首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purification of a chromatin-bound antizyme to ornithine decarboxylase from germinated barley seeds is described. This antizyme was extracted from chromatin by 2 M NaCl and purified to homogeneity. Its molecular weight was found to be 9000 with an isoelectric point of 4.1. It reacts with both cytosolic and chromatinbound ornithine decarboxylase from germinated barley seeds and E. coli, but it does not inhibit ornithine decarboxylase of Tetrahymena pyriformis or rat liver.  相似文献   

2.
A protein inhibiting a protein inhibitor (antizyme) to ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) (ODC), antizyme inhibitor, was purified from the liver cytosol of thioacetamide-treated rats by procedures including antizyme affinity chromatography. Overall purification was roughly estimated to be about 17,000,000-fold and recovery was about 2.4%. The purified preparation showed one major protein band and a faint band corresponding in mobility to molecular weights of 51,000 and 53,500, respectively, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Judging from the ornithine decarboxylase activity of the final preparation, the faint band may be ornithine decarboxylase. The apparent molecular weight of antizyme inhibitor estimated by gel filtration on Sephacryl S-200 was approx. 62,000, indicating that antizyme inhibitor may be composed of a single polypeptide chain. In order to examine the question of whether antizyme inhibitor is a protein derived from ornithine decarboxylase, an inactive ornithine decarboxylase, in an immunotitration study and analysis of the binding to antizyme were investigated. The results indicate that antizyme inhibitor may be a protein distinct from ornithine decarboxylase.  相似文献   

3.
A radioimmunoassay for ornithine decarboxylase was used to study the regulation of this enzyme in rat liver. The antiserum used reacts with ornithine decarboxylase from mouse, human or rat cells. Rat liver ornithine decarboxylase enzyme activity and enzyme protein (as determined by radioimmunoassay) were measured in thioacetamide-treated rats at various times after administration of 1,3-diaminopropane. Enzyme activity declined rapidly after 1,3-diaminopropane treatment as did the amount of enzyme protein, although the disappearance of enzyme activity slightly preceded the loss of immunoreactive protein. The loss of enzyme protein after cycloheximide treatment also occurred rapidly, but was significantly slower than that seen with 1,3-diaminopropane. When 1,3-diaminopropane and cycloheximide were injected simultaneously, the rate of disappearance of enzyme activity and enzyme protein was the same as that seen with cycloheximide alone. These results show that the rapid loss in enzyme activity after 1,3-diaminopropane treatment is primarily due to a loss in enzyme protein and that protein synthesis is needed in order for 1,3-diaminopropane to exert its full effect. A macromolecular inhibitor of ornithine decarboxylase that has been termed antizyme is induced in response to 1,3-diaminopropane, but our results indicate that the loss of enzyme activity is not due to the accumulation of inactive ornithine decarboxylase-antizyme complexes. It is possible that the antizyme enhances the degradation of the enzyme protein. Control experiments demonstrated that the antiserum used would have detected any inactive antizyme-ornithine decarboxylase complexes present in liver since addition of antizyme to ornithine decarboxylase in vitro did not affect the amount of ornithine decarboxylase detected in our radioimmunoassay. Anti-(ornithine decarboxylase) antibodies may be useful in the purification of antizyme since the antizyme-ornithine decarboxylase complex can be immunoprecipitated, and antizyme released from the precipitate with 0.3 M-NaCl.  相似文献   

