首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Zusammenfassung Da Lebendbeobachtungen über den Ersatz einzelner Zellen im Epithelgewebe noch nicht vorliegen und das Schicksal verletzter absterbender Zellen in diesen Geweben bisher nicht direkt verfolgt worden ist, werden mit Hilfe des Mikromanipulators durch Anstich einzelne Zellen abgetötet und das Verhalten der Umgebung beobachtet. Als Objekt der Untersuchung dienten das Epithel der Haut von Feuersalamander- undHyla-Larven und Flimmerepithel an den Kiemenlamellen des Axolotl. An den verletzten Zellen lassen sich Erscheinungen beobachten, die mit den von T.Péterfi gesehenen thixotropen Veränderungen verschiedenster Zellarten Ähnlichkeit aufweisen und als kolloidale Entmischungserscheinungen des Cytoplasmas anzusehen sind. Das Cytoplasma der angestochenen Zellen wird trüb, optisch inhomogen und zeigt starke Viskosität, während der Zellkern einen flüssigen, leicht beweglichen Inhalt aufweist und sich nach Verletzung scharf gegen die übrige Zelle abgrenzt. Im Beginne sind die Vorgänge reversibel und die verletzten Zellen können sich erholen. — Der Ersatz der durch Anstich getöteten Zelle erfolgt in der Weise, daß sie zunächst in ganz kurzer Beobachtungszeit von den Nachbarzellen zusammengepreßt wird. Diese schieben sich darauf nach dem Orte vor, welchen die absterbende Zelle einnimmt und drängen sie so weit heraus, bis sie ganz aus dem Gewebsverband entfernt ist. Der erste Vorgang des Zusammenpressens wird als Wirkung des plötzlich freiwerdenden Binnendruckes des Gewebes aufgefaßt, während der endgültige Verschluß der Lücke durch Formveränderungen und Vorrücken der Nachbarzellen erfolgt und der von A.Oppel beschriebenen aktiven Epithelbewegung zuzuschreiben ist.Am Flimmerepithel der Kiemen des Axolotl spielen sich Zellausstoßung und Zellersatz ähnlich ab, nur geht der ganze Vorgang meist innerhalb weniger Minuten vor sich, so daß man nur die Zellbewegung der Umgebung und weniger die Wirkung der plötzlichen Druckschwankung im Gewebe durch das Anstechen der Zelle beobachten kann.Man muß auf Grund der Versuche daher wohl annehmen, daß ein lebendes Epithel in normalem Zustande einen bestimmten Binnendruck in seiner Zelldecke aufweist, welcher der Summe der von jeder Zelle ausgeübten Einzeldrucke entspricht. Entsteht durch Ausfall einer Zelle ein Druckgefälle, so äußert es sich in dem Auftreten von teils aktiven, teils passiven Bewegungen derselben. Sie schieben sich solange gleitend aneinander vorbei, bis eine neue Ruhelage erreicht und eine vorhandene Gewebslücke geschlossen ist. Wird eine Zelle geschädigt und sind die auftretenden Kolloidveränderungen reversibel, so ist sie bei einsetzender Erholung in der Lage, den Seitendruck der Umgebung wieder zu kompensieren; ist die Schädigung vom Zelltod gefolgt, so wird ihr Platz durch Vorrücken der Nachbarzellen eingenommen und sie selber nach außen entfernt. Das Vorhandensein einer toten Zelle wirkt also ebenso wie eine Lücke im Epithelbelag. Die aktive Zellausstoßung ist demnach das Mittel, durch welches die funktionelle und morphologische Gleichartigkeit der Zusammensetzung eines Gewebes gewährleistet wird. Es ist wahrscheinlich, daß auch andere Epithelien als die untersuchten z. B. beim Warmblüter sich ebenso verhalten, da hier die Ergänzung großer Flächen in der gleichen Weise erfolgt wie bei den Amphibien.  相似文献   

2.
Zusammenfassung Die Untersuchung der perisomatischen und periaxonalen Satelliten in sensiblen Ganglien verschiedener Säuger hat folgende Ergebnisse:Es wird nachgewiesen, daß die Satelliten um das Neuron eine ununterbrochene Hülle bilden, die es von den Bindegewebsstrukturen des Ganglions vollständig trennt. Jeder Satellit ist von seiner eigenen Zellmembran scharf begrenzt; die Membranen der anliegenden Zellen sind durch Zwischenräume von etwa 200 Å getrennt. Die Form der Satelliten ist im wesentlichen laminär: die Abbildungen von Zellen mit feinen verzweigten Fortsätzen, die hauptsächlich durch Silberimprägnation gewonnen wurden, geben meistens Artefakte wieder.Die Satelliten haben innige Beziehungen zum Neuron, von dem sie durch einen dünnen Zwischenraum (etwa 200 Å), von den entsprechenden Zellmembranen abgegrenzt, getrennt sind: die Satelliten passen sich jeder Unregelmäßigkeit der Neuronenoberfläche an, die durch kleine Paraphyten hervorgerufen wird.Wo der Neurit erscheint, stellen sich die perisomatischen Satelliten ein. Sie werden von den periaxonalen Satelliten ersetzt und diese ihrerseits von den Schwannschen Zellen.Die Satelliten enthalten manchmal ergastoplasmische Bildungen. Im großen und ganzen ist die Struktur dieser Zellen derjenigen der Schwannschen Zellen und vieler protoplasmatischen Gliocyten des Zentralnervensystems ähnlich.Während des körperlichen Wachstums erfahren die Satelliten eine bedeutend geringere Volumen-Zunahme als die Neurone, aber sie vermehren sich häufig durch mitotische Teilung. Beim Erwachsenen sind die Mitosen dagegen sehr selten. Das endgültige Volumen der Satelliten ist eher gleichmäßig, es entspricht dem Drieschschen-Gesetz. Auf Grund der gewonnenen Daten kann man diese Zellen als stabile Elemente im Sinne Bizzozero's betrachten.Über den funktionellen Wert der Satelliten äußert sich der Verfasser auf Grund der morphologisch und biologisch gesammelten Daten. Da diese Zellen immer zwischen den Blutgefäßen und den Neuronen liegen, muß ihre Tätigkeit trophischer Art sein. Die morphologischen Untersuchungen können allerdings nicht feststellen, ob diese trophische Funktion nur in einer Filtrierung der von den Blutgefäßen herkommenden Substanzen oder auch in ihrer Verarbeitung besteht.Schließlich behauptet der Verfasser, daß die perisomatischen und periaxonalen Satelliten einerseits eine große Ähnlichkeit mit den perineuronalen protoplasmatischen Gliocyten des Zentralnervensystems aufweisen, andererseits mit den Schwannschen Zellen. Es ist vielleicht möglich, in einer Kategorie viele Zellen zusammenzufassen, die in enger Beziehung zu den Neuronen stehen und ähnliche funktionelle Eigenschaften besitzen, Zellen, die sowohl dem zentralen als auch dem peripheren Nervensystem angehören.

Research supported by a C.N.R. Grant.  相似文献   

3.
Zusammenfassung An Querschnitten durch gelbe lipochromführende Federäste eines Fasans (Lady Imhurst-Fasan) und auch durch die zugehörigen Federstrahlen ließen sich in den verhornten Rinden- bzw. Radienzellen Kernreste mit dem Elektronenmikroskop nachweisen. Ihr Umriß wechselt mannigfach, indem die Austrocknung der Feder am Ende ihrer Entwicklung auch die Zellkerne zum Schrumpfen bringt, wobei benachbarte Tonofibrillenbündel in sie hineingepreßt werden können. Die Reste lassen stets die Kernbegrenzung durch die Zisterne erkennen; der Kerninhalt ist manchmal homogen, manchmal körnig strukturiert. Die elektronenmikroskopischen Befunde lehren also, daß an den Kernorten, die das Lichtmikroskop bei geeigneten Objekten zeigt, zusammengeschrumpfte Zellkerne vorliegen. Auch bei einigen anderen Vögeln wurden Kernreste verhornter Rindenzellen im elektronenmikroskopischen Bild beobachtet, so in den schillernden Schwanzfedern eines polnischen Hahns. Kernreste finden sich also sowohl bei lipochrom- wie bei melaninführenden Zellen.Die Markzellen der hier behandelten Federäste vom Fasan zeigen einen bemerkenswerten Übergang von gewöhnlichen Markzellen (mit Keratinmantel und einheitlichem luftgefülltem intramoenialem Raum) zu Tyndallblau-Zellen (in ganzer Ausdehnung mit schaumiger Gerüststruktur): sie ähneln den erstgenannten Zellen durch den Besitz eines Keratinmantels, enthalten aber zugleich im Innern ein freilich grobes Keratingerüst, das mit dem schrittweise sich auflockernden Mantel zusammenhängt.Frl. Christiane Liebich danken wir für ihre Hilfe bei der elektronenmikroskopischen Arbeit.  相似文献   

