首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-element protocol consisting of one donor-specific transfusion (DST) plus a brief course of anti-CD154 mAb greatly prolongs the survival of murine islet, skin, and cardiac allografts. To study the mechanism of allograft survival, we determined the fate of tracer populations of alloreactive transgenic CD8+ T cells in a normal microenvironment. We observed that DST plus anti-CD154 mAb prolonged allograft survival and deleted alloreactive transgenic CD8+ T cells. Neither component alone did so. Skin allograft survival was also prolonged in normal recipients treated with anti-CD154 mAb plus a depleting anti-CD8 mAb and in C57BL/6-CD8 knockout mice treated with anti-CD154 mAb monotherapy. We conclude that, in the presence of anti-CD154 mAb, DST leads to an allotolerant state, in part by deleting alloreactive CD8+ T cells. Consistent with this conclusion, blockade of CTLA4, which is known to abrogate the effects of DST and anti-CD154 mAb, prevented the deletion of alloreactive transgenic CD8+ T cells. These results document for the first time that peripheral deletion of alloantigen-specific CD8+ T cells is an important mechanism through which allograft survival can be prolonged by costimulatory blockade. We propose a unifying mechanism to explain allograft prolongation by DST and blockade of costimulation.  相似文献   

2.
Treatment with a 2-week course of anti-CD154 antibody and a single transfusion of donor leukocytes (a donor-specific transfusion or DST) permits skin allografts to survive for >100 days in thymectomized mice. As clinical trials of this methodology in humans are contemplated, concern has been expressed that viral infection of graft recipients may disrupt tolerance to the allograft. We report that acute infection with lymphocytic choriomeningitis virus (LCMV) induced allograft rejection in mice treated with DST and anti-CD154 antibody if inoculated shortly after transplantation. Isografts resisted LCMV-induced rejection, and the interferon-inducing agent polyinosinic:polycytidylic acid did not induce allograft rejection, suggesting that the effect of LCMV is not simply a consequence of nonspecific inflammation. Administration of anti-CD8 antibody to engrafted mice delayed LCMV-induced allograft rejection. Pichinde virus also induced acute allograft rejection, but murine cytomegalovirus and vaccinia virus (VV) did not. Injection of LCMV approximately 50 days after tolerance induction and transplantation had minimal effect on subsequent allograft survival. Treatment with DST and anti-CD154 antibody did not interfere with clearance of LCMV, but a normally nonlethal high dose of VV during tolerance induction and transplantation killed graft recipients. We conclude that DST and anti-CD154 antibody induce a tolerant state that can be broken shortly after transplantation by certain viral infections. Clinical application of transplantation tolerance protocols may require patient isolation to facilitate the procedure and to protect recipients.  相似文献   

3.
IR Ferrer  ME Wagener  M Song  ML Ford 《PloS one》2012,7(7):e40559
CD154/CD40 blockade combined with donor specific transfusion remains one of the most effective therapies in prolonging allograft survival. Despite this, the mechanisms by which these pathways synergize to prevent rejection are not completely understood. Utilizing a BALB/c (H2-K(d)) to B6 (H2-K(b)) fully allogeneic skin transplant model system, we performed a detailed longitudinal analysis of the kinetics and magnitude of CD8(+) T cell expansion and differentiation in the presence of CD154/CD40 pathway blockade. Results demonstrated that treatment with anti-CD154 vs. DST had distinct and opposing effects on activated CD44(high) CD62L(low) CD8(+) T cells in skin graft recipients. Specifically, CD154 blockade delayed alloreactive CD8(+) T cell responses, while DST accelerated them. DST inhibited the differentiation of alloreactive CD8(+) T cells into multi-cytokine producing effectors, while CD40/CD154 blockade led to the diminution of the KLRG-1(low) long-lived memory precursor population compared with either untreated or DST treated animals. Moreover, only CD154 blockade effectively inhibited CXCL1 expression and neutrophil recruitment into the graft. When combined, anti-CD154 and DST acted synergistically to profoundly diminish the absolute number of IFN-γ producing alloreactive CD8(+) T cells, and intra-graft expression of inflammatory chemokines. These findings demonstrate that the previously described ability of anti-CD154 and DST to result in alloreactive T cell deletion involves both delayed kinetics of T cell expansion and differentiation and inhibited development of KLRG-1(low) memory precursor cells.  相似文献   

