首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An 80 kDa glycoprotein was isolated from adult frog skeletal muscle by concanavalin (Con A) affinity chromatography and electrophoretic separation by molecular mass. Characteristics of the 80 kDa glycoprotein are that it: 1) binds non-covalently to gelatin-agarose or some other protein(s) bound to gelatin-agarose, 2) does not bind wheat germ agglutinin, 3) appears only at 80 kDa in both reducing and non-reducing electrophoretic separations, 4) is present in skeletal muscle but absent in smooth muscle and cardiac muscle, 5) is not collagenase or hyaluronidase-sensitive, and 6) is antigenically similar to a protein in embryonic chicken skeletal muscle. It was used to generate a polyclonal antiserum which was affinity-purified and used for immunolocalization. Indirect immunofluorescence procedures showed the antigen to be present on the surface of the skeletal muscle cells and concentrated at sites where cells are closely apposed to one another. Preparations in which adult muscle cells were depleted of basement membrane and endomysial proteins did not reduce the amount of 80 kDa protein present in skeletal muscle. These data indicate that this is a cell surface glycoprotein that may mediate attachment of the cell to extracellular proteins at sites where adjacent skeletal muscle cells are apposed.  相似文献   

2.
Glycogen synthase (labelled in sites-3) and glycogen phosphorylase from rabbit skeletal muscle were used as substrates to investigate the nature of the protein phosphatases that act on these proteins in the glycogen and microsomal fractions of rat liver. Under the assay conditions employed, glycogen synthase phosphatase and phosphorylase phosphatase activities in both subcellular fractions could be inhibited 80-90% by inhibitor-1 or inhibitor-2, and the concentrations required for half-maximal inhibition were similar. Glycogen synthase phosphatase and phosphorylase phosphatase activities coeluted from Sephadex G-100 as broad peaks, stretching from the void volume to an apparent molecular mass of about 50 kDa. Incubation with trypsin decreased the apparent molecular mass of both activities to about 35 kDa, and decreased their I50 for inhibitors-1 and -2 in an identical manner. After tryptic digestion, the I50 values for inhibitors-1 and -2 were very similar to those of the catalytic subunit of protein phosphatase-1 from rabbit skeletal muscle. The glycogen and microsomal fractions of rat liver dephosphorylated the beta-subunit of phosphorylase kinase much faster than the alpha-subunit and dephosphorylation of the beta-subunit was prevented by the same concentrations of inhibitor-1 and inhibitor-2 that were required to inhibit the dephosphorylation of phosphorylase. The same experiments performed with the glycogen plus microsomal fraction from rabbit skeletal muscle revealed that the properties of glycogen synthase phosphatase and phosphorylase phosphatase were very similar to the corresponding activities in the hepatic glycogen fraction, except that the two activities coeluted as sharp peaks near the void volume of Sephadex G-100 (before tryptic digestion). Tryptic digestion of the hepatic glycogen and microsomal fractions increased phosphorylase phosphatase about threefold, but decreased glycogen synthase phosphatase activity. Similar results were obtained with the glycogen plus microsomal fraction from rabbit skeletal muscle or the glycogen-bound form of protein phosphatase-1 purified to homogeneity from the same tissue. Therefore the divergent effects of trypsin on glycogen synthase phosphatase and phosphorylase phosphatase activities are an intrinsic property of protein phosphatase-1. It is concluded that the major protein phosphatase in both the glycogen and microsomal fractions of rat liver is a form of protein phosphatase-1, and that this enzyme accounts for virtually all the glycogen synthase phosphatase and phosphorylase phosphatase activity associated with these subcellular fractions.  相似文献   

3.
Phosphorylase kinase isolated from rabbit skeletal muscle contains a protein whose molecular mass as determined by polyacrylamide gel electrophoresis is 571 000 Da. The protein was found to possess a higher affinity for glycogen as compared to phosphorylase kinase and phosphorylase. The protein separated from kinase by chromatography on a DEAE-cellulose column produced during SDS electrophoresis one protein band corresponding to Mr of 95 200 Da. The above properties of the protein and the glycogen synthetase activity revealed in the presence of glucose-6-phosphate suggest that phosphorylase kinase preparations contain a hexameric form of glycogen synthetase.  相似文献   