4.
Zusammenfassung Im Blut der Urodelen kommen außer kernhaltigen roten Blutkörperchen stets auch kernlose vor. Ihre Zahl ist bei den einzelnen Arten sehr verschieden. Den höchsten bisher beobachteten Prozentsatz besitzt der lungenlose Salamander Batrachoseps attenuatus. Bei ihm ist die Mehrzahl (90–98%) der Erythrozyten kernlos. Die kernlosen roten Blutkörperchen sind kein Kunstprodukt, sondern ein normaler Bestandteil des Urodelenblutes. Die Kernlosigkeit ist ein Zeichen der höheren Differenzierung der Erythrozyten, nicht dagegen das Zeichen einer Degeneration. Sie ist eine funktionelle Anpassung des Blutes an die Lebensweise und die dadurch bedingte Atmungsweise des Tieres. Die lungenlosen, durch die Haut und die Buccopharyngealschleimhaut atmenden Urodelen haben mehr kernlose Erythrozyten als die mit Lungen atmenden.Die Bildung der kernlosen roten Blutkörperchen findet im zirkulierenden Blut statt und geschieht in Form einer Abschnürung größerer oder kleinerer Cytoplasmastücke von kernhaltigen Zellen. Sie sind infolgedessen ganz verschieden groß. Sehr deutlich läßt sich diese Art der Entstehung kernloser Erythrozyten in vitro beobachten. Vielleicht gibt es daneben auch noch eine zweite Art. Manche kernlosen Erythrozyten mit Jolly-Körperchen und Chromatinbröckelchen machen es wahrscheinlich, daß sie durch eine intrazelluläre Auflösung des Kernes aus einem kernhaltigen Erythrozyten hervorgegangen sind. Die Regel ist jedoch die Abschnürung. Eine Ausstoßung des Kernes kommt bei normalen Erythrozyten nicht vor, sondern nur bei zerfallenden. Sie ist ein Zeichen der Degeneration der Zelle. Der Zelleib geht kurz nach dem Austritt des Kernes zugrunde. Der Kern bleibt als freier oder nackter Kern etwas länger erhalten, um dann aber ebenfalls völlig zu zerfallen.Da im zirkulierenden Blut der Urodelen regelmäßig eine Anzahl von Erythrozyten zugrunde geht, sind in ihm immer freie Kerne zu finden. Sie haben nicht mehr das normale Aussehen eines Erythrozytenkernes, sondern sind bereits erheblich verändert. Schon vor der Ausstoßung des Kernes aus der Zelle tritt eine teilweise Verflüssigung des Kerninhaltes ein; es bilden sich mit Flüssigkeit gefüllte Vakuolen, die zu Kanälchen und größeren Hohlräumen zusammenfließen. Auf diese Weise kommt es zu einer starken Auflockerung und Aufquellung des Kernes. Wenn der Kern den ebenfalls aufgequollenen und sich allmählich auflösenden Cytoplasmaleib verlassen hat und als nackter Kern im Blut schwimmt, schreitet der Prozeß des Zerfalles weiter fort. Nach allen Seiten strömt schließlich der noch nicht völlig verflüssigte Kerninhalt in Form fädiger und körniger Massen aus.Nach Komocki sollen sich diese Massen als eine Hülle um den nackten Kern legen und in Cytoplasma verwandeln, in dem dann später Hämoglobin auftritt. Die nackten Kerne sollen die Fähigkeit haben, aus sich heraus eine neue Erythrozytengeneration aufzubauen. Das ist nicht richtig. Es hat sich kein Anhaltspunkt für eine Umwandlung der den freien Kernen entströmenden Massen in Cytoplasma ergeben. Die Bilder, die Komocki als Beleg für seine Theorien heranzieht, sind vielmehr der Ausdruck der letzten Phase in dem Degenerationsprozeß des Kernes.Andere sogenannte freie Kerne, die Komocki abbildet und als Ursprungselemente einer neuen Erythrozytengeneration in Anspruch nimmt, sind gar keine freien, nackten Kerne, sondern weiße Blutzellen, vor allem Lymphozyten und Spindelzellen. Das weiße Blutbild der Urodelen ist, abgesehen von den Spindelzellen, einer für Fische, Amphibien, Reptilien und Vögel charakteristischen Zellform des Blutes, ganz das gleiche wie das der Säugetiere und des Menschen. Es setzt sich aus Lymphozyten, Monozyten und den drei Arten von Granulozyten, neutrophilen, eosinophilen und basophilen, zusammen. Die Monozyten können sich unter gewissen Umständen, z. B. bei Infektionen oder in Blutkulturen, zu Makrophagen umwandeln und Erythrozyten bzw. Reste zerfallender Erythrozyten phagozytieren. Die phagozytierten Teile roter Blutkörperchen haben Komocki zu der falschen Annahme verleitet, daß bei Batrachoseps attenuatus, in dessen Blut er entsprechende Bilder beobachtet hat, die kernlosen Erythrozyten in besonderen Zellen, sogenannten Plasmozyten entstehen und sich ausdifferenzieren. Komockis Theorie über die Bildung roter Blutkörperchen aus dem Chromatin nackter Kerne ist nicht haltbar. Die Befunde, auf denen sie aufgebaut ist, sind keineswegs beweiskräftig. Sie verlangen eine ganz andere Deutung, als Komocki ihnen gegeben hat. Komockis Kritik an der Zellenlehre ist daher in keiner Weise berechtigt.  相似文献   

5.
Zusammenfassung Wir haben zwei Fragen aufgeworfen. Die erstere lautete: Wie verhalten sich Plastiden zur Essigsäure? Die zweite: Gibt es einen genetischen Zusammenhang zwischen Chondriosomen und Plastiden ?Es scheint mir, daß ich auf die erste Frage eine ganz bestimmte Antwort erhalten habe. Die Plastiden leiden in allen Stadien ihrer Entwicklung von der Essigsäure. Die alten Plastiden büßen ihre Fähigkeit ein, sich durch die zur Färbung der Plastiden gewöhnlich angewandten Farbstoffe zu färben; die jungen Anlagen der Plastiden sind überhaupt nicht nachzuweisen. Vielleicht bleibt auch ein unfärbbares Gefüge von ihnen übrig, es ist aber schwer wahrzunehmen, da es keine Differential-färbung annimmt. In einigen Fällen habe ich tatsächlich, wie es scheint, in den nach Carnoy fixierten Präparaten die Schatten von Chondriosomen und Mitochodnrien erkannt. Im wesentlichen ist das Verhalten der Chondriosomen und Plastiden gegenüber der Essigsäure offenbar identisch.Was die zweite Frage anbetrifft, so zeigt die große ihr gewidmete Literatur, wie schwer sie zu lösen ist. Eine direkte langdauernde Beobachtung am lebenden Objekt hat bis jetzt keine positiven Ergebnisse geliefert (Kassmann). Das Studium von fixierten Präparaten zwingt dazu, das Entwicklungsbild der Plastiden zu rekonstruieren, und zwar vermittelst Gegenüberstellung von cytoplasmatischen Gebilden in Zellen von verschiedenem Alter. Diese Gegenüberstellung kann nicht ganz frei von subjektiven Momenten sein. Die Lage wird auch noch dadurch erschwert, daß die zu untersuchenden Gebilde beim Gebrauch ein und desselben Fixators verschiedene Bilder zeigen. So hat Bowen z. B. der Benda-Methode den Vorzug gegeben, ich konnte jedoch mit diesem Verfahren keine guten Resultate erzielen und gewann meine besten Präparate bei Fixation nach Regaud. Alle diese Umstände lassen mich meine Resultate sehr vorsichtig werten, insofern dieselben sich auf die genetische Beziehung zwischen Chondriosomen und Plastiden beziehen.Ich will nicht leugnen, daß ich beim Beginn dieser Arbeit gewissermaßen mit dem Standpunkte sympathisierte, nach dem Chondriosomen und Plastiden keine homologen Gebilde darstellen; meine eigenen Beobachtungen führten mich jedoch zu dem entgegengesetzten Standpunkt. Nach meinen Beobachtungen sind die Chondriosomen als ein bestimmtes Stadium in der Entwicklung der Plastiden aufzufassen. Davon zeugen die von verschiedenen Autoren und auch von mir, wahrgenommenen Übergangsformen zwischen Chondriosomen und Plastiden. Wenn bei der Feststellung solcher Formen der subjektive Faktor auch nicht ausgeschieden werden kann, so gibt es doch indirekte Daten, welche die Beziehung von Chondriosomen und Plastiden bestätigen. Sogar erwachsene Plastiden verhalten sich, wie wir oben gesehen haben, den Essigsäure enthaltenden Fixatoren gegenüber gleich den Chondriosomen. Die Formen der Plastiden, die ich oben als infantil bezeichnete, ahmen genau die Formen einiger Chondriosomen nach. Es ist wohl kaum möglich, diese infantilen Plastiden als ein Deformationsprodukt aufzufassen, denn sie treten bei verschiedenen Fixationsverfahren auf. So kann man der Regaud-Flüssigkeit wohl kaum die Fähigkeit zusprechen, die Plastiden zu verlängern (Kiyohara, Bowen), denn wenn diese Flüssigkeit eine solche Eigenschaft gehabt hätte, so hätte sich ihr Einfluß vor allem an den jüngsten Plastiden geltend gemacht, das Beispiel der Elodea zeigt uns aber, daß dem nicht so ist.Der Umstand, daß in alten Zellen außer Plastiden Chondriosomen vorhanden sind, stellt für die Theorie, welche die Einheit des Plastidoms annimmt, keine Schwierigkeit dar. Es ist leicht denkbar, daß in der Zelle in einem gewissen Augenblick solche Verhältnisse zustandekommen, welche die weitere Umwandlung der Chondriosomen in Plastiden verhindern. Wir wissen, daß derartige Verhältnisse manchmal bei buntblättrigen Pflanzen vorhanden sind und daß die lädierten Zellen demzufolge mit Chondriosomen allein ausgestattet bleiben (Sou Jan Tsinen); wahrscheinlich treten derartige Verhältnisse im Evolutionsprozesse aller tierischen Zellen ein. Obgleich das Endstadium der Entwicklung von Chondriom-Plastiden bei den Tieren ausfällt, so spielen die Chondriosomen bei ihnen bekanntlich gelegentlich die Rolle von Stärkebildnern, die für die pflanzliche Zelle so charakteristisch ist.Somit erscheint die Einheit von Chondriosomen und Plastiden durch direkte und indirekte Beweise genügend begründet.  相似文献   

