首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The effect of spermidine and fetal bovine serum on DNA, RNA, and protein synthesis in phytohemagglutinin-stimulated human lymphocytes was investigated. At 10−4 M spermidine, DNA, RNA, and protein synthesis ceased and 70% of the original cell population died within 62 hr. Lower spermidine concentrations had no significant effect on DNA and protein synthesis, but caused an early, unexplained increase in the rate of RNA synthesis. Heating at 56°C for 30 min had no effect on the plasma amine oxidase activity in fetal bovine and horse sera but abolished the activity in human plasma. It is concluded that low amounts of aminoaldehydes and acrolein produced by plasma amine oxidase at spermidine concentrations below 10−4 M do not noticeably alter lymphocyte metabolism. However, the aminoaldehydes and acrolein produced become abruptly cytotoxic at 10−4 M spermidine. This work was supported in part by the Cystic Fibrosis Foundation.  相似文献   

2.
It is well known that the addition of spermine or spermidine to culture medium containing ruminant serum inhibits cellular proliferation. This effect is caused by the products of oxidation of polyamines that are generated by serum amine oxidase. Among the products, we found that acrolein is a major toxic compound produced from spermine and spermidine by amine oxidase. We then analysed the level of polyamines (putrescine, spermidine and spermine) and amine oxidase activity in plasma of patients with chronic renal failure. It was found that the levels of putrescine and the amine oxidase activity were increased, whereas spermidine and spermine were decreased in plasma of patients with chronic renal failure. The levels of free and protein-conjugated acrolein were also increased in plasma of patients with chronic renal failure. An increase in putrescine, amine oxidase and acrolein in plasma was observed in all cases such as diabetic nephropathy, chronic glomerulonephritis and nephrosclerosis. These results suggest that acrolein is produced during the early stage of nephritis through kidney damage and also during uraemia through accumulation of polyamines in blood due to the decrease in their excretion into urine.  相似文献   

3.
The oxidation of spermidine or homospermidine with bovine serum amine oxidase (BSAO) was monitored in situ, using proton nuclear magnetic resonance spectroscopy in water with 10% D(2)O. NMR assignments were performed by spin decoupling and COSY spectra or by comparison with data from synthetic aminoaldehydes. The results represent the first in situ characterisation of the highly reactive aminoaldehydes and showed oxidation at the N(1) amino group of spermidine and homospermidine. Comparison of homospermidine with a variety of substrates revealed that among straight chain di- and polyamines both an aminopropyl group and two primary amino groups separated by seven (norspermidine) or eight (spermidine) carbon atoms were required for optimal substrate ability. However, highest activity was seen with the substrate N-(4-aminobutyl)hexahydropyrimidine, showing that the substrate channel of BSAO has a dual substrate preference, with moderately bulky substituents at the distal end of a diamine contributing equally well as an alkyl amino group. Cytotoxic investigations of a variety of substrates for BSAO, confirmed previous results, that cytotoxicity is primarily linked to polyamines encompassing the aminopropyl moiety. No acrolein was observed at any time during the oxidation showing that it reacts very fast with available amino groups forming a variety of derivatives.  相似文献   

4.
The toxicity of extracellular spermine, determined in the presence of fetal calf serum, was studied using three cell lines: FM3A, L1210, and NIH3T3 cells. Amine oxidase in fetal calf serum produces aminodialdehyde generating acrolein spontaneously, H(2)O(2), and ammonia from spermine. Spermine toxicity was prevented by aldehyde dehydrogenase, but not by catalase. Similar concentrations of spermine and acrolein were needed to produce toxicity. Other aldehydes (formaldehyde, acetaldehyde, and propionaldehyde) and hydrogen peroxide were less toxic than acrolein. Spermidine and 3-aminopropanal, which produces acrolein, also exhibited severe cytotoxicity. The degree of cytotoxicity of spermine, spermidine, and 3-aminopropanal was nearly parallel with the amount of acrolein produced from each compound. Thus, it was deduced that acrolein is a major toxic compound produced from polyamines (spermine and spermidine) by amine oxidase.  相似文献   