4.
Alloantibody is an important effector mechanism for allograft rejection. In this study, we tested the hypothesis that regulatory T cells with indirect allospecificity can prevent humoral rejection by using a rat transplant model in which acute rejection of MHC class I-disparate PVG.R8 heart grafts by PVG.RT1(u) recipients is mediated by alloantibody and is dependent upon help from CD4 T cells that can recognize the disparate MHC alloantigen only via the indirect pathway. Pretransplant treatment of PVG.RT1(u) recipients with anti-CD4 mAb plus donor-specific transfusion abrogated alloantibody production and prolonged PVG.R8 graft survival indefinitely. Naive syngeneic splenocytes injected into tolerant animals did not effect heart graft rejection, suggesting the presence of regulatory mechanisms. Adoptive transfer experiments into CD4 T cell-reconstituted, congenitally athymic recipients confirmed that regulation was mediated by CD4 T cells and was alloantigen-specific. CD4 T cell regulation could be broken in tolerant animals either by immunizing with an immunodominant linear allopeptide or by depleting tolerant CD4 T cells, but surprisingly this resulted in neither alloantibody generation nor graft rejection. These findings demonstrate that anti-CD4 plus donor-specific transfusion treatment results in the development of CD4 regulatory T cells that recognize alloantigens via the indirect pathway and act in an Ag-specific manner to prevent alloantibody-mediated rejection. Their development is associated with intrinsic tolerance within the alloantigen-specific B cell compartment that persists after T cell help is made available.  相似文献   

5.
Donor-specific blood transfusion (DST), designed to prolong allograft survival, sensitized recipients of the high-responder PVG-RT1u strain, resulting in accelerated rejection of MHC-class I mismatched (PVG-R8) allografts. Rejection was found to be mediated by anti-MHC class I (Aa) alloantibody. By pretreating recipients 4 wk before grafting with cyclosporin A (CsA) daily (x7), combined with once weekly (x4) DST, rejection was prevented. The investigation explores the mechanism for this induced unresponsiveness. CD4 T cells purified from the thoracic duct of CsA/DST-pretreated RT1u rats induced rejection when transferred to R8 heart-grafted RT1u athymic nude recipients, indicating that CD4 T cells were not tolerized by the pretreatment. To determine whether B cells were affected, nude recipients were pretreated, in the absence of T cells, with CsA/DST (or CsA/third party blood) 4 wk before grafting. The subsequent transfer of normal CD4 T cells induced acute rejection of R8 cardiac allografts in third party- but not DST-pretreated recipients; prolonged allograft survival was reversed by the cotransfer of B cells with the CD4 T cells. Graft survival correlated with reduced production of anti-MHC class I (Aa) cytotoxic alloantibody. The results indicated that the combined pretransplant treatment of CsA and DST induced tolerance in allospecific B cells independently of T cells. The resulting suppression of allospecific cytotoxic Ab correlated with the survival of MHC class I mismatched allografts. The induction of B cell tolerance by CsA has important implications for clinical transplantation.  相似文献   