6.
Zusammenfassung Mit histologischen und histochemischen Methoden wurden die Oenocyten von Männchen, Weibchen und Arbeiterinnen während der Puppenphase von Formica polyctena Foerst. untersucht, um Einblicke in ihre Funktion während der Metamorphose zu erhalten.Bei Formica lassen sich zwei Generationen von Oenocyten, larvale und imaginale, unterscheiden, die lateral von der Hypodermis des Abdomens bzw. Gasters abgegliedert werden. Während der ganzen larvalen Phase bleiben sie mit der Hypodermis in Verbindung. Zu Beginn der inneren Metamorphose verteilen sie sich auf dem Lymphwege über den ganzen Körper und finden sich konzentriert an den Stellen der Organbildung. Vor beginnender Körperpigmentierung gelangen die larvalen Oenocyten ins Mitteldarmlumen und werden dort verdaut, während gleichzeitig die imaginalen Oenocyten mit den Trophocyten sich verankern, was mit einer Klärung der Hämolymphe einhergeht.Die Oenocyten besitzen eine sehr verschiedene Größe, die stark vom Sekretionszustand abhängig ist. Die larvalen Oenocyten erreichen ein Aktivitätsmaximum kurz vor bzw. nach der Puppenhäutung, die imaginalen kurz vor der Imaginalhäutung. In der Größe und Aktivität der Oenocyten bestehen während der Metamorphose Unterschiede zwischen beiden Kasten und Geschlechtern.In den Oenocyten konnten sowohl im lebenden Zustand als auch nach Fixierung Sekretvakuolen festgestellt werden.Die Farbe der granulierten Oenocyten ist wasserhell; ihr Cytoplasma besitzt einen pH-Wert von etwa 5–5,5 im aktiven Zustand. Ihre Form ist kugelig oder elliptoid. Die Zahl der Zellkerne schwankt zwischen 1–3, wobei einkernige Zellen stark überwiegen. Die Kernvermehrung scheint amitotisch nach einem besonderen Typus zu erfolgen; sie konnte in einem Falle beobachtet werden. Mitosen und Zellteilungen waren nicht feststellbar. Die Kerne enthalten meistens zwei Nukleoli, oft nur einen, aber manchmal auch drei.In den Oenocyten konnten Glykogen und Fett nachgewiesen werden; die Oenocyten können deshalb jedoch nicht als Speicherzellen betrachtet werden.Während der Metamorphose scheinen die Oenocyten eine wesentliche Rolle als Fermentbildner zu spielen; sie sind am Aufbau der imaginalen Organe maßgeblich beteiligt. Den imaginalen Oenocyten kommt neben dem Umbau der Trophocyten offensichtlich beim weiblichen Geschlecht eine Funktion bei der Eibildung zu. Für hormonale und exkretorische Funktionen ergaben sich keine Anhaltspunkte.Die hormonale Steuerung der Oenocyten scheint durch die Corpora allata zu erfolgen.  相似文献   

7.
Zusammenfassung Wir benutzten die Spektrochemie zur Bestimmung der Zusammen-setzung von zwei Bakterienarten (Sarcina citrea und Azotomonas insolita). Zu dieser Bestimmung benötigten wir eine groß Menge Bakterien. Diese nahmen wir bei den Vorversuchen von der Oberfläche des festen Nährbodens, später bei den Hauptversuchen durch Zentrifugieren aus dem flüssigen Nährboden, den wir nach Dox u. Czapek mit einigen Änderungen herstellten. Wir bestimmten den Wassergehalt, die trockene, die organische, und anorganische Substanz.Zur spektrographischen Untersuchung diente ein ISP-22 Spektrograph. Die Anregung erfolgte mit 220 V/10 A Gleichstrom-Abreißbogen. Die Spalthöhe hatte 3,2 mm, der Elektrodenabstand betrug 2 mm und die Spaltbreite wählten wir zu 0,005 mm.Wir konnten in den Bakterienzellen auch solche Elemente nachweisen, welche nicht Bestandteile unseres Nährbodens waren. Sie sind wahrscheinlich durch die Verunreinigungen der angewandten Reagentien in den Nährboden gekommen.Die spektrochemische Analyse ist einfacher durchzuführen, als die mikrochemischen Verfahren. Die Ergebnisse können auch praktische Anwendung finden, da man bei Kenntnis der elementaren Zusammen-setzung der fraglichen Bakterien für sie den optimalen synthetischen Nährboden zusammenstellen kann.In Kurzfassung wurde diese Arbeit auf dem Kongreß der Ungarischen Mikrobiologischen Gesellschaft im Oktober 1957 in Budapest vorgetragen  相似文献   

8.
Zusammenfassung Durch wiederholte subcutane Verabreichung mäßiger Dosen von Trypanblau wurde unter Vermeidung jeglicher Gewebsschädigung eine gute vitale Anfärbung aller speicherungsfähigen Zellen des Mäuseeierstockes erzielt.Die Art der Farbstoffspeicherung ermöglicht Rückschlüsse auf den Funktionszustand der speichernden Zellen. Gesunde lebende Zellen speichern den Farbstoff in kleinen Granula. Starke, grobgranuläre Speicherung in einer Zelle kann bereits als Entartungsreaktion gewertet werden. Fleckige und diffuse Anfärbung von Zellen ist als Zeichen des Zelltodes anzusehen.Alle Bindegewebszellen des Ovars zeigen granuläre Farbstoffspeicherung; die Stärke der Speicherung ist dem Differenzierungsgrad der Zellen umgekehrt proportional.Noch bei geschlechtsreifen Mäusen erfolgt vereinzelt ein Einwuchern meist kleinerer Gruppen von Zellen des Ovarialoberflächenepithels unter Durchbrechung der Tunica albüginea in die Tiefe. Die Zellen des Oberflächenepithels zeigen bei ihrer Dedifferenzierung als Oberflächendeckzellen geringe feingranuläre Farbstoffspeicherung; dieses Speicherungsvermögen für Trypanblau geht jedoch mit ihrer fortschreitenden Umdifferenzierung bald wieder verloren. Wenige dieser aus dem Oberflächenepithel einwandernden Zellen sind frei von Vitalfarbstoff (Ureier).Am Aufbau des Stratum granulosum der Follikel haben neben Abkömmlingen des Oberflächenepithels des Eierstockes auch vitalspeichernde Zellen bindegewebiger Herkunft mit Anteil. Bei den bereits größeren in der Ovarialoberfläche außerhalb der Tunica albüginea zur Entwicklung gekommenen Eiern finden sich vorwiegend Zellen bindegewebigen Charakters an Stelle des Stratum granulosum.Das Speicherungsvermögen für Trypanblau erlischt in den aus dem Bindegewebe stammenden Granulosazellen zu dem Zeitpunkt, wo der einschichtige Granulosazellmantel von einem allseitig in sich geschlossenen, lockeren Bindegewebsnetz umgeben ist. Die Zellen der Granulosa junger Primärfollikel sind trotz ihrer allmählich bereits erkennbar werdenden Formverschiedenheit frei von vitaler Farbstoffeinlagerung.Erst nach Einsetzen der Liquorbildung entwickeln sich im Stratum granulosum zwei in Form und Farbstoffspeicherungsvermögen deutlich verschiedene Zelltypen. Der syncytiale Zelltyp zeigt mit zunehmendem Alter der Follikel an Zahl zunehmende stäubchenförmige Farbstoffgranula. Der abgerundete, mehr epitheliale Zelltyp der Granulosa ist frei von vitaler Farbstoffeinlagerung.Das Auftreten von Farbstoffspeicherung in Granulosazellen ist nicht nur mit Eisler als Ausdruck einer stärkeren Durchströmüng derselben, sondern vielmehr als Ausdruck ihrer beginnenden Umdifferenzierung zu werten. Die weitere Abwandlung dieser Zellen, vor allem im Corpus atreticans, vollendet die bereits im normalen Follikel eingeleitete Umdifferenzierung.Vereinzelt finden sich in fast reifen normalen Follikeln abnorm stark grobschollig Trypanblau speichernde Granulosazellen, die sich unter erheblicher Vergrößerung und Vakuolenbildung im Protoplasma aus dem syncytialen Verband lösen und im Liquorraum zerfallen (örtlich begrenzter langsamer Beginn der Follikelatresie in de Graafschen Follikeln).Die Entstehung des Liquor folliculi darf jedoch keinesfalls mit dem Untergang von Granulosazellen in Zusammenhang gebracht werden. Der von Vitalfarbstoff freie Liquor ist lediglich als Transsudat aufzufassen.Bei Eintritt der Follikelatresie zeigen die Granulosazellen zwei grundsätzlich verschiedene Möglichkeiten ihres Verhaltens: chromatolytische Entartung und progressive Umwandlung; auch letztere endet schließlich meist in degenerativen Formen, wie das auch die Art der Farbstoffspeicherung dartut. Beide Reaktionsarten der Granulosa sind durch fließende Übergänge miteinander verbunden. Bei dem Typ der progressiven Umwandlung des Stratum granulosum scheinen kleinere peripher gelegene Zellgruppen noch längere Zeit unverändert weiter zu leben. Die Beziehung dieser Zellgruppen zur interstitiellen Drüse können an Hand des untersuchten Materials nicht beurteilt werden.Lebendige Eizellen sind stets frei von vitalem Farbstoff; erst totes Eimaterial zeigt Anfärbung mit Trypanblau.Junge Oocyten können im Gegensatz zu älterem Eimaterial bei beginnender Follikelatresie häufiger noch mit dem Versuch einer Umdifferenzierung antworten, der jedoch bald mit dem Eitod endet.Die starke Farbstoff speicherung in den Polkörperchen noch vollständig gesunder Follikel zeigt, daß der Vitalfarbstoff auf intrazellulärem Weg durch das Stratum granulosum geleitet wird. Die Tatsache der Farbstoffspeicherung im Polkörperchen gibt Berechtigung zu der Annahme, daß die Zona pellucida lediglich eine von Granulosazellen ausgeschiedene Interzellularsubstanz darstellt, die noch von Fortsätzen der Coronazellen durchbrochen ist. Die eigentliche Stoffwechselgrenzmembran des Eies ist seine verdichtete Zelloberfläche, das Oolemma.Die verschiedenen Bilder der Follikelatresie legen die Vermutung nahe, daß der Vorgang der Follikelatresie entweder durch den primären Eitod oder durch den Zerfall der Granulosa eingeleitet wird. Die durch primären Eitod eingeleitete Follikelatresie ist gekennzeichnet durch den unter dem Bilde der Caryolyse erfolgenden Eitod und die progressive Umwandlung der Granulosa. Die durch den Zerfall der Granulosa eingeleitete Follikelatresie verläuft besonders in jungen Follikeln noch häufig mit Teilungsversuchen des Eies; sie ist identisch mit der von Flemmikg beschriebenen chromatolytischen Atresie der Follikel.  相似文献   