4.
This review considers the role of antizyme, of amino acids and of protein synthesis in the regulation of polyamine biosynthesis.The ornithine decarboxylase of eukaryotic ceils and ofEscherichia coli coli can be non-competitively inhibited by proteins, termed antizymes, which are induced by di-and poly- amines. Some antizymes have been purified to homogeneity and have been shown to be structurally unique to the cell of origin. Yet, the E. c o l i antizyme and the rat liver antizyme cross react and inhibit each other's biosynthetic decarboxylases. These results indicate that aspects of the control of polyamine biosynthesis have been highly conserved throughout evolution.Evidence for the physiological role of the antizyme in mammalian cells rests upon its identification in normal uninduced cells, upon the inverse relationship that exists between antizyme and ornithine decarboxylase as well as upon the existence of the complex of ornithine decarboxylase and antizyme in vivo. Furthermore, the antizyme has been shown to be highly specific; its Keq for ornithine decarboxylase is 1.4 x 1011 M-1. In addition, mammalian ceils contain an anti-antizyme, a protein that specifically binds to the antizyme of an ornithine decarboxylase-antizyme complex and liberates free ornithine decarboxylase from the complex. In B. coli , in which polyamine biosynthesis is mediated both by ornithine decarboxylase and by arginine decarboxylase, three proteins (one acidic and two basic) have been purified, each of which inhibits both these enzymes. They do not inhibit the biodegradative ornithine and arginine decarboxylases nor lysine decarboxylase. The two basic inhibitors have been shown to correspond to the ribosomal proteins S20/L26 and L34, respectively. The relationship of the acidic antizyme to other known B. coli proteins remains to be determined.  相似文献   

5.
Antizyme reversibly inhibits ornithine decarboxylase activity by direct binding to the enzyme. The velocity of the reaction between ornithine decarboxylase and antizyme was markedly accelerated as the concentration of sodium chloride in the medium was increased and as the temperature of incubation was lowered. The equilibrium constant (binding constant) of the reaction between ornithine decarboxylase and antizyme was a little increased by decreasing salt concentrations in the medium and by decreasing the temperature of incubation.  相似文献   

6.
A monoclonal antibody to rat liver ornithine decarboxylase   总被引:5,自引:0,他引:5  
A monoclonal antibody was obtained against rat liver ornithine decarboxylase by using hybridoma technology with a small amount of partially purified enzyme. The antibody, IgG1 of kappa-type, was affinity-purified to homogeneity from culture supernatants of hybridoma cells. While the antibody had no inhibitory effect on ornithine decarboxylase activity when tested alone, it precipitated up to 87 units (60 ng) of the enzyme per microgram in the presence of formalin-fixed Staphylococcus aureus Cowan I bacteria. Immunoadsorption on a column of the monoclonal antibody-Sepharose 4B was shown to be useful for the removal of ornithine decarboxylase from antizyme inhibitor preparations, an essential procedure for the accurate assay of either ornithine decarboxylase-antizyme complex or antizyme inhibitor. It was also shown that antizyme could be affinity-purified by using a column of the monoclonal antibody-Affi-Gel 10 to which ornithine decarboxylase had been bound.  相似文献   

7.
Escherichia coli ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) was found to be inhibited by several basic proteins. When ribosomal proteins were tested, major ribosomal proteins, with the exceptions of S1, S5, S6, S8, S10, L3, L5, L6, L7/L12, L8, L9 and L10 proteins, showed antizyme activity in addition to the recognized antizymes (S20/L26 and L34 proteins). Furthermore, it was found that L20 protein and a new ribosomal protein, tentatively named X1 protein and bound to 50 S ribosomal subunits, showed stronger antizyme activity than S20/L26 and L34 proteins. The antizyme activity of S20/L26 and L34 proteins was at most 10% of the total antizyme activity of ribosomal proteins. Several basic polypeptides also showed antizyme activity in the order polyarginine greater than protamine greater than histone greater than polylysine. Ribosomal proteins and basic polypeptides inhibited ornithine decarboxylase activity competitively. Ribosome-bound antizymes were inactive as antizymes, and antizyme inhibition of ornithine decarboxylase was eliminated by ribosomes. When E. coli extracts were separated into ribosomes and 100,000 X g supernatant fraction, no significant antizyme activity was observed in the supernatant fraction. Results of these in vitro experiments infer that basic antizymes may not function as inhibitors of ornithine decarboxylase in vivo.  相似文献   