6.
The CD134-CD134 ligand (CD134L) costimulatory pathway has been shown to be critical for both T and B cell activation; however, its role in regulating the alloimmune response remains unexplored. Furthermore, its interactions with other costimulatory pathways and immunosuppressive agents are unclear. We investigated the effect of CD134-CD134L pathway blockade on allograft rejection in fully MHC-mismatched rat cardiac and skin transplantation models. CD134L blockade alone did not prolong graft survival compared with that of untreated recipients, and in combination with donor-specific transfusion, cyclosporine, or rapamycin, was less effective than B7 blockade in prolonging allograft survival. However, in combination with B7 blockade, long-term allograft survival was achieved in all recipients (>200 days). Moreover, this was synergistic in reducing the frequency of IFN-gamma-producing alloreactive lymphocytes and inhibiting the generation of activated/effector lymphocytes. Most impressively, this combination prevented rejection in a presensitized model using adoptive transfer of primed lymphocytes into athymic heart transplant recipients. In comparison to untreated recipients (mean survival time (MST): 5.3 +/- 0.5 days), anti-CD134L mAb alone modestly prolonged allograft survival (MST: 14 +/- 2.8 days) as did CTLA4Ig (MST: 21.5 +/- 1.7 days), but all grafts were rejected within 24 days. Importantly, combined blockade further and significantly prolonged allograft survival (MST: 75.3 +/- 12.7 days) and prevented the expansion and/or persistence of primed/effector alloreactive T cells. Our data suggest that CD134-CD134L is a critical pathway in alloimmune responses, especially recall/primed responses, and is synergistic with CD28-B7 in mediating T cell effector responses during allograft rejection. Understanding the mechanisms of collaboration between these different pathways is important for the development of novel strategies to promote long-term allograft survival.  相似文献   

7.
Sensitization to donor Ags is an enormous problem in clinical transplantation. In an islet allograft model, presensitization of recipients through donor-specific transfusion (DST) 4 wk before transplantation results in accelerated rejection. We demonstrate that combined DST with anti-CD154 (CD40L) therapy not only prevents the deleterious presensitization produced by pretransplant DST in the islet allograft model, it also induces broad alloantigen-specific tolerance and permits subsequent engraftment of donor islet or cardiac grafts without further treatment. In addition, our data strongly indicate that CTLA4-negative T cell signals are required to achieve prolonged engraftment of skin allograft or tolerance to islet allograft in recipients treated with a combination of pretransplant DST and anti-CD154 mAb. We provide direct evidence that a CD28-independent CTLA4 signal delivers a strong negative signal to CD4+ T cells that can block alloimmune MLR responses. In this study immune deviation into a Th2 (IL-4) response was associated with, but did not insure, graft tolerance, as the inopportune timing of B7 blockade with CTLA4/Ig therapy prevented uniform tolerance but did not prevent Th2-type immune deviation. While CTLA4-negative signals are necessary for tolerance induction, Th1 to Th2 immune deviation cannot be sufficient for tolerance induction. Combined pretransplant DST with anti-CD154 mAb treatment may be attractive for clinical deployment, and strategies aimed to selectively block CD28 without interrupting CTLA4/B7 interaction might prove highly effective in the induction of tolerance.  相似文献   

8.
Treatment of mice with a single donor-specific transfusion (DST) plus a brief course of anti-CD154 mAb to block CD40-mediated signaling uniformly induces donor-specific transplantation tolerance. Survival of islet allografts in treated mice is permanent, but skin grafts eventually fail unless recipients are thymectomized. The nature of the cellular mechanisms involved and the basis for the difference in survival of islet vs skin allografts are not known. In this study, we used CD40 knockout mice to investigate the role of CD40-mediated signaling in each component of the tolerance induction protocol: the DST, the graft, and the host. When CD40-mediated signaling was eliminated in only the DST or the graft, islet allografts were rapidly rejected. However, when CD40 signaling was eliminated in the host, approximately 40% of the islet allografts survived. When CD40 signaling was eliminated in the DST, the graft, and the host, islet grafts survived long term (>84 days), whereas skin allografts were rapidly rejected ( approximately 13 days). We conclude that transplantation tolerance induction in mice treated with DST and anti-CD154 mAb requires blockade of CD40-mediated signaling in the DST, the graft, and the host. Blockade of CD40-mediated signaling is necessary and sufficient for inducing islet allograft tolerance and is necessary but not sufficient for long-term skin allograft survival. We speculate that a requirement for regulatory CD4(+) T cells in skin allograft recipients could account for this differential response to tolerance induction.  相似文献   