9.
Zusammenfassung Die sehr zahlreichen Nervenfasern für die Thymus der Sauropsiden gehen hauptsächlich vom zervikalen sympathischen Strang, aber zum Teil auch vom Vagus und vielleicht von den ventralen Ästen der zervikalen Nerven aus und erreichen die Thymus, indem sie den Gefäßen entlang laufen.Die Faserbündelchen, in welchen man oft isolierte oder in Gruppen gesammelte sympathische Zellen antrifft, dringen in das Thymusparenchym ein und hier verästeln sie sich sehr stark. Ein kleiner Teil der Nervenfasern sind Vasomotoren, ein anderer ebenfalls kleiner Teil verschwindet innerhalb von Gruppen von epithelioiden Zellen, welche oft mit drüsenähnlichen Höhlungen versehen sind (einige von diesen epithelioiden Anhäufungen erinnern im Aussehen an dieHassall-Körperchen der Säugetiere); echte typische H. K. sind sehr selten in erwachsenen Tieren nachweisbar.Der größte Teil der Nervenfasern erreicht jedoch die myoiden Zellen und verbindet sich mit denselben. Bei Cheloniern und bei Hühnern ist der Nervenanteil, der den myoiden Elementen vorbehalten ist, wirklich übermäßig groß.Die myoiden Zellen sind bekanntlich ein oft sehr ansehnlicher Bestandteil der Thymus der Sauropsiden, wie bei anderen Wirbeltiergruppen. Sie sind regressiven und progressiven Veränderungen unterworfen: je nach den Jahreszeiten (Dustin), ebenso besonderen funktionellen Bedingungen wie Fasten, Winterschlaf (Hammar); sie zeigen beim Huhn eine Hyperplasie-Hypertrophie als Folge der Kastration und des Alters (Terni).In vorliegenden Untersuchungen sind nebenbei einige neue Tatsachen über die Morphologie der myoiden Zellen festgestellt worden, unter anderen folgende: a) ihre histologische Differenzierung während der Entwicklung tritt sehr spät ein; b) sie sind räumlich von dem retikulär-kollagenen Netze des Thymusläppchens unabhängig, und sie besitzen keine retikulosarkolemmale Membran; c) die strahlenförmige (konzentrische) oder regellose Anordnung der Querstreifung der Myofibrillen in den großen myoiden Elementen bildet sich als Resultat der Verschmelzung von vorher unabhängigen Zellen (weshalb die besprochenen Elemente echte Syncytien sind); d) im Protoplasma der myoiden Zellen finden sich Spuren von Glykogen; usw.Die Verbindungen zwischen Nervenfasern und myoiden Elementen und andere Einzelheiten der feineren Verteilung der Nervenelemente im Thymusläppchen wurden bei Cheloniern und Vögeln besonders eingehend untersucht. An der Oberfläche der myoiden Zellen bilden die Nervenfasern Windungen oder spatel-, knopf-, keulchen- oder füßchenförmige Verbreitungen, welche der myoiden Substanz anhängen (neuromyoide Verbindungen).Die Nervenfasern, welche sich durch diese Endigungsweise mit den myoiden Zellen verbinden, gehören sehr wahrscheinlich zu den postganglionären Neuronen, welche entweder im Thymus (intraparenchymale oder perivasale mikroskopische Ganglien) oder im zervikalen sympathischen Gefäßgeflecht oder im sympathischen Grenzstrang liegen.Über Wesen, Zweck und Ziel der Vagusfibern habe ich mir kein bestimmtes Urteil bilden können.Außerdem befinden sich im Thymusläppchen wenige Nervenzellen des gewöhnlichen sympathischen Typus und in größerer Zahl kleine isolierte Nervenzellen, die zweifellos mit den interstiziellen ZellenCajals zu identifizieren sind. Diese interstiziellen Neuronen befinden sich meistensin der Nähe der myoiden Zellen und liegen oft auf der Oberfläche derselben, indem sie sie mit ihren verästelten Fortsätzen umfassen. Manchmal verbindet sich ein langer und feiner Fortsatz der interstiziellen Neuronen mit einer entfernt gelegenen myoiden Zelle. Diese Nervenzellen müssen zum größten Teil alsautonome effektorische Neurone aufgefaßt werden, wegen ihrer innigen Verbindung mit der kontraktilen Substanz. Wenn eine Kontraktionsmöglichkeit der myoiden Zellen auch nicht in Abrede zu stellen ist, ist es nicht recht verständlich, was für eine nützliche Wirkung ihre Kontraktion haben könnte (darum gebrauchen wir den Ausdruck effektorisch und nicht motorisch).Man kann oft beobachten, daß an der Oberfläche einer und derselben myoiden Zelle sich sowohl Fäden von exogenen Nervenfasern, als auch verästelte Fortsätze einer kleinen interstiziellen paramyoiden Zelle ausbreiten.Obwohl in der Thymus (wie auch im Darm;Cajal) das Wesen der Fortsätze der interstiziellen Neuronen zweifelhaft ist, mangels sicherer differentialer Merkmale zwischen Neuriten und Dendriten, ist doch das Aussehen der mit den myoiden Zellen verbundenen Fasern ganz verschieden von demjenigen der Fortsätze der interstiziellen Zellen.In einigen wenigen Fällen ist es möglich, einen dünnen und langen Fortsatz (Neurit?) der interstiziellen Zelle zu verfolgen, welcher ein kleines Blutgefäß erreicht; es ist möglich, daß er längs desselben eine proximale Richtung verfolgt. Dieses Verhalten läßt die Vermutung zu, daß wenigstens einigen dieser Neuronen die Bedeutung vonrezeptorischen Neuronen zuzuschreiben sei.Die Deutung des reichen Zuflusses und der ansehnlichen Verteilung des nervösen Anteils im Thymusparenchym der Sauropsiden ist, vom Gesichtspunkt ihrer möglicherweise endokrinen Funktion, nicht leicht: Sei es, weil die Innervation anderer endokriner Drüsen histologisch nicht genau bekannt ist (mit Ausnahme der Paraganglien); sei es, weil es überhaupt zweifelhaft ist, ob die Thymus eine innere Sekretion besitzt.Es ist möglich, daß die Anwesenheit der neuromyoiden Synapsen in der Thymus (welche hier zum ersten Male hervorgehoben wird), wenn auch die myoiden Zellen nicht kontraktionsfähig sein sollten, trotzdem mit dem Kohlenhydratenstoffwechsel in Zusammenhang steht, ähnlich wie es für die neuromuskularen Synapsen des zerebrospinalen Systems angenommen wird (Roncato).Der beinahe übergroße Reichtum nervöser Verzweigungen und neuromyoider Verbindungen, besonders bei Cheloniern, legt die Vermutung nahe, daß in zyklischen degenerativen Vorgängen des Thymusparenchyms eine Zerstörung und nachfolgende übermäßige Regeneration von Nervenfasern stattfindet; andererseits läßt die Zunahme der Zahl und Verzweigung der Nervenfasern im Kapaun und alten Hahn (Terni) die begründete Vermutung zu, daß es sympathische Neuronen gibt, welche einer auch verspäteten progressiven histologischen Differenzierung ihrer Neuriten fähig sind (eine verspätete histologische Vervollkommnung des Zellenleibes und der Dendriten in sympathischen Neuronen ist schon in menschlichen Ganglien bekannt;Terni).Aus diesen Gründen lassen die voliegenden Beobachtungen über die Thymus der Sauropsiden den Gedanken aufkommen, daß die stark entwickelte autonome Innervation der Thymus in der Funktion dieses Organs eine bedeutende Rolle spielt: sei es als Sitz besonderer Reize, welche sich wahrscheinlich in den neuromyoiden Apparaten entladen, sei es, weil die Nervenfasern mit Vorrichtungen versehen sind, welche auf lokale oder allgemeine Reize mit besonderer Empfindlichkeit morphologisch reagieren.  相似文献   

10.
Zusammenfassung In sensiblen Nerven der Wirbeltiere kommen zwei Überträger substanzen vor, Dorsin in den dorsalen Rückenmarkswurzeln, Opticin im Nervus opticus und im Nervus stato-acusticus; von beiden ist es möglich, daß sie auch im Zentralnervensystem vorkommen. Beide sind im Bienentest durch Kreise nach der Seite des angestochenen Auges nachweisbar, im Test am denervierten Kaninchenohr wirkt Dorsin schon wenige Tage nach der Nervendurchschneidung gut, Opticin wirkt in den ersten 2–3 Wochen sehr schwach und erst nach der 4. Woche, evtl. nach einer zweiten Nervendurchschneidung, gut.Durch Kochen der Nerven in wäßriger Lösung erhält man Dorsin und Opticin in gebundener Form, durch Kochen in 75%igem Alkohol und Überführen in wäßrige Lösung in freier Form.Durchleiten von Sauerstoff durch Lösungen von Überträgersubstanzen zerstört Opticin rascher als Dorsin und jeweils die freie Form rascher als die gebundene. 5-Oxytryptamin, das im Bienentest nach der Seite des nicht angestochenen Auges wirkt, wird durch Sauerstoff in eine Substanz verwandelt, die im Bienentest nach der Seite des angestochenen Auges wirkt.Lösungen von Dorsin vertragen kurzes Kochen, Opticin wird in Lösung schon bei 60° C in mehreren Minuten zerstört, wobei freies Opticin empfindlicher ist als gebundenes.Von den freien Überträgersubstanzen wird jede durch ein eigenes Ferment abgebaut. Die Mengen von Dorsinase, die Dorsin abbaut, in den dorsalen Wurzeln und von Opticinase, die Opticin abbaut, im Nervus opticus sind so, daß sie die Überträgersubstanzen unter vergleichbaren Bedingungen in ähnlichen Zeiten abbauen, wie Cholinesterase aus ventralen Wurzeln Acetylcholin abbaut.Gebundenes Dorsin der Wirbeltiere wird durch Pease gespalten, ein Ferment, das man erhält, wenn man eine stark verdünnte, nicht sterile Aufschwemmung aus zerriebenen dorsalen Wurzeln einen Tag lang bei 36° C inkubiert. Die sehr rasche Wirkung dieses Fermentes läßt sich auch mit dem Test am Meerschweinchen-Ileum an der Abnahme der P-Wirkung eines Extraktes aus dorsalen Wurzeln verfolgen.Gebundenes Opticin und andere gebundene Überträgersubstanzen der Wirbeltiere werden durch Dorsinase gespalten. Dorsinase führt diese Spaltung ähnlich rasch durch wie Pease die Spaltungen von gebundenem Dorsin und etwa 50mal so rasch wie den Abbau von freiem Dorsin.Gebundenes Acetylcholin ist als Überträgersubstanz vom Hornhautepithel auf die freien Nervenenden und von sekundären Sinneszellen auf die sensiblen Nerven anzunehmen.Bei der Nervendegeneration erfahren Opticin und Dorsin ähnliche Veränderungen wie Acetylcholin.Bei Mollusken sind als nervöse Überträgersubstanzen wenigstens Opticin, 5-Oxytryptamin und Acetylcholin anzunehmen, bei Arthropoden wenigstens Dorsin, Opticin, Acetylcholin, 5-Oxytryptamin und eine noch kaum untersuchte Substanz, deren fermentativer Abbau durch Strychnin gehemmt wird, bei Anneliden dieselben Substanzen mit Ausnahme von Dorsin.Die Krämpfe lassen sich durch die Hemmung des fermentativen Abbaues von Überträgersubstanzen durch die Krampfgifte erklären. Bei Mollusken und bei Arthropoden hemmen verschiedene Krampfgifte verschiedene Fermente und damit den Abbau verschiedener Überträgersubstanzen. Bei den Wirbeltieren ist die Hemmung der Dorsinase am wichtigsten. Die typischen Krampfgifte hemmen die Dorsinase in denselben gegenseitigen Verhältnissen, in denen sie Krämpfe auslösen. Die Hemmung der Dorsinase bedeutet eine Hemmung des Abbaues von freiem Dorsin und eine Hemmung der Spaltung anderer gebundener Überträgersubstanzen; damit dürfte auch die Wirkung sekundärer Sinneszellen auf die sensiblen Nerven gesteigert werden. Die bei den verschiedenen Krampfgiften verschieden starke zusätzliche Hemmung der Cholinesterase beeinflußt den Charakter der Krämpfe. Als Erklärung für den spezifischen Charakter der Strychninund Brucinkrämpfe bleibt noch die Blockierung der Hemmungen, die bei Wirbeltieren nur durch diese beiden Krampfgifte erfolgt, oder die Hemmung des fermentativen Abbaues von Crosslands Kleinhirnfaktor.Fräulein Ilse Silberbauer und Herrn Helmut Gübitz danken wir für ihre Mithilfe bei einem Teil der Versuche.Wir danken allen Tierärzten des Grazer Schlachthauses für ihr stets freundliches und verständnisvolles Entgegenkommen, welches sie uns bei dieser Arbeit und schon seit 1946 bei den im Literaturverzeichnis genannten Arbeiten von Hellauer und Umrath gezeigt haben.  相似文献   