4.
Mammalian skeletal muscles express a single triad junctional foot protein, whereas avian muscles have two isoforms of this protein. We investigated whether either case is representative of muscles from other vertebrate classes. We identified two foot proteins in bullfrog and toadfish muscles on the basis of (a) copurification with [3H]epiryanodine binding; (b) similarity to avian muscle foot proteins in native and subunit molecular weights; (c) recognition by anti-foot protein antibodies. The bullfrog and toadfish proteins exist as homooligomers. The subunits of the bullfrog muscle foot protein isoforms are shown to be unique by peptide mapping. In addition, immunocytochemical localization established that the bullfrog muscle isoforms coexist in the same muscle cells. The isoforms in either bullfrog and chicken muscles have comparable [3H]epiryanodine binding capacities, whereas in toadfish muscle the isoforms differ in their levels of ligand binding. Additionally, chicken thigh and breast muscles differ in the relative amounts of the two isoforms they contain, the amounts being similar in breast muscle and markedly different in thigh muscle. In conclusion, in contrast to mammalian skeletal muscle, two foot protein isoforms are present in amphibian, avian, and piscine skeletal muscles. This may represent a general difference in the architecture and/or a functional specialization of the triad junction in mammalian and nonmammalian vertebrate muscles.  相似文献   

5.
The major protein phosphatase that dephosphorylates smooth-muscle myosin was purified from chicken gizzard myofibrils and shown to be composed of three subunits with apparent molecular masses of 130, 37 and 20 kDa, the most likely structure being a heterotrimer. The 37-kDa component was the catalytic subunit, while the 130-kDa and 20-kDa components formed a regulatory complex that enhanced catalytic subunit activity towards heavy meromyosin or the isolated myosin P light chain from smooth muscle and suppressed its activity towards phosphorylase, phosphorylase kinase and glycogen synthase. The catalytic subunit was identified as the beta isoform of protein phosphatase-1 (PP1) and the 130-kDa subunit as the PP1-binding component. The distinctive properties of smooth and skeletal muscle myosin phosphatases are explained by interaction of PP1 beta with different proteins and (in conjunction with earlier analysis of the glycogen-associated phosphatase) establish that the specificity and subcellular location of PP1 is determined by its interaction with a number of specific targetting subunits.  相似文献   

6.
The activity of glycogen synthase phosphatase in rat liver stems from the co-operation of two proteins, a cytosolic S-component and a glycogen-bound G-component. It is shown that both components possess synthase phosphatase activity. The G-component was partially purified from the enzyme-glycogen complex. Dissociative treatments, which increase the activity of phosphorylase phosphatase manyfold, substantially decrease the synthase phosphatase activity of the purified G-component. The specific inhibition of glycogen synthase phosphatase by phosphorylase a, originally observed in crude liver extracts, was investigated with purified liver synthase b and purified phosphorylase a. Synthase phosphatase is strongly inhibited, whether present in a dilute liver extract, in an isolated enzyme-glycogen complex, or as G-component purified therefrom. In contrast, the cytosolic S-component is insensitive to phosphorylase a. The activation of glycogen synthase in crude extracts of skeletal muscle is not affected by phosphorylase a from muscle or liver. Consequently we have studied the dephosphorylation of purified muscle glycogen synthase, previously phosphorylated with any of three protein kinases. Phosphorylase a strongly inhibits the dephosphorylation by the hepatic G-component, but not by the hepatic S-component or by a muscle extract. These observations show that the inhibitory effect of phosphorylase a on the activation of glycogen synthase depends on the type of synthase phosphatase.  相似文献   

7.
Activation of phosphorylase in intact glycogen particles from skeletal muscle by Ca2+ and MgATP is known as flash activation. By using [gamma-32P]ATP to monitor protein phosphorylation, we have demonstrated that there is, coincident with phosphorylase activation and inactivation, coordinated phosphorylation/dephosphorylation of phosphorylase, glycogen synthase, the beta-subunit of phosphorylase kinase and proteins of Mr = 43,000 and 32,000. Our results show that within the glycogen particle phosphorylase kinase and type-1 protein phosphatase are organized to allow access to a set of protein components. This arrangement may contribute to the reciprocal regulation of their activities.  相似文献   

