function in wild type and PPARα KO mice. The group that received SO showed the highest microbial diversity, increase in Akkermansia muciniphila, high insulin sensitivity and low grade inflammation, The OO group showed similar insulin sensitivity and insulin signaling than SO, increase in Bifidobacterium, increase in fatty acid oxidation and low grade inflammation. The CO consumption led to the lowest bacterial diversity, a 9-fold increase in the LPS concentration leading to metabolic endotoxemia, hepatic steatosis, increased lipogenesis, highest LDL-cholesterol concentration and the lowest respiratory capacity and fatty acid oxidation in the mitochondria. The absence of PPARα decreased alpha diversity and increased LPS concentration particularly in the CO group, and increased insulin sensitivity in the groups fed SO or OO. These results indicate that consuming mono or polyunsaturated fatty acids produced health benefits at the recommended intake but a high concentration of oils (three times the recommended oil intake in rodents) significantly decreased the microbial alpha-diversity independent of the type of oil.  相似文献   

10.
Seasonal changes in the fatty acid composition of neutral and polar lipids were measured in the ovary, liver, white muscle, and adipopancreatic tissue of northern pike. The role of environmental and physiological factors underlying these changes was evaluated. From late summer (August–September) to winter (January–March), the weight percentage of n-3 polyunsaturated fatty acids (especially 22:6n3) declined significantly in the neutral lipids of all somatic tissues examined. However, large quantities of n-3 polyunsaturated fatty acids accumulated in the recrude cing ovaries during fall and the weight percentage of n-3 polyunsaturated fatty acids in ovary polar lipids also increased significantly. Additionally, the n-3 polyunsaturated fatty acid content of somatic polar lipids increased significantly during fall due to increases in the total polar lipid content of the somatic tissues. This suggests that during fall n-3 polyunsaturated fatty acid are diverted away from somatic neutral lipids and thereby conserved for use in ovary construction and for incorporation into tissue polar lipids. The percentage of n-3 polyunsaturated fatty acid in ovary neutral lipids also declined during fall and early winter, perhaps as an adaptation to conserve these fatty acids for storage in oocyte polar lipids and later incorporation into cellular membranes of the developing embryo. Reductions in the n-3 polyunsaturated fatty acids content of somatic and ovarian neutral lipids during fall were compensated for specifically by increases in the percentage of monounsaturated fatty acids rather than saturated fatty acids. This suggests that the ratio of saturated to unsaturated fatty acids in pike neutral lipid, is regulated physiologically, and hence may influence the physiological functioning of these lipids. During fall and early winter the percentage of saturated fatty acids declined significantly in the polar lipids of all tissues examined. This change was consistent with the known effects of cold acclimation on the fatty acid composition of cellular membranes. As the ovaries were recrudescing from September to January, liver polar lipids exhibited significant decreases in the percentage of total polyunsaturated fatty acids and n-3 polyunsaturated fatty acids and increases in monounsaturated fatty acids, and acquired a fatty acid composition very similar to that of ovary polar lipids. Therefore, seasonal changes in the percentage of polyunsaturated and monounsaturated fatty acids in liver polar lipids probably reflect the liver's role in vitellogenesis rather than the effects of temperature on membrane fatty acid composition. At all times of year, the fatty acid compositions of white muscle and adipopancreatic tissue neutral lipids were very similar, which may indicate a close metabolic relationship between these lipid compartments.Abbreviations AP adipopancreatic - BHT butylated hydroxytoluene - CI confidence interval - EFA essential fatty acids - MUFA monounsaturated fatty acids - NL neutral lipids - PL polar lipids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids  相似文献   

11.
We investigated the changes in adiposity, cardiovascular and liver structure and function, and tissue fatty acid compositions in response to oleic acid-rich macadamia oil, linoleic acid-rich safflower oil and α-linolenic acid-rich flaxseed oil (C18 unsaturated fatty acids) in rats fed either a diet high in simple sugars and mainly saturated fats or a diet high in polysaccharides (cornstarch) and low in fat. The fatty acids induced lipid redistribution away from the abdomen, more pronounced with increasing unsaturation; only oleic acid increased whole-body adiposity. Oleic acid decreased plasma total cholesterol without changing triglycerides and nonesterified fatty acids, whereas linoleic and α-linolenic acids decreased plasma triglycerides and nonesterified fatty acids but not cholesterol. α-Linolenic acid improved left ventricular structure and function, diastolic stiffness and systolic blood pressure. Neither oleic nor linoleic acid changed the left ventricular remodeling induced by high-carbohydrate, high-fat diet, but both induced dilation of the left ventricle and functional deterioration in low fat-diet-fed rats. α-Linolenic acid improved glucose tolerance, while oleic and linoleic acids increased basal plasma glucose concentrations. Oleic and α-linolenic acids, but not linoleic acid, normalized systolic blood pressure. Only oleic acid reduced plasma markers of liver damage. The C18 unsaturated fatty acids reduced trans fatty acids in the heart, liver and skeletal muscle with lowered stearoyl-CoA desaturase-1 activity index; linoleic and α-linolenic acids increased accumulation of their C22 elongated products. These results demonstrate different physiological and biochemical responses to primary C18 unsaturated fatty acids in a rat model of human metabolic syndrome.  相似文献   