11.
Zusammenfassung Die Parenchymbalken des Zwischenlappens gehen beim Zitterrochen sowohl in das Epithel des Vorderlappens als auch in die ventrale Saccuswand über. Die Intermediabalken werden im ganzen Zwischenlappen von Faserglia durchsetzt. Die Glia bildet mit feinen Fortsätzen einen mehr oder weniger dichten Strumpf um die Balken, durchdringt sie mit kräftigen Fasern in radiärer Richtung und setzt sich in feineren Ausläufern in die Balkenachse fort, die außer Gliafasern noch Nervenfasern und im rostralen Abschnitt einige Zellen enthält. Wo Blutgefäße an die Balken herantreten, sind stellenweise Gliafüßchen ausgebildet.In der Wand des Vorderlappens liegen Stützzellen, deren faserige Fortsätze die ganze Dicke der epithelialen Bekleidung senkrecht durchsetzen.Die neurogene Wand des Saccus vasculosus ist ebenfalls von Gliocyten durchsetzt. Sie bilden Faserkörbe, welche die Saccuszellen einzeln oder in Nestern umhüllen, und setzen sich bis zum Bindegewebe fort, wobei sie Gliascheiden um die unter der zelligen Bekleidung gelegenen Nervenfaserzüge bilden. Die Gliafasern des ventralen Mittelstreifens verflechten sich mit denen des Mittellappens.Die Anwesenheit und Verteilung der Glia, Nervenfasern und vereinzelter Saccuszellen im Mittellappen zeigt, daß in ihm die zentralnervösen Elemente untrennbar mit den epithelialen Anteilen vermischt sind, die nach unserer bisherigen Kenntnis der Rathkeschen Tasche entstammen.Die Untersuchung wurde durch dankenswerte Unterstützung seitens der Deutschen Forschungsgemeinschaft ermöglicht.  相似文献   