9.
Memory T cells specific for donor Ags present a unique challenge in transplantation. In addition to expressing robust immune responses to a transplanted organ, memory T cells may be resistant to the effects of immunosuppressive therapies used to prolong graft survival. In this study, we explore the possibility of controlling deleterious donor-reactive memory CD4 T cells through lymphoid sequestration. We showed that sphingosine 1-phosphate receptor-1 agonist FTY720 induces relocation of circulating memory CD4 T cells into secondary lymphoid organs. Lymphoid sequestration of these donor-reactive memory CD4 T cells prolonged survival of murine heterotopic cardiac allografts and synergizes with conventional costimulatory blockade to further increase graft survival. Despite limited trafficking, memory CD4 T cells remain capable of providing help for the induction of anti-donor CD8 T cell and alloantibody responses. Elimination of antidonor humoral immunity resulted in indefinite allograft survival proving the pathogenicity of alloantibody under these conditions. Overall, this is the first demonstration that FTY720 influences memory CD4 T cell trafficking and attenuates their contribution to allograft rejection. The data have important implications for guiding FTY720 therapy and for designing combinatorial strategies aimed at prolonging allograft survival in sensitized transplant patients with donor-specific memory T cells.  相似文献   

10.
Previous work on blockade of CD40-CD40 ligand interaction in mice and primates with anti-CD40 ligand mAbs has resulted in a moderate prolongation of allograft survival without the development of true allograft tolerance. In this study, we show in rats that adenovirus-mediated gene transfer of CD40Ig sequences into the graft resulted in prolonged (>200 days) expression of CD40Ig and in long-term (>300 days) survival. Recipients expressing CD40Ig displayed strongly (>90%) inhibited mixed leukocyte reactions and alloantibody production at early (days 5 and 17) and late time points (>100 day) after transplantation, but showed limited inhibition of leukocyte infiltration and cytokine production as evaluated by immunohistology at early time points (day 5). Recipients of long-surviving hearts showed donor-specific hyporesponsiveness since acceptance of second cardiac allografts was donor specific. Nevertheless, long-term allografts (>100 days) displayed signs of chronic rejection vasculopathy. Occluded vessels showed leukocyte infiltration, mainly composed of CD4(+) and CD8(+) cells, macrophages, and mast cells. These recipients also showed antidonor CTL activity. Recipients expressing CD40Ig did not show nonspecific immunosuppression, as they were able to mount anticognate immune responses that were partially inhibited at early time points and were normal thereafter. We conclude that gene transfer-mediated expression of CD40Ig resulted in a highly efficient inhibition of acute heart allograft rejection in rats. This treatment induced donor-specific inhibition of certain alloreactive mechanisms in the short-, but not the long-term, which resulted in long-term survival of allografts concomitant with the development of chronic rejection.  相似文献   

11.
Circulating alloantibodies in transplant recipients are often associated with increased Ab-mediated as well as cellular rejection. We tested the hypothesis that alloantibodies facilitate cellular rejection by functioning as opsonins to enhance T cell activation using a BALB/c to C57BL/6 heart or skin transplant model. Long-term heart and skin survival induced with anti-CD154 alone or in combination with donor-specific transfusion (DST), respectively, was abrogated by the presence of anti-K(d) mAbs, and alloreactive T cell activation as well as acute rejection was observed. The prevention of graft acceptance in the skin model was dependent on anti-K(d) binding to and converting DST from tolerigenic to immunogenic. Adoptive transfer of CFSE-labeled TCR-transgenic T cells into B6 recipients treated with anti-CD154/DST revealed the ability of anti-K(d) to enhance the proliferation of anti-K(d)-specific T cells via the indirect pathway as well as of non-K(d)-reactive, recipient MHC-restricted CD4(+) and CD8(+) T cells. Thus, alloantibodies with restricted specificity are able to facilitate the indirect presentation as well as the cross-presentation of a larger repertoire of "linked" donor-derived Ags. These observations highlight the ability of alloantibodies to function not only in classical humoral rejection but also as opsonins that facilitate the CD40-CD154-independent activation of alloreactive T cells.  相似文献   