12.
Differences in iron bioavailability from human milk and milk formulas may in part be due to differences in lipid composition. We investigated the short and long term effects of diets based on different fats [corn, coconut, olive, or soy oil, human milk fat (HMF) and a formula fat blend (FF)] on iron absorption in rats. Suckling rat pups dosed with 59Fe-labeled diets containing different fat sources were killed after 6 h, and blood and individual tissues were counted. Iron availability was estimated by % 59Fe in blood. Pups dosed with a more saturated fat (coconut oil) had a higher % 59Fe in blood than those fed other fat sources. Weanling rats were used to determine iron bioavailability from fat sources using both the hemoglobin repletion method and whole body counting. Hemoglobin regeneration was significantly higher for rats fed the HMF diet (8.4 +/- 0.5 g/dl) than from the FF diet (6.5+/-0.6 g/dl) or the corn oil diet (less saturated) (6.4 +/- 0.3 g/dl). Rats fed diets based on coconut oil (more saturated) had significantly higher % 59Fe retention (61.6 +/- 1.4) than rats fed diets based on FF (49.8 +/- 3.4). There was a significant positive association between oleic acid in the diet and oleic acid in the intestinal mucosa (r = 0.95, p < 0.05) and between linoleic acid in the diet and linoleic acid in the intestinal mucosa (r = 0.97, p < 0.05) suggesting that the dietary treatment altered the fatty acid composition of the brush border membrane. Our results suggest that saturated fats may increase iron absorption and that part of this may be achieved by changes in the fatty acid composition of the intestinal mucosa. Hemoglobin regeneration and % 59Fe retention data suggest that differences in iron absorption from infant diets may in part be due to differences in fat composition. Therefore, lipid composition of infant formulas should also be taken into consideration as a factor influencing iron bioavailability.  相似文献   

13.
The predominant polyunsaturated fatty acids of the n-6 family found in corn oil (CO) are crucial for normal mammary duct formation when fed to animals. However, as shown here, not all polyunsaturated fatty acids are equally effective in stimulating mammary gland development. The n-3 fatty acids in a 10% menhaden oil (MO) diet fed to mice effectively reduced both the diameter and the length of the growing mammary ducts. Previously, we demonstrated a similar reduction in duct growth by feeding a 10% fat diet high in those saturated fats found in hydrogenated cotton seed oil. The inhibited rate of duct maturation caused by hydrogenated cotton seed oil was reversed when the mice were allowed to mature on a diet containing n-6 fatty acids prior to feeding the saturated fat diet. The addition of 1% CO to a 9% hydrogenated cotton seed oil diet fed to immature mice was also sufficient to restore duct growth. Mice fed menhaden oil diets, on the other hand, continued to show impaired ductal growth well into adulthood. Examination of the ovaries from MO-fed mice as compared with CO-fed mice revealed significantly fewer corpora lutea. When exogenous progesterone was given to MO-fed mice, ductal growth was partially restored, but not to the extent seen in mice fed corn oil diets. Investigation of the fatty acid contents of livers of these mice revealed reduced amounts of arachidonate (20:4) in MO-fed mice when compared with CO-fed animals. The addition of 1% CO to the 9% MO diets did not alter the arachidonate content, indicating a block in the conversion of linoleate (18:2) to 20:4 by the n-3 fatty acids. Hence, dietary n-6 fatty acids are essential for normal mammary ductal development when fed prior to maturation. Although saturated rats are ineffective, n-3 fatty acids can partially substitute for the required n-6 fatty acids in both ductal and ovarian development.  相似文献   