8.
In rat hepatoma tumor (HTC) cells 1,3 diaminopropane and cadaverine induced the ornithine decarboxylase antizyme as well as the end product of the ornithine decarboxylase reaction putrescine. Although at equal exogenous concentrations (10?3M) the two non-physiological diamines penetrated the cells as effectively as putrescine; they decreased cellular ornithine decarboxylase considerably less rapidly than the naturally present diamine. Cell extracts treated with high concentrations of 1,3 diaminopropane and putrescine, and which as a result had a high specific activity of ornithine decarboxylase antizyme, were chromatographed on a superfine Sephadex G-75 column in the presence of 250 mM NaCl. No ornithine decarboxylase-antizyme complex could be detected indicating the original decrease of ornithine decarboxylase in the cells was likely due to some mechanism other than antizyme. These results indicate that 1,3 diaminopropane and cadaverine probably can act on ornithine decarboxylase, like putrescine, by two distinct regulatory mechanisms.  相似文献   

9.
1. Ornithine decarboxylase activity is stimulated in high-density HeLa-cell cultures by dilution of or replacement of spent culture medium with fresh medium containing 10% (v/v) horse serum. 2. After stimulation, ornithine decarboxylase activity reaches a peak at 4–6h, then rapidly declines to the low enzyme activity characteristic of quiescent cultures, where it remains during the remainder of the cell cycle. 3. The stimulation of ornithine decarboxylase is eliminated by the addition of 0.5μm-spermine or -spermidine or 10μm-putrescine to the HeLa-cell cultures at the time of re-feeding with fresh medium. Much higher concentrations (1mm) of the non-physiological diamines, 1,3-diamino-propane or 1,3-diamino-2-hydroxypropane, are required to eliminate the stimulation of ornithine decarboxylase in re-fed HeLa-cell cultures. 4. A heat-labile, non-diffusible inhibitor, comparable with the inhibitory protein ornithine decarboxylase antizyme, is induced in HeLa cells by the addition of exogenous diamines or polyamines. 5. Intracellular putrescine is eliminated, intracellular spermidine and spermine are severely decreased and proliferation of HeLa cells is inhibited when cultures are maintained for 48h in the presence of the non-physiological inducer of ornithine decarboxylase antizyme, 1,3-diamino-2-hydroxypropane. Exogenous putrescine, a physiological inducer of the antizyme, does not decrease intracellular polyamines or interfere with proliferation of HeLa cells.  相似文献   

10.
Ornithine decarboxylase antizyme is a unique inhibitory protein induced by polyamines and involved in the regulation of ornithine decarboxylase. A cDNA was isolated from a rat liver cDNA library by the screening with monoclonal antibodies to rat liver antizyme as probes. The expression products of the cDNA in bacterial systems inhibited rat ornithine decarboxylase activity in a manner characteristic of antizyme and rabbit antisera raised against its direct expression product reacted to rat liver antizyme, confirming the authenticity of the cDNA. On RNA blot analysis with the cDNA probe, an antizyme mRNA band of 1.3 kb was detected in rat tissues. Antizyme mRNA did not increase upon administration of putrescine, an inducer of antizyme, and its half-life after actinomycin D treatment was as long as 12 h in rat liver, suggesting that antizyme mRNA is constitutively expressed and antizyme synthesis is regulated at the translational level. Similar-sized mRNAs hybridizable to the cDNA were also found in various mammalian and non-mammalian vertebrate tissues under physiological conditions. In addition, chicken and frog antizymes showed immunocrossreactivity with rat antizyme. The ubiquitous presence and the evolutionally conserved structure of antizyme in vertebrate tissues suggest that it has an important function.  相似文献   

11.
Ornithine decarboxylase was present in a cryptic, complexed form in an amount approximately equivalent to that of free ornithine decarboxylase activity in adult rat heart. Addition of isoproterenol (10 mg/kg) caused a notable rise in ornithine decarboxylase activity and a simultaneous decrease in the amount of the complexed enzyme. During the period of ornithine decarboxylase decay, when cardiac putrescine content had reached high values, the level of the complex increased above that of the control. Administration of putrescine (1.5 mmol/kg, twice) or dexamethasone (4 mg/kg) produced a decrease of heart ornithine decarboxylase activity, while it did not remarkably affect the level of complexed ornithine decarboxylase, therefore raising significantly the ratio of bound to total ornithine decarboxylase. Putrescine also elicited the appearance of free antizyme, concomitantly with the disappearance of free ornithine decarboxylase activity after 3-4 h of treatment. These results indicate that a significant amount of ornithine decarboxylase occurs in an inactive form in the heart under physiological conditions and that its absolute and relative levels may vary following stimuli which affect heart ornithine decarboxylase activity.  相似文献   