12.
Zusammenfassung o| li]1.|Dammermans Hypothese, der Saccus vasculosus stelle ein Sinnesorgan dar, das den Sauerstoffgehalt des Blutes kontrolliert, läßt sich mit den morphologischen Gegebenheiten nicht in Einklang bringen. Die den Rezeptoren der Riechschleimhaut verglichenen Krönchenzellen in der Saccuswandung stehen nicht mit dem Blute, sondern mit dem Liquor cerebrospinalis in unmittelbarer Berührung. Die Krönchenzellen werden ferner samt den marklosen Nervenfasern, welche sie mit dem Hypothalamus verbinden, vom Blute innerhalb der für den Saccus charakteristischen Sinus durch die Membranbildungen an der Hirnoberfläche geschieden. Umwegig erscheint auch die Vorstellung, daß an Chemorezeptoren erinnernde, in den Liquor eintauchende Elemente dazu bestimmt seien, Volumschwankungen der Gefäße zu perzipieren, die auf den Saccus übertragen werden. Es ist daher angezeigt, die Hypothese von Dammerman durch eine Deutung zu ersetzen, welche den strukturellen Besonderheiten des Saccus vasculosus eher Rechnung trägt. Prüfenswert ist insbesondere die Frage, ob der an einen Plexus chorioideus gemahnende Saccus über die Fähigkeit der Absonderung verfügt.Die histologische Untersuchung des Saccus vasculosus von Selachiern und Teleostiern hatte das im folgenden geschilderte Ergebnis. li]2.|Der stark entfaltete Saccus vasculosus der Rajiden, Torpedinen und Dasyatiden ist in seinen medianen und medio-lateralen Abschnitten sowohl mit der Gehirnbasis als auch mit der Adenohypophyse eng verbunden. Die dorsale, im mittleren Bereich nicht gefaltete Saccuswand lagert einer breiten Meninxschicht an, die nur verhältnismäßig enge, von der Epithelbasis teilweise weiter entfernte Gefäße enthält. In dieser Zone überwiegen die gliösen Stützzellen innerhalb des Epithels über die dem Saccus eigentümlichen sog. Krönchenzellen.Die ventrale Wandung des Saccus der untersuchten Selachier ist mit der Dorsalfläche der Adenohypophyse verlötet. Auch in diesem Saccusabschnitt herrschen Stützzellen vor. Unmittelbar unter der Zellage der ventralen Saccuswandung verläuft der Tractus praeopticohypophyseus, leicht kenntlich an seinem Neurosekretbestande. Diese Bahn tritt bei Raja und Torpedo zunächst in eine rostral gelegene Saccusfalte ein, deren Krümmung sie folgt, um dann — sehr dicht an die Basis der ventralen Saccusauskleidung angeschmiegt — zur Pars intermedia der Hypophyse zu ziehen, in deren Epithelgefüge sie sich unter Aufsplitterung in Fasersträhnen als diffuse Neurohypophyse einsenkt. Dieser Befund lehrt, daß der Tractus praeoptico-hypophyseus nicht, wie gelegentlich vermutet (vgl. Kappers) der Innervation der Saccusgefäße dient.An dem überaus stark ausgebildeten Gefäßapparat des Saccus der hier untersuchten Arten konnten Spezialvorrichtungen für die Regulation der Durchblutung nur bei Dasyatis marinus festgestellt werden, dessen Meninx wie das Bindegewebe anderer Körperregionen (vgl. Bargmann 1937) mit den seit Leydig (1852, 1857) als Turbanorganen bekannten Muskelbildungen reichlich ausgestattet ist. Die Turbanorgane liegen in der den Saccus umhüllenden Leptomeninxschale.Die Angabe von Krause (1923), die Saccuswand von Torpedo enthalte glatte Muskulatur, ließ sich an meinem Untersuchungsgut nicht bestätigen. Es ist anzunehmen, daß die im Saccusbereich bei manchen Arten deutlich entwickelte Schicht elastischer Fasern die Durchblutung des unter ihr befindlichen Saccus beeinflußt. Dieses Netzwerk dürfte durch starke Gefäßfüllung unter Spannung gesetzt werden, zumal die elastischen Faserstrukturen in Begleitung der Blutgefäße innerhalb der Saccusfalte mit der meningealen Elasticaschicht zusammenhängen. Das Vorkommen starker Kaliberschwankungen der Blutgefäe des Saccus läßt sich aus dem Schnittpräparat folgern. Nicht alle Abschnitte des Saccus sind übrigens reich vaskularisiert. Weite Sinus fehlen z.B. in der dorsalen Wandpartie, die sich mit der basalen Hirnhaut verbindet. li]3.|Die Saccuswand aller untersuchten Selachier und Teleostier wird von einer epithelialen Zellschicht ausgekleidet, die zwei verschiedene Elemente erkennen läßt, nämlich a) die sog. Krönchenzellen, b) die Stützzellen. Eine markante Hervorhebung der Krönchenzellen der Teleostier gelingt mit Hilfe der Nervenimprägnationsmethode von Bodian. Ob vereinzelt in der Epithelbasis im Verlauf der Saccusnerven gelegene größere Zellelemente (Raja) Ganglienzellen verkörpern, ist fraglich. Die innerhalb der sehr starken Saccusnerven von Dasyatis vorkommenden größeren gelappten Zellen mit granuliertem Zytoplasma werden als Gliazellen angesprochen. Die ventrikuläre Oberfläche des Epithels wird von einer durchbrochenen Gliamembran überzogen, durch deren Lücken die apikalen Abschnitte der Krönchenzellen mit dem Liquor cerebrospinalis in Berührung stehen. Man muß sich diese Membran, die sich gelegentlich infolge Schrumpfung des von ihr bedeckten Epithels abhebt, siebartig gebaut vorstellen.Die Dicke und mit ihr die Differenzierung der Saccuswandung sind, wenigstens bei Selachiern, nicht konstant. Auf weitere Strecken hin kann allein eine endothelähnliche Zelltapete, die keine Krönchenzellen aufweist, die Gefäße von der Organlichtung trennen. In derartigen Wandabschnitten scheinen abgeplattete Stützzellen vorzuliegen. Es ist anzunehmen, daß sie das Ergebnis eines Mauserungsprozesses sind, bei dem gealterte Zellen in die Saccuslichtung abgeschuppt werden, wo man sie gelegentlich vereinzelt oder in Gruppen antrifft. Der Nachschub kann durch mitotische Zellteilung erfolgen. li]4.|Die sorgfältigen Beobachtungen von Dammerman über die Struktur der Krönchenzellen werden bestätigt. Es muß jedoch hervorgehoben werden, daß die für diese Elemente bezeichnenden Krönchen vergängliche bzw. in ihrer Form wechselnde Bildungen darstellen. Bei Selachiern findet man zahlreiche Zellen, die Krönchenzellen verkörpern, jedoch nicht mit einem Krönchen ausgestattet sind, neben solchen, die eine derartige apikale Differenzierung ihres Zytoplasmas besitzen. Bei den untersuchten Teleostiern sowie jenen Selachiern, deren Krönchenzellen meist eine Krönchenbildung aufweisen, zeigten sich — von Zelle zu Zelle — deutliche Größenunterschiede der mit dem Krönchenfortsatz versehenen Kopfabschnitte. Bei Dasyatis habe ich sogar typische Krönchen vermißt und an ihrer Stelle nur unregelmäßig geformte Zytoplasmazipfel gefunden.Als bisher unbeachtete Eigentümlichkeit der Krönchenzellen werden. azidophile, an Einschlukörper erinnernde Homogenisierungen des Zellleibes bei Selachiern beschrieben, die sehr umfangreich ausgebildet sind. Bei Teleostiern treten kleinere, in Kernnähe gelegene Einschlüsse im Zytoplasma der Krönchenzellen auf. Engere Beziehungen der intrazellulären Neurofibrillen zu den von ihnen umgebenen Einschlüssen wurden nicht festgestellt. li]5.|Zugunsten der zur Erörterung gestellten Annahme, die Krönchenzellen könnten sekretorisch tätige Elemente verkörpern, sprechen mehrere Beobachtungen, von denen die eines Auftretens von Blasen an der Zelloberfläche wohl die geringste Beachtung verdient, da die Möglichkeit der artefiziellen Auslösung durch die Fixierungsflüssigkeit nicht ausgeschlossen werden konnte. Bemerkenswerter erscheint das Vorkommen von Körnchen und Tröpfchen innerhalb der Krönchenbüschel, die sich teils mit Chromalaunhämatoxylin, teils mit Phloxin bevorzugt anfärben. Gleichartige Gebilde kann man frei im Saccuslumen nachweisen. In anderen Fällen verdämmert der Krönchenbesatz im Inhalt des Saccus. Ferner läßt sich der Krönchenrasen gelegentlich mit der Perjodsäure-Schiffreaktion in blauvioletter Farbe sichtbar machen, die auch der Saccusinhalt aufweist. Besonders auffallend ist schließlich die Füllung der Organlichtung mit einem Kolloid, das in vielen Fällen eine kompaktere Masse darstellt. li]6.|Der Inhalt des Saccuslumens der Selachier stellt sich im Schnittpräparat seltener als homogene Masse, in der Regel als netzig-fädiges oder körniges Gerinnsel dar, das sich mit Chromalaunhämatoxylin und Anilinblau anfärben läßt. Ein auffallender Unterschied des Inhaltes von Saccus und übrigen Ventrikelabschnitten ist im allgemeinen nicht nachzuweisen. Einen ausgesprochen an Schilddrüsenkolloid erinnernden Inhalt einzelner Saccusnischen sah ich lediglich bei Stechrochen (Dasyatis marinus). Dagegen findet man in der Lichtung des Saccus verschiedener Teleostier, wie erwähnt, kompakte Kolloidmassen verschiedenen Aussehens und Umfanges. In manchen Fällen werden gegenüberliegende Wandpartien des Saccus nur durch schmale Blätter von Kolloid voneinander geschieden. Vielleicht unter der Einwirkung der Fixierungsmittel entstehen in diesem Material bald Tröpfchen und Körnchen, in anderen Fällen Vakuolen, die dem Kolloid ein wabigschaumiges Aussehen verleihen. Bei starker Füllung der Saccusnischen mit Kolloid können Bilder Zustandekommen, die oberflächlich einem Durchschnitt durch eine Schilddrüse ähneln. Der kolloidale Saccusinhalt gibt eine positive Perjodsäure-Schiffreaktion. Diese Reaktion fällt zwar auch am Liquor cerebrospinalis positiv aus. Indessen erreicht ihre Intensität nicht jene, die man an massiverem Saccuskolloid feststellen kann, was auf der größeren Dichte dieses Materials beruhen mag. Die Anwesenheit eines so umfangreichen und sicherlich verhältnismäßig zähen Kolloidinhaltes des Saccus scheint mit der Hypothese einer rezeptorischen Funktion des Organs schwer in Einklang zu bringen sein. Experimentellen Untersuchungen bleibt es freilich vorbehalten, die hier geäußerte Auffassung von einer sekretorischen Tätigkeit des Saccus vasculosus zu erhärten. li]7.|Die sog. Stützzellen der Saccusauskleidung bestehen aus zytoplasmaarmen Elementen mit meist oberflächennahe gelegenem Kern. Diese Zellen setzen an der die Saccusinnenfläche bedeckenden siebartig gebauten Gliamembran mit fußartigen Verbreiterungen an. Ihre schmalen basalen Abschnitte treten mit der die äußere Oberfläche des Saccusepithels überziehenden Membran in Verbindung. In manchen Abschnitten, so im mittleren Bereich der dorsalen und ventralen Wandpartie, nehmen sie stark gewundenen Verlauf, so daß hier das Bild eines Fasergewirrs entsteht. Da die Stützzellkerne gelegentlich eine durch Zerklüftung und Knospenbildung bedingte Oberflächenvergrößerung aufweisen (z.B. Lophius), ferner Kerneinschlüsse enthalten können, erscheint der Gedanke gerechtfertigt, daß diese gliösen Elemente nicht nur eine Stützfunktion ausüben.Diese Untersuchung erfolgte mit Unterstützung durch die Deutsche Forschungsgemeinschaft.Herrn Prof. Dr. Eberhard Ackerknecht zum 75. Geburtstag gewidmet.  相似文献   

13.
Zusammenfassung Die elektronenmikroskopisch sichtbaren Veränderungen menschlicher endometrialer Drüsenzellen im Verlauf des menstruellen Zyklus werden beschrieben.In der Proliferationsphase zeichnen sich die Drüsenzellen durch reichliche Ergastoplasmamembranen und Paladegranula aus, besonders in den basalen Zytoplasmaanteilen. Daneben sieht man, fast ausschließlich supranukleär, zahlreiche Sekretgranula von etwa 0,7 Durchmesser, deren Zahl am Ende der Proliferationsphase ein Maximum erreicht. Außerdem findet man noch am basalen Kernpol ein Sekret, das aus einem elektronenoptisch schwach konturierten Material besteht und aus Glykogen sowie Glyk- ound Mucoproteiden aufgebaut ist. Gleichzeitig werden die hier liegenden Paladegranula und Ergastoplasmamembranen aufgelöst. Die hier liegenden Mitochondrien vergrößern sich auf ein Mehrfaches, die Zahl ihrer Cristae nimmt zu. Sobald die Sekretproduktion abgeschlossen ist, verkleinern sie sich wieder.Zur Zeit der mittleren Sekretionsphase ist dieses Sekret in das apikale Zytoplasma gewandert. Dabei verschwinden die in den vorangehenden Subphasen reichlich vorhandenen Mikrovilli weitgehend. Gegen Ende des menstruellen Zyklus erscheinen die Zellen durch Abstoßung der apikalen Zytoplasmateile im ganzen niedriger. Kurz vor der Desquamation lösen sie sich dann voneinander, wobei sich der Interzellularraum auf ein Mehrfaches verbreitert. Gleichzeitig treten im Zytoplasma Degenerationszeichen wie vakuoläre Umwandlungen von Mitochondrien, Ergastoplasmaräume und Golgizone auf. Außerdem verlieren die Zellorganellen ihre scharfen Konturen, und die bis dahin runden oder ovalen Zellkerne zeigen eine unregelmäßige, teilweise sogar gelappte Begrenzung.Die seitlichen Zellgrenzen verlaufen in den dem Drüsenlumen nahen Abschnitten gerade oder leicht gewunden und besitzen zahlreiche Desmosomen. Weiter basal hingegen weisen sie starke Verzahnungen mit den Naehbarzellen auf, wobei die Desmosomen nur noch sehr selten zu finden sind. Nach Abstoßung der Zellspitzen in der späten Sekretionsphase reicht die Verzahnungszone bis an das Drüsenlumen heran.Die Basalmembran der Drüsen ist zu Beginn des Zyklus relativ schmal (etwa 300 Å). Sie wächst dann in den späteren Subphasen weiter an und erreicht am Ende des Zyklus eine Dicke von etwa 800 Å.Neben den Drüsenzellen begegnet man hin und wieder in allen Subphasen cilientragenden Zellen (Flimmerzellen), die relativ arm an Zytoplasmaorganellen sind. Die Cilien besitzen den typischen Aufbau mit 9 auf einem Kreisbogen liegenden und einem zentralen Filament, die aus je 2 Subfilamenten bestehen.Außerdem sieht man mitunter zwischen den Drüsenzellen einen weiteren Zelltyp, der reich an Paladegranula und Ergastoplasmastrukturen ist. Art und Funktion dieser Zellen, bei denen es sich nicht um Wanderzellen wie Plasmazellen, Lympho- oder Leukozyten handelt, ist noch unklar.Herrn Prof. Dr. med. H. Siebke und Herrn Oberarzt Doz. Dr. Puck, Universitäts-Frauenklinik Bonn, danke ich für Überlassung des Untersuchungsgutes, Herrn Prof. Dr. med. Piekarski, Hygiene-Institut der Universität Bonn, für die Benutzung des Siemens-Elmiskops.  相似文献   