5.
Trypanosoma lewisi and T. musculi were lysed when incubated with bovine serum in the presence of either spermine or spermidine. Similar results were obtained when a fraction from bovine serum containing polyamine oxidase (PAO) activity or a commercially available purified beef plasma PAO were used in lieu of bovine serum. Trypanosomes treated with cytotoxic concentrations of PAO-spermine failed to establish infection in rats. These results are similar to those from our previous studies with African trypanosomes. We now extend the properties of PAO by showing that human retroplacental serum (RPS) containing PAO activity was also capable of mediating trypanosome killing. This is of significance because the macrophage PAO resembles the human RPS PAO. In addition, our preliminary studies, in which an attempt was made to characterize the factors responsible for cytotoxicity, suggested that a number of products of the PAO-polyamine reaction display trypanocidal properties. These included hydrogen peroxide (H2O2), the aldehyde acrolein, and possibly aminoaldehydes. No evidence was obtained that the oxygen intermediates, superoxide and hydroxyl radicals, play a role in the PAO-mediated trypanosome killing. Ammonia, an additional product of PAO-polyamine reaction, was not trypanocidal. Furthermore, the data suggested that less than 30 min exposure to the reaction mixture (and possibly to aminoaldehydes) was adequate to cause irreversible damage to trypanosomes.  相似文献   

6.
Serum amine oxidase and/or porcine kidney diamine oxidase were trapped within reconstituted Sendai virus envelopes, and retained their activity. The trapped enzymes that were detected by radioimmunoblots were microinjected into cultured cells by fusion. When diamine oxidase was microinjected into cultured fibroblasts of chick or rat embryos, a temporary arrest in protein and DNA synthesis was observed. The inhibitory effect was more significant when both serum amine oxidase and kidney diamine oxidase were microinjected into those cultured cells. Fibroblasts of either chick or rat embryos transformed by Rous sarcoma virus were more susceptible to the injected enzymes than the normal cultures, showing a complete arrest in protein and DNA synthesis within 4 hours. Similar results were obtained by microinjecting diamine oxidase into cultured glioma cells. The injected enzyme catalyzed the oxidation of intracellular polyamines. The resulting oxidation product (hydrogen peroxide and aminoaldehydes) apparently caused the arrest in the synthesis of macromolecules.  相似文献   

7.
The system bovine plasma amine oxidase-polyamine-phosphate ion was investigated by activity measurements and 31P NMR spectroscopy. Lineweaver-Burk plots showed that phosphate ion, under physiological conditions, is an apparent competitive inhibitor of bovine plasma amine oxidase. While NMR measurements of the T1 of 31P do not suggest the binding of phosphate to/or near the paramagnetic Cu(II) sites of bovine plasma amine oxidase, the chemical shift dependence of 31P on spermidine concentration indicates the formation of a spermidine-phosphate complex. The value of the dissociation constant of this complex was found 18.5 +/- 1.4 mM, at pH 7.2, by NMR, in good agreement with the value 17.0 +/- 0.8 mM calculated from activity measurements, assuming the enzyme activity is proportional to the free amine concentration, under second order conditions. Our data suggest that the decrease of the free spermidine, due to the binding of phosphate ion, is responsible of the observed inhibition of bovine plasma amine oxidase.  相似文献   

8.
9.
Summary. The levels of polyamines (putrescine, spermidine and spermine) and polyamine oxidase in plasma of patients with chronic renal failure were determined. The level of putrescine was increased but the level of spermine was decreased in the plasma of these patients. The patients also had increased plasma polyamine oxidase activity leading to increased degradation of spermine. As acrolein was a major toxic compound produced from spermine by polyamine oxidase, the levels of free and protein-conjugated acrolein in plasma were also measured. Acrolein levels were enhanced in plasma of patients with chronic renal failure. The accumulated acrolein found as protein conjugates was equivalent to 170 μM, which was about 5-fold higher than in plasma of normal subjects. It was found that acrolein is mainly produced by spermine oxidase in plasma. An increase in putrescine, spermine oxidase and acrolein in plasma was observed in all cases such as diabetic nephropathy, chronic glomerulonephritis and nephrosclerosis. After patients with chronic renal failure had undergone hemodialysis, their levels of plasma polyamines, spermine oxidase and acrolein returned towards normal. It is likely that acrolein produced from spermine accumulates in the blood due to decreased excretion into urine and may function as a uremic “toxin”.  相似文献   

10.
The mammary cells in virgin mice are essentially non-proliferative, but they can be induced to undergo DNA synthesis in vitro in the presence of insulin. Time course studies on polyamine biosynthesis and DNA synthesis showed that insulin elicits sequential stimulation of the activity of the polyamine biosynthetic enzymes, ornithine decarboxylase, S-adenosyl-L-methionine decarboxylase (SAMDC) and spermidine synthase, and an increase in the concentration of spermidine prior to the augmentation of DNA synthesis. At 48 to 72 hours of culture when DNA synthesis is maximal, the concentration of spermidine increased 2? to 3-fold, whereas the level of spermine remained unchanged. Addition of methyl glyoxal bis(guanylhydrazone) (5—10 μM), a potent inhibitor of SAMDC, to the medium at the onset of culture resulted in inhibition of spermidine formation and DNA synthesis, but when added at 24 hours or 48 hours of culture, the inhibitory effect on DNA synthesis was greatly reduced. The drug, however, produced little inhibition of RNA and protein synthesis. Inhibition of DNA synthesis by the drug can be reversed by addition of spermidine or other polyamines such as putrescine, cadaverine and spermine to the culture. Spermidine is, however, the only polyamine that is effective at physiological concentrations (100~150 pmoles/mg tissue). These results suggest a possibility that spermidine may play a key role in the regulation of mammary cell proliferation.  相似文献   