12.
The role of gonadotropins and estrogen on the regulation of ovarian ornithine decarboxylase was studied during follicular differentiation/maturation. In intact immature rats follicular differentiation/maturation was initiated with sequential administration of estrogen and follicle stimulating hormone. Ornithine decarboxylase activity in response to human chorionic gonadotropin was markedly enhanced (2-fold) in rats with preovulatory antral follicles when compared to rats with non-ovulatory follicles. This increase could be attributed to the alteration in the turnover of the enzyme. Following follicle maturation the half life of the human chorionic gonadotropin stimulated ornithine decarboxylase was increased from 18 to 62 min. This increase in half life was associated with differentition of follicles. In the estrogen treated group (which does not induce follicular differentiation), the half life of the enzyme remained unaltered. The regulation of ornithine decarboxylase through the formation of protein inhibitor antizyme induced by diamino hexane, was unaltered during follicular differentiation.  相似文献   

13.
Detection of Ornithine Decarboxylase Antizyme in Mouse Brain   总被引:5,自引:4,他引:1  
Ornithine decarboxylase, the rate-limiting enzyme in polyamine synthesis, is known to be regulated by a macromolecular inhibitor, termed antizyme, in a number of cellular systems. The present results show that the antizyme is also a functional component of polyamine metabolism in the brain. It could be demonstrated both in normal randomly selected mice and in animals which had been subjected either to intracerebroventricular injection of saline, which is known to cause a transient activation of ornithine decarboxylase, or to 1,3-diamino-2-propanol, an antizyme-inducing agent. When compared to tissues or cell systems studied so far, the cytosol fraction from mouse brain homogenate appeared to contain an exceptionally high amount of antizyme, that was bound to some material other than active ornithine decarboxylase. This feature was seen in all the animal groups studied, being most prominent after saline injection, when the amount of dissociable antizyme exceeded 14-fold the corresponding released ornithine decarboxylase activity. In untreated animals the excess was about eightfold and after 1,3-diamino-2-propanol about fivefold.  相似文献   

14.
Antizyme to ornithine decarboxylase (ODC) and ODC-antizyme complex were both present in liver cytosols of starved rats. The antizyme was identified by its molecular weight, kinetic properties, formation of a complex with ODC, and reversal of its inhibition by antizyme inhibitor. The average amount of antizyme in liver cytosols of starved rats was 0.1 unit/mg of protein, roughly corresponding to basal hepatic ODC activity in rats fed ad libitum. The presence of ODC-antizyme complex was detected by using antizyme inhibitor. These results indicate that antizyme participates in the regulation of ODC activity in vivo under physiological conditions.  相似文献   

15.
A macromolecular factor that inhibits the activity of the antizyme to ornithine decarboxylase (ODC) was found in rat liver extracts. The factor, 'antizyme inhibitor', was heat-labile, non diffusable and of similar molecular size to ODC. The antizyme inhibitor re-activated ODC that had been inactivated by antizyme, apparently by replacing ODC in a complex with antizyme. Therefore the antizyme inhibitor can be used to assay the amount of inactive ODC-antizyme complex formed in vitro. When assayed by this method, the complex was shown to be eluted before ODC from a Sephadex G-100 column. Significant increase in ODC activity was observed when the antizyme inhibitor was added to crude liver extracts from rats that had been injected with 1,3-diaminopropane to cause decay of ODC activity, suggesting the presence of inactive ODC-antizyme complex in the extracts.  相似文献   