14.
Zusammenfassung Die Schnäbel verschiedener Arten von Selenidera, Aulacorhynchus, Pteroglossus und Ramphastos werden in ihrer Form und Größe miteinander verglichen.Die für das soziologische Verhalten der Tukane bedeutsamen Pigmentfelder der Tukanschnäbel zeigen entweder keine erkennbaren Beziehungen zu den verschiedenen Hornlagen und ihren Bildungsstätten, oder aber sie sind in ihrer Ausdehnung als Wurzelbänder, Firststreifen und Farbdifferenzierungen der Schnabelspitzen und -schneiden an die Schnabelgrundstrukturen angelehnt.Außerdem können die Pigmentfelder in besonderen Hornlagen liegen. Auch in diesem Falle wird ein Farbmuster infolge des Hornflusses in mehr proximal gelegenen Teilen des Stratum gerininativum angelegt. Durch Härteunterschiede in den Hornlagen und durch die Abnutzung wird dann das in der Keimschicht angelegte Farbmuster zu dem artspezifischen Zeichnungsmuster des Schnabels. Die Hornzähne auf den Schnabelschneiden werden bei Selenidera maculirostris und bei Pteroglossus torquatus durch hellere Hornteile, die sich durch eine besondere Festigkeit auszeichnen, gebildet. Die dunklen Hornteile sind infolge ihrer weicheren Beschaffenheit einer stärkeren Abnutzung unterworfen.Der im Vergleich zu der Entfernung von der Schnabelbasis aufgezeichnete Abstand der Hornzähne der Schnabelschneiden zeigt trotz der unterschiedlichen Abnutzung häufig eine gleichartige Tendenz des Kurvenverlaufs sowohl bei verschiedenen Individuen der gleichen Art als auch bei einem Vergleich der rechten und linken Schnabelseite, wenn auch Rechts-Links-Verschiedenheiten in der Ausbildung der Hornzähne und der Querbänder beobachtet werden können. Es werden Kurven für die Abstände der Hornzähne von anderen Tukanarten zum Vergleich herangezogen.Für den Schnabel von Selenidera maculirostris wird in Übereinstimmung mit v. Kripp ein bedeutender Schnabelschub bei relativ kleiner Auswirkung der am Quadratum wirksamen Kraft festgestellt. Jedoch besitzt die Jugalspange keinen drehrunden Querschnitt.  相似文献   

15.
Zusammenfassung An Hand von Mazerationspräparaten wird der Papillarkörper der Mundhöhlenschleimhaut und seine Morphogenese dargestellt. An der Lippe werden 4 Zonen mit unterschiedlichem Papillarkörper festgestellt und durch kapillarmikroskopische Untersuchung bestätigt. Die Entwicklung des Grenzflächenreliefs wird von 13 cm SSL an verfolgt.Das Relief der Wangenschleimhaut hat mit dem Schleimhautteil der Lippen bzw. mit dem Sulcus alveolobuccalis große Ähnlichkeit.Am Papillarkörper des Zahnfleisches fallen besonders die warzige Zone im Bereich der Schneidezähne und die blattartigen Epithel- bzw. Bindegewebsleisten auf, die dem freien Zahnfleischrand parallel an den Backenzähnen verlaufen. Dem Grenzflächenrelief entsprechende kapillarmikroskopische Bilder werden gezeigt.Der harte Gaumen besitzt in den Plicae transversae, den sagittalen Epithelfurchen und in der Gaumenpapille besondere Bildungen der Grenzfläche.Das Grenzflächenrelief des weichen Gaumens ist weniger scharf geschnitten und besitzt im ganzen auch viel weniger Papillen.Die Entwicklung des Papillarkörpers des Gaumens wird von 13 cm SSL an verfolgt. Ein zunächst auftretendes System sagittaler Leisten wird später bei der Ausbildung der Papillen verwischt. Die Entwicklung der Gaumenpapille und der Ductus nasopalatini wird an Mazerations-präparaten aufgezeigt.Das Grenzflächenbild der Zunge ist im ganzen bestimmt durch V-förmige Leisten und Papillenreihen, die dem V linguae parallel verlaufen und fast die ganze Zunge erfassen. Der Papillarkörper der Papillae filiformes, fungiformes und circumvallatae wird beschrieben, wobei die Neufferschen Befunde bestätigt werden.Der Papillarkörper des Zungengrundes unterscheidet sich durch die geringere Höhe der Epithelleisten und die gleichmäßigere Verteilung der Bindegewebspapillen. Hier treten besonders große kokardenartige Bildungen um die Zungenbalgkrypten auf.Auch bei der Zunge sind die Eigenarten der verschiedenen Abschnitte schon bei 13 cm SSL erkennbar.In allen Regionen der Mundhöhle treten an den Einmündungen der Schleimdrüsengänge im Epithel konzentrische Muster auf (Kokarden und Rosetten). Einzelheiten dieser Muster sind je nach Region verschieden.Die frühangelegten epithelialen Leistensysteme, danach die Kokarden und Rosetten sowie die Zungenpapillen bestimmen den Charakter der Schleimhautregion zunächst. Die später entstehenden Einzelpapillen des Bindegewebes und die Ausgestaltung der einzelnen Leisten sind nach Dicke, Dichte und Höhe ebenfalls regional verschieden.Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

16.
Zusammenfassung Die Untersuchungen beziehen sich auf das Grundzytoplasma der Spermatozyten und Spermatiden von Tachea nemoralis, Helix lutescens und Helix pomatia.Das Grundzytoplasma der Spermatozyten hat eine schon mikroskopisch nachweisbare Schichtung. Es besteht aus einem Ekto- und aus einem Entoplasma. Das erstere ist hyalin und einschlußfrei. Das letztere besteht aus einer lipoidarmen, zentralen, mitochondrienhaltigen und aus einer lipoidreichen, peripheren, zum Teil das Zentrosom unmittelbar umhüllenden, den Golgi-Apparat enthaltenden Phase. Der Golgi-Apparat und die Mitochondrien sind konzentrisch in bezug auf das Zentrosom angeordnet. Der erstere liegt näher dem Zentrosom als die letzteren.Die Zellen wurden durch verschiedene Mittel zur Bildung von Myelinfiguren veranlaßt. Die Myelinfiguren entstehen aus der Plasmamembran, aus der lipoidreichen Phase des Entoplasmas und aus der Hülle der Golgi-Apparatelemente. Dagegen konnten die Mitochondrien, das zwischen ihnen liegende Grundzytoplasma, die Binnenkörper der Golgi-Apparatelemente und das Ektoplasma niemals zur Bildung von Myelinfiguren veranlaßt werden. Die Lipoide sind also ungleichmäßig im Zytoplasma verteilt. Die strukturellen Veränderungen der lipoidreichen Phase, welche experimentell entweder durch Verflüssigung oder durch Verfestigung ihrer Substanz hervorgerufen werden können, werden näher beschrieben.Die lipoidreichen Schichten des Entoplasmas sind nach Vitalfärbung mit Chrysoidin schwach positiv doppelbrechend in bezug auf den Radius der Zelle. Die Oberfläche der lebenden ungefärbten Zelle ist dagegen schwach negativ doppelbrechend in bezug auf den Radius. Diese Doppelbrechung wird nicht auf die Plasmamembran, sondern auf das äußere Ektoplasma bezogen.Das Grundzytoplasma hat also submikroskopischen Schichtenbau. Die miteinander alternierenden Eiweißfolien und Lipoidlamellen sind jedoch teilweise gerüstartig miteinander verbunden, da die nachgewiesene Doppelbrechung nur schwach ist. Die Lipoidlamellen sind jedoch nicht gleichmäßig im Grundzytoplasma verteilt. Am zahlreichsten müssen sie in der lipoidreichen Phase des Entoplasmas und in der Plasmamembran sein. Gering ist dagegen ihre Anzahl im Ektoplasma, welches hauptsächlich aus Eiweißfolien aufgebaut sein muß. Die Lipoidlamellen und Eiweißfolien sind innen konzentrisch in bezug auf das Zentrosom und außen konzentrisch in bezug auf den Kern und das Zentrosom angeordnet. Diese submikroskopische Struktur muß sehr labil sein, da der Aggregatzustand des Grundzytoplasmas in der Mitte zwischen einem typischen Gel und einem typischen Sol steht.Während der Reifungsteilungen zerfallen die lipoidreichen Schichten in Fibrillen, welche in bezug auf ihre Länge schwach negativ doppelbrechend sind. Während der Mitose geht die submikroskopische Schichtenstruktur des Grundzytoplasmas teilweise, insbesondere im Inneren der Zelle, in eine submikroskopische Fibrillenstruktur über.Die submikroskopische Struktur des Golgi-Apparates wurde vom Verfasser schon früher beschrieben. Auch wurde die Doppelbrechung der Mitochondrien schon früher festgestellt. Die Moleküle der Glyzeride sind senkrecht zur Länge der sehr kurzen, stäbchenförmigen Mitochondrien orientiert.Die Literatur, welche sich auf die mikroskopisch faßbare Schichtung des Grundzytoplasmas in verschiedenen Zellen bezieht, wird besprochen. Die mikroskopische Struktur der Zellen ist nämlich der grobmorphologische Ausdruck einer feineren submikroskopischen Struktur. Auch kann aus der Schichtung der mikroskopischen Einschlüsse auf die Schichtung der Substanzen des Grundzytoplasmas geschlossen werden. Die auf diese Weise gewonnenen Vorstellungen über die submikroskopische Struktur des Grundzytoplasmas können polarisationsoptisch geprüft werden.Das Grundzytoplasma der Spermatozyten, Ovozyten und der somatischen Zellen besteht aus einem Ekto- und aus einem Entoplasma. Das letztere ist entweder homogen oder besteht aus einer lipoidarmen, mitochondrienhaltigen und aus einer lipoidreichen, mit dem Golgi-Apparat verbundenen Phase. Das Ektoplasma der Ovozyten, Spermatozyten, Amöbozyten, Leukozyten und Fibroblasten ist in der Regel hyalin und einschlußfrei. Dagegen ist es in einigen Fällen nachgewiesen, daß die Neurofibrillen, Nissl-Körper, Myofibrillen, Tonofibrillen, Epithelfibrillen und retikulären Bindegewebsfibrillen nur im Ektoplasma liegen. Deshalb ist die Vermutung naheliegend, daß die spezifischen mikroskopischen Komponenten der Nerven-, Muskel-, Epithel- und retikulären Bindegewebszellen Differenzierungsprodukte des Ektoplasmas sind. Dagegen scheinen die Sekretions-, Exkretions- und Reserveprodukte, ebenso wie der Golgi-Apparat und die Mitochondrien immer nur im Entoplasma zu liegen.Der Golgi-Apparat und die Mitochondrien sind entweder konzentrisch in bezug auf den Kern oder konzentrisch in bezug auf das Zentrosom angeordnet. Im letzteren Fall wird das Zentrosom entweder unmittelbar vom Golgi-Apparat umgeben, während die Mitochondrien nach außen von ihm liegen oder umgekehrt. In jungen Ovozyten können diese mikroskopischen Komponenten besonders dicht um das Zentrosom zusammengedrängt sein, ja das ganze Entoplasma kann einen fast kompakten, vom Ektoplasma durch eine Membran scharf abgegrenzten Körper bilden. In solchen Fällen haben wir es mit einem Dotterkern im weiteren Sinne zu tun. Seltener scheinen die mikroskopischen Komponenten regellos im homogenen Entoplasma zerstreut zu sein.Gewöhnlich besteht das Grundzytoplasma nur aus einer Ekto- und Entoplasmaschicht. Seltener alternieren zahlreichere Ekto- und Entoplasmaschichten miteinander. Auch kann das Entoplasma als ein Netzwerk von Strängen im Ektoplasma liegen. Die lipoidreiche und die mitochondrienhaltige Phase bilden gewöhnlich zwei verschiedene Schichten des Entoplasmas. Jedoch kann sich die lipoidreiche Phase auch als ein kompliziertes Lamellensystem, ein Faden- oder ein Netzwerk in der mitochondrienhaltigen Phase verteilen oder umgekehrt. Die lipoidreiche, mit dem Golgi-Apparat verbundene und die mitochondrienhaltige Phase können entweder konzentrisch in bezug auf den Kern oder wenigstens teilweise auch konzentrisch in bezug auf das Zentrosom angeordnet sein. Im letzteren Fall wird das Zentrosom entweder unmittelbar von der lipoidreichen Phase umhüllt, während die mitochondrienhaltige nach außen von ihr liegt oder umgekehrt. Auch scheint eine der beiden Phasen des Entoplasmas bisweilen einen kompakten Körper bilden zu können.Das Grundzytoplasma ungefähr isodiametrischer Zellen (Ovozyten, Spermatozyten, Amöbozyten, Fibroblasten, Nervenzellen) scheint also überall aus Eiweißfolien und Lipoidlamellen, welche entweder konzentrisch in bezug auf den Kern oder auch teilweise konzentrisch in bezug auf das Zentrosom angeordnet sind, aufgebaut zu sein. Die Lipoidlamellen sind in den einen Schichten des Grundzytoplasmas zahlreicher und in den anderen spärlicher. Die Eiweißfolien und Lipoidlamellen sind wohl zum Teil gerüstartig miteinander verbunden. Nur die Ausläufer dieser Zellen haben eine submikroskopische fibrilläre Struktur. Dagegen müssen wir annehmen, daß in sehr stark gestreckten Zellen (Muskelzellen, hohe Zylinderepithelzellen) das gesamte Grundzytoplasma eine mehr oder weniger deutlich ausgesprochene submikroskopische fibrilläre Struktur hat. An der Peripherie solcher Zellen kommt es vielleicht sogar zur Filmstruktur. In schwächer anisodiametrischen Zellen hat das Entoplasma, die Plasmamembran und vielleicht auch das äußerste Ektoplasma, wenn es frei von mikroskopischen Fibrillen ist wohl noch eine submikroskopische Folien- und Lamellenstruktur.  相似文献   