11.
Since polyamines have been suggested to be one of the uremic "toxins," the levels of each polyamine, its oxidized product, acrolein, and amine oxidase in plasma of patients with renal failure were investigated. The level of putrescine was increased, whereas the level of spermine was decreased in the plasma of patients with renal failure. The patients also had increased serum amine oxidase activity leading to increased degradation of spermine. Both levels of free and protein-conjugated acrolein were also increased in plasma of patients with renal failure. The accumulated acrolein found as protein conjugates was equivalent to 180 microM, which was 6-fold higher than in plasma of normal subjects. It was found that acrolein is mainly produced by polyamine oxidase in plasma. A cell lysate containing polyamine oxidase was cytotoxic in the presence of spermine. Our results indicate that the level of acrolein is well correlated with the degree of seriousness of chronic renal failure.  相似文献   

12.
13.
N-Chlorosulfonyl dicyclohexylamine (CSD) was synthesized as a potent inhibitor of spermidine synthase and analyzed for antiproliferative effects on leukemic cells. The compound specifically inhibited spermidine synthase in a competitive mode with the substrate putrescine (Ki, 1.8 X 10(-7) M). When human leukemia Molt4B cells were cultured in the presence of the inhibitor, the intracellular level of spermidine and the rate of cell proliferation were markedly depressed. In these polyamine depleted and growth retarded cells the synthesis of protein, but not of DNA or RNA, was found to be significantly diminished.  相似文献   

14.
Although it is thought that the major factor responsible for cell damage is reactive oxygen species (ROS), our recent studies have shown that acrolein is more toxic than ROS. Thus, the relative importance of acrolein and ROS in cell damage during brain infarction was compared using photochemically induced thrombosis model mice. The levels of acrolein-conjugated albumin, and of 4-hydroxynonenal (HNE)-conjugated albumin and 8-OHdG were evaluated as indicators of damage produced by acrolein and ROS, respectively. The increase in acrolein-conjugated albumin was much greater than the increase in HNE-conjugated albumin or 8-OHdG, suggesting that acrolein is more strongly involved in cell damage than ROS during brain infarction. It was also shown that infarction led more readily to RNA damage than to DNA or phospholipid damage. As a consequence, polyamines were released from RNA, and acrolein was produced from polyamines, especially from spermine by spermine oxidase. Production of acrolein from spermine by spermine oxidase was clarified using spermine synthase-deficient Gy mice and transglutaminase 2-knockout mice, in which spermine content is negligible or spermidine/spermine N1-acetyltransferase activity is elevated.  相似文献   

15.
The inhibitory effect of the polyamines, spermidine and spermine, on the proliferation of human fibroblasts in culture was found to be reversed by the addition of aminoguanidine (AM), a specific and highly effective inhibitor of diamine oxidase (DAO) present in fetal calf serum (FCS). Aminoguanidine itself in concentration as high as 10(-3) M exhibited no effect upon cell proliferation nor did putrescine at similar concentrations. However, at higher concentrations of putrescine, cell proliferation was inhibited and this inhibition was unaffected by the addition of mM concentrations of AM. These studies support earlier hypotheses on the mechanisms of the toxic effects of polyamines on cell proliferation and establish further that the diamine oxidase-catalyzed metabolism of spermine and spermidine is necessary for their toxic effects in cell culture.  相似文献   

16.
The physiological action of two substituted oxime ethers namely: 4'-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3'-buten-2'(E)-ketoxime-N-O-propylether (compound No. 3) and 4'-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3'-buten-2'(E)-ketoxime-N-O-pentylether (compound No. 34,) were compared with that of JH III in an in vitro assay to monitor the synthesis of RNA and protein in male accessory reproductive gland (MARG) of Spodoptera litura by using 3H-leucine and 3H-uridine, respectively. Both the compounds have stimulated protein synthesis compare to control. Compound No 34 is slightly more effective than JH III in increasing the protein synthesis at physiological concentration of 10(-6) and 10(-5) M. Compound No 3 and JH III have doubled the RNA synthesis and increased the protein synthesis by 1.5 times over the control at 10(-4) to 10(-6) M concentrations. While JH III at 10(-5) M significantly enhanced RNA synthesis, similar effect is produced only at 10(-3) M by compound No 3 and 34.  相似文献   