8.
We report evidence for two foot protein isoforms in chicken pectoral muscle. (i) Two polypeptides with molecular masses of approximately 500 kDa copurify with [3H]ryanodine binding. (ii) Both polypeptides are associated with oligomeric proteins similar in size to the mammalian skeletal muscle foot protein. (iii) The polypeptides are shown to be unique by limited proteolysis. (iv) By using isoform-specific antibodies, the polypeptides are shown to be subunits of different [3H]ryanodine-binding proteins. Using immunolabeling techniques, we have localized these proteins in chicken breast muscle by both light and electron microscopy. (v) From immunofluorescent light microscopy of longitudinal sections, it was determined that both ryanodine-binding protein isoforms exhibit identical repetitive punctate distributions near the Z-lines. (vi) In serial cross-sections both proteins have similar distributions in the same fibers. (vii) Both proteins were found to be associated with the terminal cisternae of the sarcoplasmic reticulum by immunoelectron microscopy. Based on their localization to the triadic junction, their large size and their ability to bind [3H]ryanodine, these proteins are identified as foot proteins. In conclusion, two distinct homo-oligomeric foot proteins coexist in avian fast twitch skeletal muscle. We have termed these proteins, alpha and beta foot proteins.  相似文献   

9.
We have shown that several isoforms of triadin, a protein involved in calcium release process through the ryanodine receptor, are expressed in rat skeletal muscle, and we have cloned two of these isoforms. One is the rat homolog of the 95-kDa triadin identified in rabbit skeletal muscle, and the second one, shorter, is a truncated form of the previous one, but with a new unique COOH-terminal end. We propose to name the two proteins identified here Trisk 95 and Trisk 51. We have produced antibodies specific to each isoform. Using these antibodies, we have shown that the newly identified protein, Trisk 51, is actually expressed in adult rat skeletal muscle and also in rat embryo skeletal muscle. Immunofluorescent labeling of rat skeletal muscle with anti-Trisk 95, anti-Trisk 51, or anti-ryanodine receptor antibodies shows a similar localization of these proteins, in the tissue. Transfection of L6 cells with cDNA of Trisk 51 or Trisk 95 leads to the expression of proteins with the expected molecular weight, identical to those detected in rat skeletal muscle. Both proteins appear during differentiation of satellite cells in myotubes which may indicate the involvement of these two isoforms in the building of a functional calcium release machinery.  相似文献   

10.
Phosphorylase kinase has been purified from white and red chicken skeletal muscle to near homogeneity, as judged by sodium dodecyl sulphate (SDS) gel electrophoresis. The molecular mass of the native enzyme, estimated by chromatography on Sepharose 4B, is similar to that of rabbit skeletal muscle phosphorylase kinase, i.e. 1320 kDa. The purified enzyme both from white and red muscles showed four subunits upon polyacrylamide gel electrophoresis in the presence of SDS, corresponding to alpha', beta, gamma' and delta with molecular masses of 140 kDa, 129 kDa, 44 kDa and 17 kDa respectively. Based on the molecular mass of 1320 kDa for the native enzyme and on the molar ratio of subunits as estimated from densitometric tracings of the polyacrylamide gels, a subunit formula (alpha' beta gamma' delta)4 has been proposed. The antiserum against the mixture of the alpha' and beta subunits of chicken phosphorylase kinase gave a single precipitin line with the chicken enzyme but did not cross-react with the rabbit skeletal muscle phosphorylase kinase. The pH 6.8/8.2 activity ratio of phosphorylase kinase from chicken skeletal muscle varied from 0.3 to 0.5 for different preparations of the enzyme. Chicken phosphorylase kinase could utilize rabbit phosphorylase b as a substrate with an apparent Km value of 0.02 mM at pH 8.2. The apparent V (18 mumol min-1 mg-1) and Km values for ATP at pH 8.2 (0.20 mM) were of the same order of magnitude as that of the purified rabbit phosphorylase kinase b. The activity of chicken phosphorylase kinase was largely dependent on Ca2+. The chicken enzyme was activated 2-4-fold by calmodulin and troponin C, with concentrations for half-maximal activation of 2 nM and 0.1 microM respectively. Phosphorylation with the catalytic subunit of cAMP-dependent protein kinase (up to 2 mol 32P/mol alpha beta gamma delta monomer) and autophosphorylation (up to 8 mol 32P/mol alpha beta gamma delta monomer) increased the activity 1.5-fold and 2-fold respectively. Limited tryptic and chymotryptic hydrolysis of chicken phosphorylase kinase stimulated its activity 2-fold. Electrophoretic analysis of the products of proteolytic attack suggests some differences in the structure of the rabbit and chicken gamma subunits and some similarities in the structure of the rabbit red muscle and chicken alpha'.  相似文献   