14.
For a better understanding of the hyperlipidemic function of saturated fat, we have studied the comparative effects of diet supplementation with 10 and 20% coconut oil on the main lipid classes of chick plasma. Changes in fatty acid composition of free fatty acid and triglyceride fractions were parallel to that of the experimental diet. Thus, the increase in the percentages of 12:0 and 14:0 acids may contribute to the hypercholesterolemic effects of coconut oil feeding. Plasma phospholipids incorporated low levels of 12:0 and 14:0 acids whereas 18:0, the main saturated fatty acid of this fraction, also increased after coconut oil feeding. The percentage of 20:4 n-6 was higher in plasma phospholipids than in the other fractions and was significantly decreased by our dietary manipulations. Likewise, minor increases were found in the percentages of 12:0 and 14:0 acids in plasma cholesterol esters. However, the percentage of 18:2 acid significantly increased after coconut oil feeding. Our results show a relationship between fatty acid composition of diets and those of plasma free fatty acid and triglyceride fractions, whereas phospholipids and cholesterol esters are less sensitive to dietary changes.  相似文献   

15.
The effect of dietary fats on essential fatty acid metabolism in rats subjected to chemically induced hepatocarcinogenesis was studied. Sixty male rats were fed a diet supplemented with one of the following three oil compositions: 10% hydrogenated coconut oil (HCO); 5% hydrogenated coconut oil and 5% gamma-linolenic acid (18:3n-6)-rich evening primrose oil (EPO); or 5% hydrogenated coconut oil and 5% marine oil (FO). Half of the animals in each dietary regimen were subjected to hepatocarcinogenesis induction using diethylnitrosamine and 2-acetylaminofluorene (2-AAF) followed by partial hepatectomy, whereas the other half underwent hepatectomy without receiving diethylnitrosamine and 2-acetylaminofluorene. Liver phospholipid composition was analyzed. In comparison to the HCO group, the EPO group showed raised levels of arachidonic acid (20:4n-6) and suppressed n-3 fatty acids. The FO group, on the other hand, showed suppressed levels of n-6 and increased n-3 fatty acids. Hepatocarcinogenesis suppressed the level of 20:4n-6 and this effect was greater in the FO rats. The levels of dihomo-gamma-linolenic acid (20:3n-6) were increased by the hepatocarcinogenic treatment, and this effect was further accentuated in the EPO rats. These results suggest that hepatocarcinogenesis may suppress the activity of delta-5-desaturase, which may be one of the reasons why tumor cell membranes have low levels of long chain fatty acids, especially 20:4n-6 cells, and have an impaired capacity to undergo lipid peroxidation.  相似文献   

16.
Dietary fatty acids have cholesterol lowering, antiatherogenic, and antiarrhythmic properties that decrease the risk of myocardial infarction (MI). This study was designed to study the effects of various oils rich in either polyunsaturated (omega-3 or omega-6) fatty acids (PUFA) or saturated fatty acids (SFA) on the severity of experimentally induced MI. Male albino Sprague-Dawley rats (100-150 g; n = 20) were fed diets enriched with fish oil (omega-3 PUFA), peanut oil (omega-6 PUFA), or coconut oil (SFA) for 60 days. Experimental MI was induced with isoproterenol. Mortality rates; serum enzymes aspartate amino transferase; alanine amino transferase; creatine phosphokinase (CPK); lipid profiles in serum, myocardium, and aorta; peroxide levels in heart and aorta; activities of catalase and superoxide dismutase; and levels of glutathione were measured. The results demonstrated that mortality rate, CPK levels, myocardial lipid peroxides, and glutathione levels were decreased in the omega-3 PUFA treated group. Maximum increase in parameters indicative of myocardial damage was seen in the coconut oil group. These findings suggest that dietary omega-3 PUFA offers maximum protection in experimentally induced MI in comparison to omega-6 PUFA and SFA enriched diets. SFA was found to have the least protective effect.  相似文献   

17.
This study was carried out to evaluate the effects of dietary lipid sources on growth performance, fatty acids composition and cold tolerance of Nile tilapia (Oreochromis niloticus) fingerlings (7.00 ± 0.50 g/fish). The fish were fed four isonitrogenous (28% crude protein), isocaloric (500 kcal/100 g) diets containing four lipid sources; fish oil (FO), corn oil (CO), coconut oil (COCO) or fish oil/ corn oil mixture (1:1 ratio) (oil mix). The diets were offered to the fish at a daily rate of 3% of their body weights (BW), twice a day for two months. After the feeding trial, the fish were exposed to decreasing water temperature from 25 °C until the appearance of death symptoms. The results revealed that FO-based diets (FO and oil mix) produced the best growth rates and feed efficiency, followed by corn oil diet, while COCO resulted in the lowest performance. Fish fed on CO and oil mix showed higher body unsaturated fatty acids (UFA) and lower lethal temperature than those fed on FO- or COCO-based diets. These results indicate that cold shock can modify the lipid metabolism in Nile tilapia by lowering total body saturated fatty acids and raising n-6 and n-3 UFA. This finding suggests that the inclusion of high levels of plant oils in Nile tilapia feeds can enhance their cold tolerance.  相似文献   