17.
Zusammenfassung Die Ausführungsgänge des Pankreas von Chimaera monstrosa sind mit einem zweireihigen Epithel ausgekleidet, dessen äußere Zellen eine muköse Substanz sezernieren.Die inkretorischen Elemente des Pankreas werden durch größere, mit den Ausführungsgängen verbundene Inseln und durch im Gangepithel gelegene Inselzellknospen verkörpert. Mit dieser Lage nimmt der Inselapparat der holocephalen Chimaera eine Stellung zwischen dem Inselorgan der Elasmobranchier und der Teleostomen ein.Als Bauelemente der Inseln lassen sich außer A-, B- und spärlichen D-Zellen X-Zellen ausmachen, die zahlenmäßig überwiegen. Ein Homologon dieser Zellen ist für andere Tierarten nicht bekannt. Die Kerne der B-Zellen sind in den Kapillarwänden stark genähert; an der apikalen Partie der B-Zellverbände finden sich Interzellularlumina.Herrn Prof. Dr. med. Teizo Ogawa (Tokio) zum 60. Geburtstag gewidmet.Stipendiat der Alexander von Humboldt-Stiftung.  相似文献   

18.
Zusammenfassung Mit Hilfe von Schnitten und an isolierten Zellen wurde der submikroskopische Bau der Zellmembranen in der Wurzel, dem Stengel und dem Blatt untersucht. Im ersten Teil ist die Entwicklung der Primärwände an verschieden alten Parenchymzellen erläutert und mit den bisherigen Wachstumstheorien verglichen worden. Aus den Aufnahmen ist zu schließen, daß das Flächenwachstum sowohl durch Dehnung wie durch aktives Wachstum erfolgt. In einem weiteren Kapitel sind die sekundären Wandverdickungen in den Epidermisund Kollenchymzellen des Hyazinthenblattes und den Markzellen im Stengel von Sedum ausführlich beschrieben worden. Diese Membranen weisen eine deutliche Lamellenstruktur auf, die beim Kollenchym durch abwechselnde Pektin- und Zelluloseschiehten verursacht wird. Auch die stark verdickten Sekundärwände des Holzes sind lamelliert, jedoch liegen die Schichten so eng aufeinander, daß sie kaum mehr voneinander unterschieden werden können. Die Ergebnisse bestätigen also die bisherigen licht- und polarisationsoptischen Befunde in jeder Hinsicht.Die vorliegende Arbeit wurde durch ein Fellowship des National Institutes of Health in Bethesda ermöglicht. Die elektronenmikroskopischen Untersuchungen sind im Laboratorium von Herrn Dr. R. W. G. Wyckoff, dem ich für seine Unterstützung bestens danken möchte, gemacht worden.  相似文献   

19.
Zusammenfassung Das Tuber cinereum des Menschen enthält neben kolloidhaltigen Ganglienzellen nervöse Elemente mit teils unregelmäßig gebauten Kernen, wie sie bereits für die sog. Drüsennervenzellen bekannt sind, ferner Nervenzellen, deren Kerne Einschlüsse vom Typ der in den Pinealzellen nachzuweisenden Kernkugeln beherbergen. Das morphologische Verhalten der Kerne mit Kernkugeln läßt sich im Sinne der Lehre von der sekretorischen Tätigkeit des Zellkernes vegetativer Ganglienzellen deuten (Neurokrinie). Kernsekretionsbilder können somit nicht nur in den Pinealzellen (Dimitrowa, Krabbe, Collier u. a.), in den Pituicyten der menschlichen Neurohypophyse (Bargmann), sondern auch im Tuber cinereum nachgewiesen werden, dessen gonadotrope humorale Wirksamkeit durch Spatz und seine Mitarbeiter, insbesondere Bustamante, im Tierversuch experimentell erwiesen wurde. Es ist denkbar, daß die Kernsekretion im Tuber den Ausdruck humoraler Tätigkeit darstellt. Der mitgeteilte morphologische Befund unterstreicht die Sonderstellung des Zwischenhirnes als Sammelstätte vegetativer Zentren (neurokrines System, Roussy). Beachtung verdient meines Erachtens der Umstand, daß unter den bisher bekannt gewordenen Beispielen von Kernsekretion die Zellen inkretorischer Organe eine beachtliche Zahl ausmachen.Die vorgelegten Befunde reihen sich zahlreichen morphologischen Untersuchungen verschiedener Forscher über den Austritt von Kernsubstanzen aus dem Kernraum bzw. aus dem Zelleibe an. Soweit diese Angaben sich auf den Austritt von Nukleolen aus dem Zellkern beziehen, wird man sie nach wie vor mit großer Vorsicht aufnehmen müssen, da mit der Möglichkeit von Artefakten der histologischen Methodik zu rechnen ist. Die von G. Hertwig (1919) seinerzeit durchaus mit Recht vertretene Ansicht, der Abgabe geformter Stoffe aus dem Kernraume komme eine allgemeinere Bedeutung nicht zu, erfährt indessen durch den Nachweis der Kernsekretionsbilder im Zentralnervensystem eine Einschränkung.  相似文献   

20.
Zusammenfassung Die Variatonsbreite der Merkmale von vegetativen Zellen und von Gametangien ist beiChl. suboogama größer als es nach früheren Untersuchungen schien.Vegetative Zellen können ellipsoidische, eiförmige oder zylindrische Gestalt haben.—Die Oberfläche des Chromatophors herangewachsener vegetativer Zellen ist durch kurze, längs verlaufende Rippen gegliedert.Außer in Gruppen von drei Makrogametangien und einem Spermatogon (was die Regel bildet) bzw. einem Makrogametangien und einem Spermatogon, können die Gametangien auch isoliert vorkommen; sie sind dann relativ groß und entstehen höchstwahrscheinlich durch direkte Umwandlung aus einer Gametangienmutterzelle. In den großen Spermatogonen entsthen 16 oder 32 Spermein (sonst 4 oder 8).Die frisch entleerten Spermein besitzen eine Wand. Diese wird—früher oder später—vor der Befruchtung abgestreift.An den Makrogameten, jungen Zygoten sowie an den mitunger stellenweise abgehobenen Protoplasten vegetativer Zellen ist ein hyaliner Saum ausgebildet, dessen Natur sich nicht klären ließ.Der Entwicklungsgang der Gametangien und Gameten ist tagezeitlich gebunden. Unter den Beleuchtungs-und Temperaturverhältnissen, wie sie in der ersten Hälfte Mai herrschen, zerlegen sich die Gametangienmutterzellen in den Nachmittags-und Nachtstungen in vier Tochterzellen; diese reifen am folgenden Vormittag zu drei Makrogametangien und einem spermatogon heran und entlassen die Hauptmasse der Gameten in den Mittagsstunden.Mit 5 Textabbildungen  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号