11.
Activities of glycogen synthase (total) and branching enzyme in slow (soleus) muscle are higher than those in fast (vastus lateralis) muscle, while those of phosphorylase kinase (total), phosphorylase (total) and debranching enzyme are reversed. The active form ratio of glycogen synthase is higher in fast muscle, while those of phosphorylase kinase and phosphorylase are higher in slow muscle. Activities of cAMP-dependent protein kinase and protein phosphatase in slow muscle are higher than those in fast muscle. These results suggest that glycogen metabolizing enzymes in slow muscle, distinct from those in fast muscle, are regulated more strongly by cAMP-dependent protein kinase rather than by protein phosphatase.  相似文献   

12.
The 68 kDa laminin-binding protein purified from chicken skeletal muscle and the ectoenzyme 5'-nucleotidase from chicken gizzard are both able to interact with laminin. They were both shown to possess a nearly identical amino acid composition. The 79 kDa glycosylated form of 5'-nucleotidase can be transformed into an enzymatically active form by treatment with endoglycosidase F (Endo F). Deglycosylated (Endo F-treated) 5'-nucleotidase exhibits an apparent molecular mass of 68 kDa. Using immunological and finger-printing techniques, both proteins were analysed to determine their structural relatedness. The results obtained indicate that both proteins are not identical but may posses a few common peptides of yet unknown sequence and length.  相似文献   

13.
The 68 kDa laminin-binding protein purified from chicken skeletal muscle and the ectoenzyme 5′-nucleotidase from chicken gizzard are both able to interact with laminin. They were both shown to possess a nearly identical amino acid composition. The 79 kDa glycosylated form of 5′-nucleotidase can be transformed into an enzymatically active form by treatment with endoglycosidase F (Endo F). Deglycosylated (Endo F-treated) 5′-nucleotidase exhibits an apparent molecular mass of 68 kDa. Using immunological and finger-printing techniques, both proteins were analysed to determine their structural relatedness. The results obtained indicate that both proteins are not identical but may possess a few common peptides of yet unknown sequence and length.  相似文献   

14.
The MgATP-dependent phosphorylase phosphatase was found to have a broad substrate specificity. Its activity against all phosphoproteins tested was dependent upon preincubation with the activating factor FA and MgATP. The enzyme dephosphorylated and inactivated phosphorylase kinase and inhibitor 1, and dephosphorylated and activated glycogen synthase and acetyl-CoA carboxylase. Glycogen synthase was dephosphorylated at similar rates whether it had been phosphorylated by cyclic-AMP-dependent protein kinase, phosphorylase kinase or glycogen synthase kinase 3. The enzyme also catalysed the dephosphorylation of ATP citrate lyase, initiation factor eIF-2, and troponin I. The properties of the MgATP-dependent protein phosphatase from either dog liver or rabbit skeletal muscle showed a remarkable similarity to highly purified preparations of protein phosphatase 1 from rabbit skeletal muscle. The relative activities of the two enzymes against all phosphoproteins tested was very similar. Both enzymes dephosphorylated the beta-subunit of phosphorylase kinase 40-fold faster than the alpha-subunit, and both enzymes were inhibited by identical concentrations of the two proteins termed inhibitor 1 and inhibitor 2, which inhibit protein phosphatase 1 specifically. These results demonstrate that the MgATP-dependent protein phosphatase is a type-1 protein phosphatase, and is distinct from type-2 protein phosphatases which dephosphorylate the alpha-subunit of phosphorylase kinase and are unaffected by inhibitor 1 and inhibitor 2. The possibility that the MgATP-dependent protein phosphatase is an inactive form of protein phosphatase 1 and that both proteins share the same catalytic subunit is discussed.  相似文献   