18.
Abstract: Female rats were fed pursed diets containing 10% safflower oil, which is high in linoleic acid, from approximately 2 weeks prior to mating until the 14th day of gestation. They were then fed purified diets containing safflower oil, soybean oil (containing linoleic and linolenic acids), or hydrogenated coconut oil (essential fatty acid deficient). On days 16, 18, and 21 of gestation, foetuses were removed by caesarean section and the brains were subjected to fatty acid analysis. By day 16 of gestation, the ethanolamine glycerophospholipids and combined serine-inositol glycerophospholipids were rich in polyunsaturated fatty acids, particularly arachidonic acid. Between days 16 and 21 of gestation, there was a marked increase in the C22-polyunsaturated acids in these glycerophospholipids, with 225n-6 deposited in foetuses from dams fed safflower or coconut oils and 22:6n-3 deposition occurring in the soybean oil group; the effects of essential fatty acid deficiency in this period were minimal. A similar pattern was evident in the choline glycerophospholipids but this fraction contained less of the polyunsaturated acids. The data are consistent with increased placental transfer of highly unsaturated fatty acids or increased foetal synthesis of these compounds during the last week of gestation, with the actual fatty acid pattern reflecting the dietary fat available to the dam.  相似文献   

19.
Work by other investigators has shown that an increase in dietary content of monounsaturated fatty acids can result in a decreased plasma low density lipoprotein (LDL) cholesterol concentration. This observation, combined with the epidemiologic evidence that monounsaturated fat-rich diets are associated with decreased rates of death from coronary heart disease, suggests that inclusion of increased amounts of mono-unsaturated fat in the diet may be beneficial. The present study was carried out in a primate model, the African green monkey, to evaluate the effects of dietary monounsaturated fat on plasma lipoprotein cholesterol endpoints. Two study periods were carried out in which the fatty acid compositions of the experimental diets were varied. All diets contained 35% of calories as fat. In the first experimental period, a mixture of fats was used to set the dietary fatty acid composition to be approximately 50-60% of the desired fatty acid, either saturated, monounsaturated, or polyunsaturated (n-6). In the second experimental period, pure fats were used (palm oil, oleic acid-rich safflower oil, and linoleic acid-rich safflower oil) to maximize the difference in fatty acid composition. The effects of the more exaggerated dietary fatty acid differences of period 2 were similar to those that have been reported in humans. For the group fed the diet enriched in monounsaturated fat compared to saturated fat, whole plasma and LDL cholesterol concentrations were significantly lower while high density lipoprotein (HDL) cholesterol concentrations were not affected. For the group fed the diet enriched in polyunsaturated fat compared to saturated fat, both LDL and HDL cholesterol concentrations were significantly lower than in the group fed saturated fat. LDL cholesterol concentrations were comparable in the monounsaturated and polyunsaturated fat groups and the percentage of cholesterol in LDL was lowest in the monounsaturated fat fed group. Trends were similar for the mixed fat diets, although no statistically significant differences in plasma lipoprotein endpoints could be attributed to monounsaturated fatty acids in this dietary comparison. Since effects on plasma lipoproteins similar to those seen in humans were identified in this primate model, relevant mechanisms for the effects of dietary fatty acids on lipoprotein endpoints related to coronary artery atherosclerosis, per se, can subsequently be examined.  相似文献   

20.
Fatty acid composition of body fat in birds often differs between bird species and between seasons, and changes in diet may be responsible for this variation. We tested two related hypotheses using Red-eyed Vireos, a long-distance migratory songbird: (1) birds prefer diets with certain fatty acids, and (2) fatty acid composition of the diet primarily determines the composition of lipid reserves. During paired-choice experiments, vireos preferred semi-synthetic diets with triolein (81% digestive extraction efficiency) over diets with tristearin (54% digestive extraction efficiency) and, in general, ate more when offered diets with unsaturated fats compared to saturated fats. These results demonstrate that vireos can discriminate between diets differing only in fatty acid composition and prefer diets with long-chain unsaturated fatty acids. When vireos were fed one of two diets for 1 month, the primary fatty acids in each diet also predominated in the tissues of birds fed each diet. However, some fatty acids that were absent in the diet occurred in bird tissues (e.g., 22:4, 22:5) suggesting that selective metabolism of fatty acids along with diet composition determine the fatty acid composition of lipid reserves in migratory birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号