12.
IL-15 is a T cell growth factor that shares many functional similarities with IL-2 and has recently been shown to be present in tissue and organ allografts, leading to speculation that IL-15 may contribute to graft rejection. Here, we report on the in vivo use of an IL-15 antagonist, a soluble fragment of the murine IL-15R alpha-chain, to investigate the contribution of IL-15 to the rejection of fully vascularized cardiac allografts in a mouse experimental model. Administration of soluble fragment of the murine IL-15R alpha-chain (sIL-15Ralpha) to CBA/Ca (H-2k) recipients for 10 days completely prevented rejection of minor histocompatibility complex-mismatched B10.BR (H-2k) heart grafts (median survival time (MST) of >100 days vs MST of 10 days for control recipients) and led to a state of donor-specific immunologic tolerance. Treatment of CBA/Ca recipients with sIL-15Ralpha alone had only a modest effect on the survival of fully MHC-mismatched BALB/c (H-2d) heart grafts. However, administration of sIL-15Ralpha together with a single dose of a nondepleting anti-CD4 mAb (YTS 177.9) delayed mononuclear cell infiltration of the grafts and markedly prolonged graft survival (MST of 60 days vs MST of 20 days for treatment with anti-CD4 alone). Prolonged graft survival was accompanied in vitro by reduced proliferation and IFN-gamma production by spleen cells, whereas CTL and alloantibody levels were similar to those in animals given anti-CD4 mAb alone. These findings demonstrate that IL-15 plays an important role in the rejection of a vascularized organ allograft and that antagonists to IL-15 may be of therapeutic value in preventing allograft rejection.  相似文献   

13.
Memory T cells have specific properties that are beneficial for rapid and efficient protection from pathogens previously encountered by a host. These same features of memory T cells may be deleterious in the context of a transplanted organ. Consistent with this contention is the accumulating evidence in experimental transplantation that previously sensitized animals are resistant to the effects of costimulatory blockade. Using a model of murine cardiac transplantation, we now demonstrate that alloreactive memory CD4(+) T cells prevent long-term allograft survival induced through donor-specific cell transfusion in combination with anti-CD40 ligand Ab (DST/anti-CD40L). We show that memory donor-reactive CD4(+) T cells responding through the direct or indirect pathways of allorecognition provide help for the induction of antidonor CD8(+) T effector cells and for Ab isotype switching, despite DST/anti-CD40L. The induced pathogenic antidonor immunity functions in multiple ways to subsequently mediate graft destruction. Our findings show that the varied functions of alloreactive memory CD4(+) T cells remain intact despite DST/anti-CD40L-based costimulatory blockade, a finding that will likely have important implications for designing approaches to induce tolerance in human transplant recipients.  相似文献   

14.
Critical, but conditional, role of OX40 in memory T cell-mediated rejection   总被引:4,自引:0,他引:4  
Memory T cells can be a significant barrier to the induction of transplant tolerance. However, the molecular pathways that can regulate memory T cell-mediated rejection are poorly defined. In the present study we tested the hypothesis that the novel alternative costimulatory molecules (i.e., ICOS, 4-1BB, OX40, or CD30) may play a critical role in memory T cell activation and memory T cell-mediated rejection. We found that memory T cells, generated by either homeostatic proliferation or donor Ag priming, induced prompt skin allograft rejection regardless of CD28/CD154 blockade. Phenotypic analysis showed that, in contrast to naive T cells, such memory T cells expressed high levels of OX40, 4-1BB, and ICOS on the cell surface. In a skin transplant model in which rejection was mediated by memory T cells, blocking the OX40/OX40 ligand pathway alone did not prolong the skin allograft survival, but blocking OX40 costimulation in combination with CD28/CD154 blockade induced long-term skin allograft survival, and 40% of the recipients accepted their skin allograft for >100 days. In contrast, blocking the ICOS/ICOS ligand and the 4-1BB/4-1BBL pathways alone or combined with CD28/CD154 blockade had no effect in preventing skin allograft rejection. OX40 blockade did not affect the homeostatic proliferation of T cells in vivo, but markedly inhibited the effector functions of memory T cells. Our data demonstrate that memory T cells resisting to CD28/CD154 blockade in transplant rejection are sensitive to OX40 blockade and suggest that OX40 is a key therapeutic target in memory T cell-mediated rejection.  相似文献   