15.
Phosphorylase plays an important role in energy generation during muscle contraction. We have demonstrated that purified rabbit skeletal muscle phosphorylase a and phosphorylase b bind to rabbit muscle F-actin, F-actin-tropomyosin, F-actin-tropomyosin-troponin, and myofibrils. Neither phosphorylase a nor phosphorylase b binds to myosin. Phosphorylase a and b bind to F-actin with S0.5 values of 1.5 X 10(-6) and 2.1 X 10(-6) M, respectively. At saturation, 0.035 mol of phosphorylase a and b is bound for every seven G-actin monomers in the F-actin polymer. Using the F-actin-tropomyosin-troponin complex as opposed to F-actin as a binding target, there are five- and threefold increases in the maximal binding capacity for phosphorylase a and phosphorylase b, respectively, without a significant change in the S0.5 value for either form of the enzyme. A similar stoichiometry and affinity of phosphorylase binding are observed when myofibrils are used as the binding target. Ca2+ ions and AMP increase the maximal binding capacity for phosphorylase a to myofibrils while ATP decreases the Bmax. Our study suggests that in skeletal muscle, phosphorylase a and phosphorylase b may interact with the thin filament, and that this binding to thin filament proteins may be controlled by changes in sarcoplasmic concentration of Ca2+ and ligands of phosphorylase during muscle contraction.  相似文献   

16.
A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian cells.  相似文献   

17.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

18.
The kinetics of rabbit skeletal muscle phosphorylase kinase interaction with glycogen has been studied. At pH 6.8 the binding of phosphorylase kinase to glycogen proceeds only in the presence of Mg2+, whereas at pH 8.2 formation of the complex occurs even in the absence of Mg2+. On the other hand, the interaction of phosphorylase kinase with glycogen requires Ca2+ at both pH values. The initial rate of the complex formation is proportional to the enzyme and glycogen concentrations, suggesting the formation of the complex with stoichiometry 1:1 at the initial step of phosphorylase kinase binding by glycogen. According to the kinetic and sedimentation data, the substrate of the phosphorylase kinase reaction, glycogen phosphorylase b, favors the binding of phosphorylase kinase with glycogen. We suggest a model for the ordered binding of phosphorylase b and phosphorylase kinase to the glycogen particle that explains the increase in the tightness of phosphorylase kinase binding with glycogen in the presence of phosphorylase b.  相似文献   

19.
The interaction of rabbit skeletal muscle phosphorylase kinase with CNBr-activated glycogen results in the formation of a covalent complex. The non-bound kinase was removed by chromatography on DEAE-cellulose and phenyl-Sepharose. The amount of the bound protein increased with an increase in the number of activated groups in the glycogen molecule; the enzyme activity was thereby decreased. The kinase covalently and non-covalently bound to glycogen exhibited a higher affinity for the protein substrate (phosphorylase b) as well as for Mg2+ and Ca2+ than did the kinase in the absence of glycogen. Electrophoresis performed under denaturating conditions showed that the gamma-subunit of phosphorylase kinase is responsible for the enzyme binding to CNBr-glycogen. The effect of cross-linking reagents (glutaric aldehyde, 1.5-difluoro-2.4-dinitrobenzene) on the binding of phosphorylase kinase subunits was studied. Glycogen afforded protection of the gamma-subunit from the cross-linking to other enzyme subunits. An analysis of the subunit composition of phosphorylase kinase covalently bound to CNBr-glycogen and of the enzyme treated with cross-linking reagents in the presence of glycogen-revealed that the gamma-subunit is involved in the specific binding of phosphorylase kinase to glycogen.  相似文献   

20.
A major rabbit skeletal muscle phosphorylase phosphatase activity which is markedly stimulated by histone H1 has been resolved from inhibitor-sensitive phosphorylase phosphatase (type-1 phosphatase), glycogen synthase kinase 3-activated phosphatase, phosphatase heat-stable inhibitor proteins, and alkaline phosphatase activity by various purification techniques. Evidence is presented that this phosphatase is a high-molecular weight form of a type-2 phosphatase. Our data suggest that this phosphatase may be regulated by histone H1, protamine or analogous polycationic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号