17.
At concentrations of 25 ng/ml in serum-free medium, somatomedin C (SM-C) and insulin stimulated 3H-thymidine incorporation in adult human fibroblasts 4- and 1.5-fold, respectively. The presence of 0.25% human hypopituitary serum (HHS), which by itself had little effect, enhanced the mitogenicity of both SM-C and insulin. Furthermore, 10(-7)M dexamethasone dramatically potentiated SM-C stimulation (70-fold) and insulin stimulation (28-fold) of 3H-thymidine incorporation. With dexamethasone and 0.25% HHS, significant stimulation of DNA synthesis was seen at 2.5 ng/ml for both SM-C and insulin. The effects of SM-C and insulin on 3H-thymidine incorporation were additive. These 3H-thymidine incorporation results were clearly supported by cell replication studies. On the other hand, SM-C and insulin had equivalent, nonadditive effects on RNA and protein synthesis and protein degradation. Half-maximal effects were seen for both peptides on all three metabolic processes at 2-5 ng/ml. In contrast to their synergism with SM-C in the stimulation of DNA synthesis and cell replication, HHS and dexamethasone did not enhance SM-C stimulation of RNA or protein synthesis or protein degradation. These data indicate that SM-C and insulin stimulate DNA, RNA, and protein synthesis, protein degradation, and cell replication in adult human fibroblasts at nanomolar concentrations, suggesting that each peptide is capable of acting through its own receptor. Both SM-C and insulin are also capable of synergism with low concentrations of serum and dexamethasone in the stimulation of DNA synthesis and cell replication. It is proposed that SM-C and insulin both participate in the regulation of cell growth and metabolism in vivo.  相似文献   

18.
19.
Four substrate analogs, 4-(2-naphthyloxy)-2-butyn-1-amine (1), 1,4-diamino-2-chloro-2-butene (2), 1,6-diamino-2,4-hexadiyne (3), and 2-chloro-5-phthalimidopentylamine (4) have been tested as inhibitors against mammalian, plant, bacterial, and fungal copper-containing amine oxidases: bovine plasma amine oxidase (BPAO), equine plasma amine oxidase (EPAO), pea seedling amine oxidase (PSAO), Arthrobacter globiformis amine oxidase (AGAO), Escherichia coli amine oxidase (ECAO), and Pichia pastoris lysyl oxidase (PPLO). Reactions of 1,4-diamino-2-butyne with selected amine oxidases were also examined. Each substrate analog contains a functional group that chemical precedent suggests could produce mechanism-based inactivation. Striking differences in selectivity and rates of inactivation were observed. For example, between two closely related plasma enzymes, BPAO is more sensitive than EPAO to 1 and 3, while the reverse is true for 2 and 4. In general, inactivation appears to arise in some cases from TPQ cofactor modification and in other cases from alkylation of protein residues in a manner that blocks access of substrate to the active site. Notably, 1 completely inhibits AGAO at stoichiometric concentrations and is not a substrate, but is an excellent substrate of PSAO and inhibition is observed only at very high concentrations. Structural models of 1 in Schiff base linkage to the TPQ cofactor in AGAO and PSAO (for which crystal structures are available) reveal substantial differences in the degree of interaction of bound 1 with side-chain residues, consistent with the widely divergent activities. Collectively, these results suggest that the development of highly selective amine oxidase inhibitors is feasible.  相似文献   

20.
Oxidation of N-alkyl and C-alkylputrescines by diamine oxidases   总被引:1,自引:0,他引:1  
N-Methyl-, N-ethyl-, N-propyl- and N-butylputrescine were assayed as substrates of diamine oxidase from pea seedling and pig kidney. With the exception of N-methylputrescine they were found to be oxidized to the corresponding aminoaldehydes. 1-Methyl-, 2-methyl-, 1-ethyl- and 1-propylputrescine were oxidized by the oxidases at lower rates than the N-alkylderivatives. 1,3-Dimethylputrescine had negligible oxidation rates while 1,4-dimethylputrescine (2,5-diaminohexane) was not a substrate. The oxidation of putrescine by the kidney oxidase was inhibited by 1,4-dimethylputrescine, while the pea oxidase was strongly inhibited by the former as well as by 2-methylputrescine and 1,3-dimethylputrescine. Serum amine oxidase did not oxidize the substituted putrescines although several of the latter inhibited spermidine oxidation by this oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号