15.
Costimulation blockade protocols are effective in prolonging allograft survival in animal models and are entering clinical trials, but how environmental perturbants affect graft survival remains largely unstudied. We used a costimulation blockade protocol consisting of a donor-specific transfusion and anti-CD154 mAb to address this question. We observed that lymphocytic choriomeningitis virus infection at the time of donor-specific transfusion and anti-CD154 mAb shortens allograft survival. Lymphocytic choriomeningitis virus 1) activates innate immunity, 2) induces allo-cross-reactive T cells, and 3) generates virus-specific responses, all of which may adversely affect allograft survival. To investigate the role of innate immunity, mice given costimulation blockade and skin allografts were coinjected with TLR2 (Pam3Cys), TLR3 (polyinosinic:polycytidylic acid), TLR4 (LPS), or TLR9 (CpG) agonists. Costimulation blockade prolonged skin allograft survival that was shortened after coinjection by TLR agonists. To investigate underlying mechanisms, we used "synchimeric" mice which circulate trace populations of anti-H2b transgenic alloreactive CD8+ T cells. In synchimeric mice treated with costimulation blockade, coadministration of all four TLR agonists prevented deletion of alloreactive CD8+ T cells and shortened skin allograft survival. These alloreactive CD8+ T cells 1) expressed the proliferation marker Ki-67, 2) up-regulated CD44, and 3) failed to undergo apoptosis. B6.TNFR2-/- and B6.IL-12R-/- mice treated with costimulation blockade plus LPS also exhibited short skin allograft survival whereas similarly treated B6.CD8alpha-/- and TLR4-/- mice exhibited prolonged allograft survival. We conclude that TLR signaling abrogates the effects of costimulation blockade by preventing alloreactive CD8+ T cell apoptosis through a mechanism not dependent on TNFR2 or IL-12R signaling.  相似文献   

16.
Despite the recognition that humoral rejection is an important cause of allograft injury, the mechanism of Ab-mediated injury to allograft parenchyma is not well understood. We used a well-characterized murine hepatocellular allograft model to determine the mechanism of Ab-mediated destruction of transplanted liver parenchymal cells. In this model, allogeneic hepatocytes are transplanted into CD8-deficient hosts to focus on CD4-dependent, alloantibody-mediated rejection. Host serum alloantibody levels correlated with in vivo allospecific cytotoxic activity in CD8 knockout hepatocyte rejector mice. Host macrophage depletion, but not CD4(+) T cell, NK cell, neutrophil, or complement depletion, inhibited in vivo allocytotoxicity. Recipient macrophage deficiency delayed CD4-dependent hepatocyte rejection and inhibited in vivo allocytotoxicity without influencing alloantibody production. Furthermore, hepatocyte coincubation with alloantibody and macrophages resulted in Ab-dependent hepatocellular cytotoxicity in vitro. These studies are consistent with a paradigm of acute humoral rejection in which CD4(+) T cell-dependent alloantibody production results in the targeting of transplanted allogeneic parenchymal cells for macrophage-mediated cytotoxic immune damage. Consequently, strategies to eliminate recipient macrophages during CD4-dependent rejection pathway may prolong allograft survival.  相似文献   

17.
It is well known that it is difficult to induce an immunotolerance with allogeneic skin transplantation. We attempted to find the immunosuppressive protocol for prolonging skin allograft rejection by using interleukin-16 because IL-16 is considered one of the natural ligands to CD4 molecules. First we examined whether synergistic immunosuppressive effects of recombinant IL-16 plus anti-CD4 mAbs are induced in mixed lymphocyte reaction (MLR). Next we used IL-16-cDNA-transfected OSC-20 (human oral squamous cell carcinoma cell line) as an in vitro model of the epidermal keratinocyte equivalent and examined whether this transfectant could inhibit the activation of allogeneic T cells. Our data indicated that IL-16 clearly inhibited human MLR and that IL-16 increased synergistically the immunosuppressive effect of anti-CD4 mAb. We also used IL-16 transfectant and this produced more than 50 ng/ml of IL-16 in the supernatant by which human MLR was significantly inhibited. Furthermore, this transfectant also inhibited the activation of allogeneic lymphocytes stimulated directly with transfectant cells. These results indicated that the IL-16-producing allogeneic skin graft might have a local immunosuppressive action that would prolong graft survival.  相似文献   