16.
Selective degradation by proteasomes of ornithine decarboxylase, the initial enzyme in polyamine biosynthesis, is mediated by the polyamine-inducible protein antizyme. Antizyme binds to a region near the N terminus of ornithine decarboxylase (X. Li and P. Coffino, Mol. Cell. Biol. 12:3556-3562, 1992). This interaction induces a conformational change in ornithine decarboxylase that exposes its C terminus and inactivates the enzyme (X. Li and P. Coffino, Mol. Cell. Biol. 13:1487-1492, 1993). Here we show that the C-terminal half of antizyme alone can inactivate ornithine decarboxylase and alter its conformation, but it cannot direct degradation of the enzyme, either in vitro or in vivo. A portion of the N-terminal half of antizyme must be present to promote degradation.  相似文献   

17.
Starvation caused a marked increase in putrescine content in mammary gland of lactating rats, together with a marked decrease in activity of ornithine decarboxylase and appearance of measurable ornithine decarboxylase antizyme. 2. Refeeding for 5 h caused disappearance of free antizyme and ornithine decarboxylase activity returned to the value in fed animals. Putrescine concentration remained elevated. 3. There was no significant change in nucleic acid content of mammary gland from starved rats, but spermidine and spermine contents increased significantly. 4. Refeeding for 5 h returned the spermidine content of mammary glands to 'fed' values, and significantly decreased the content of spermine, although it did not reach control values. Thus changes in polyamine content of mammary gland in starved rats are clearly dissociated from changes in either RNA content or activities of polyamine-synthetic decarboxylases. 5. Starvation caused a fall in the content of spermidine in liver, with no change in spermine content. Refeeding for 5 h returned the spermidine content to 'fed' values.  相似文献   

18.
Mouse brain ornithine decarboxylase activity is about 70-fold higher at the time of birth compared with that of adult mice. Enzyme activity declines rapidly after birth and reaches the adult level by 3 weeks. Immunoreactive enzyme concentration parallels very closely the decrease of enzyme activity during the first postnatal week, remaining constant thereafter. The content of brain antizyme, the macromolecular inhibitor to ornithine decarboxylase, in turn is very low during the first 7 days and starts then to increase and at the age of 3 weeks it is about six times the level of that in newborn mice. This may explain the decrease in enzyme activity during brain maturation, and suggests the regulation of polyamine biosynthesis by an antizyme-mediated mechanism in adult brain.  相似文献   

19.
Antibodies were produced in rabbits to homogeneous mouse kidney ornithine decarboxylase and used to determine the amount of this protein present in kidney extracts by a competitive radioimmunoassay procedure. The labeled ligand for this assay was prepared by reacting renal ornithine decarboxylase with [5-3H] alpha-difluoromethylornithine, an enzyme-activated irreversible inhibitor. The sensitivity of the assay was such that 1 ng of protein could be quantitated and the binding to ornithine decarboxylase of a macromolecular inhibitor (antizyme) or alpha-difluoromethylornithine did not affect the reaction. It was found that treatment of female mice with testosterone produced a 400-fold increase in ornithine decarboxylase protein in the kidney within 4-5 days. Exposure to cycloheximide or to 1,3-diaminopropane led to a rapid disappearance of the protein which paralleled the loss of enzyme activity. There was no sign of any immunoreactive but enzymatically inactive form of mouse kidney ornithine decarboxylase under any of the conditions investigated. The results indicate that fluctuations of the enzyme activity in this organ are mediated via changes in the amount of enzyme protein rather than by post-translational modifications or interaction with inhibitors or activators.  相似文献   

20.
In Tetrahymena pyriformis the cytosolic ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17) activity is considerably inhibited by the presence of polyamines in the growth medium, while the nuclear ornithine decarboxylase is only slightly affected. Experimental evidence suggests that the presence of putrescine and/or spermidine elicits the appearance of non-competitive inhibitors of ornithine decarboxylase. One of the inhibitors has a molecular weight of 25,000 and properties of antizyme. In addition, two other low molecular weight inhibitors are extracted, one which is a phosphoserine oligopeptide, and the other which is phosphotyrosine. All inhibit non-competitively the homologous and heterologous (Escherichia coli and rat liver) ornithine decarboxylases. Similarly, non-competitive inhibition was obtained when the commercially available phosphoamino acids were tested against the already mentioned ornithine decarboxylases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号