18.
Using six mouse strain combinations, we attempted to prolong cardiac allograft survival by pretreatment of recipients with a single iv injection of donor-specific whole blood or spleen cells plus a single ip injection of cyclophosphamide (Cy). Significant prolongation of cardiac allograft survival occurred in a small proportion of pretreated mice of some strain combinations, with some grafts surviving for periods longer than 6–9 months. Cy injected alone did not influence the normal cardiac allograft rejection time of between 1 and 2 weeks. Depending upon the strain combination, accelerated rejection of all or some of the grafts occurred in mice pretreated with blood or spleen cells or myocardial cells alone.  相似文献   

19.
Islet allografts are subject to rapid rejection through host cellular immune responses involving mononuclear cell recruitment and tissue injury. Interruption of leukocyte recruitment through chemokine receptor targeting is of therapeutic benefit in various experimental models, but little is known about the contribution of chemokine pathways to islet allograft rejection. We found that murine islets produce monocyte chemoattractant protein-1 (MCP-1; CCL2) in vitro and that islet allograft rejection was associated with intragraft expression of MCP-1 and its receptor, CCR2. We therefore investigated whether MCP-1 and CCR2 are required for the rejection of fully MHC-disparate islet allografts. Wild-type mice treated with blocking anti-MCP-1 mAb plus a brief, subtherapeutic course of rapamycin had long-term islet allograft survival, in contrast to the effect of treatment with either mAb or rapamycin alone. CCR2(-/-) mice treated with rapamycin also maintained islet allografts long-term. Both MCP/CCR2- and rapamycin-sensitive signals were required for maximal proliferation of alloreactive T cells, suggesting that MCP-1/CCR2 induce rejection by promoting alloreactive T cell clonal expansion and homing and migration. Prolonged islet allograft survival achieved by blockade of the MCP-1/CCR2 pathway plus rapamycin therapy was accompanied by a mononuclear cell infiltrate expressing the inhibitory receptor, programmed death-1 (PD-1), and its ligand (PD-L1, B7-H1), and prolongation of islet allograft survival was abrogated by anti-PD-L1 mAb therapy. These data show that the blockade of MCP-1 binding to CCR2 in conjunction with subtherapeutic immunosuppression can have profound effects on islet allograft survival and implicate the expression of the PD-1/PD-L1 pathway in the regulation of physiologic responses in vivo.  相似文献   

20.
Once nonobese diabetic (NOD) mice become diabetic, they are highly resistant to islet transplantation. The precise mechanism of such resistance remains largely unknown. In the present study we tested the hypothesis that islet allograft survival in the diabetic NOD mouse is determined by the interplay of diverse islet-specific T cell subsets whose activation is regulated by CD28/CD154 costimulatory signals and the common gamma-chain (gammac; a shared signaling element by receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21). We found that common gammac blockade is remarkably effective in blocking the onset and the ongoing autoimmune diabetes, whereas CD28/CD154 blockade has no effect in suppressing the ongoing diabetes. However, CD28/CD154 blockade completely blocks the alloimmune-mediated islet rejection. Also, a subset of memory-like T cells in the NOD mice is resistant to CD28/CD154 blockade, but is sensitive to the common gammac blockade. Nonetheless, neither common gammac blockade nor CD28/CD154 blockade can prevent islet allograft rejection in diabetic NOD mice. Treatment of diabetic NOD recipients with CD28/CD154 blockade plus gammac blockade markedly prolongs islet allograft survival compared with the controls. However, allograft tolerance is not achieved, and all CTLA-4Ig-, anti-CD154-, and anti-gammac-treated diabetic NOD mice eventually rejected the islet allografts. We concluded that the effector mechanisms in diabetic NOD hosts are inherently complex, and rejection in this model involves CD28/CD154/gammac-dependent and -independent mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号