首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have designed and synthesized a molecular dyad comprising a carotenoid pigment linked to a fullerene derivative (C-C(60)) in which the carotenoid acts both as an antenna for the fullerene and as an electron transfer partner. Ultrafast transient absorption spectroscopy was carried out on the dyad in order to investigate energy transfer and charge separation pathways and efficiencies upon excitation of the carotenoid moiety. When the dyad is dissolved in hexane energy transfer from the carotenoid S(2) state to the fullerene takes place on an ultrafast (sub 100 fs) timescale and no intramolecular electron transfer was detected. When the dyad is dissolved in toluene, the excited carotenoid decays from its excited states both by transferring energy to the fullerene and by forming a charge-separated C.+ -C(60).- . The charge-separated state is also formed from the excited fullerene following energy transfer from the carotenoid. These pathways lead to charge separation on the subpicosecond time scale (possibly from the S(2) state and the vibrationally excited S(1) state of the carotenoid), on the ps time scale (5.5 ps) from the relaxed S(1) state of the carotenoid, and from the excited state of C(60) in 23.5 ps. The charge-separated state lives for 1.3 ns and recombines to populate both the low-lying carotenoid triplet state and the dyad ground state.  相似文献   

3.
Analysis of photosynthetic reaction centers from Rhodopseudomonas sphaeroides strains 2.4.1 and Ga shows that each contains approx. 1 mol of a specific carotenoid per mol of reaction center. In strain 2.4.1. the carotenoid is spheroidene (1-methoxy-3,4-didehydro-1,2,7',8',-tetrahydro-psi,psi-carotene); in strain Ga, it is chloroxanthin (1-hydroxy-1, 2, 7', 8'-tetrahydro-psi,psi-carotene). The carotenoid is bound to the same pair of proteins as are the bacteriochlorophylls and bacteriopheophytins of the reaction center. This binding induces strong circular dichroism in the absorption bands of the carotenoid. The carotenoid is close enough to the other pigments of the reaction center so that light energy transfers efficiently from the carotenoid to the bacteriochlorophyll, sensitizing bacteriochlorophyll fluorescence. The fluorescence polarization spectrum of the reaction centers shows that the transition vectors for the visible absorption bands of the carotenoid lie approximately parallel to the 600 nm (Qx) transition of the bacteriochlorophyll complex.  相似文献   

4.
脉孢菌lca-1基因调控无性产孢及类胡萝卜素的合成   总被引:1,自引:0,他引:1  
何纯  孙宪昀  段碧华 《菌物学报》2011,30(3):435-441
类胡萝卜素是很多生物细胞内重要的抗氧化剂,具有保护细胞免受紫外线伤害的功能。粗糙脉孢菌是少数几个类胡萝卜素合成基因比较清楚的真菌之一,为了深入了解该菌类胡萝卜素合成调控机制,通过对粗糙脉孢菌基因突变体库中6,087株突变体进行筛选,新发现6个基因敲除突变体营养生长正常,但类胡萝卜素的合成降低,其中表型较好的1个突变体,其无性产孢量与类胡萝卜素合成量均明显降低。鉴定发现该突变体所缺失的基因编码一种依赖ATP的染色体重建复合体的ATP酶链ISW1,将该基因命名为lca-1。进一步测定发现lca-1基因的突变导  相似文献   

5.
Energy transfer between carotenoid and bacteriochlorophyll has been studied in isolated B-800-850 antenna pigment-protein complexes from different strains of Rhodopseudomonas sphaeroides which contain different types of carotenoid. Singlet-singlet energy transfer from the carotenoid to the bacteriochlorophyll is efficient (75-100%) and is rather insensitive to carotenoid type, over the range of carotenoids tested. The yield of carotenoid triplets is low (2-15%) but this arises from a low yield of bacteriochlorophyll triplet formation rather than from an inefficient triplet-triplet exchange reaction. The rate of the triplet-triplet exchange reaction between the bacteriochlorophyll and the carotenoid is fast (Ktt greater than or equal to 1.4 . 10(8) S-1) and also relatively independent of the type of carotenoid present.  相似文献   

6.
Analysis of photosynthetic reaction centers from Rhodopseudomonas sphaeroides strains 2.4.1 and Ga shows that each contains approx. 1 mol of a specific carotenoid per mol of reaction center. In strain 2.4.1. the carotenoid is spheroidene (1-methoxy-3,4-didehydro-1,2,7′,8′-tetrahydro-ψ,ψ-carotene); in strain Ga, it is chloroxanthin (1-hydroxy-1,2,7′,8′-tetrahydro-ψ,ψ-carotene). The carotenoid is bound to the same pair of proteins as are the bacteriochlorophylls and bacteriopheophytins of the reaction center. This binding induces strong circular dichroism in the absorption bands of the carotenoid. The carotenoid is close enough to the other pigments of the reaction center so that light energy transfers efficiently from the carotenoid to the bacteriochlorophyll, sensitizing bacteriochlorophyll fluorescence. The fluorescence polarization spectrum of the reaction centers shows that the transition vectors for the visible absorption bands of the carotenoid lie approximately parallel to the 600 nm (Qx) transition of the bacteriochlorophyll complex.  相似文献   

7.
In order to enhance the carotenoid content of potato tubers, transgenic potato plants have been produced expressing an Erwinia uredovora crtB gene encoding phytoene synthase, specifically in the tuber of Solanum tuberosum L. cultivar Desiree which normally produces tubers containing c. 5.6 microg carotenoid g(-1) DW and also in Solanum phureja L. cv. Mayan Gold which has a tuber carotenoid content of typically 20 microg carotenoid g(-1) DW. In developing tubers of transgenic crtB Desiree lines, carotenoid levels reached 35 microg carotenoid g(-1) DW and the balance of carotenoids changed radically compared with controls: beta-carotene levels in the transgenic tubers reached c. 11 microg g(-1) DW, whereas control tubers contained negligible amounts and lutein accumulated to a level 19-fold higher than empty-vector transformed controls. The crtB gene was also transformed into S. phureja (cv. Mayan Gold), again resulting in an increase in total carotenoid content to 78 microg carotenoid g(-1) DW in the most affected transgenic line. In these tubers, the major carotenoids were violaxanthin, lutein, antheraxanthin, and beta-carotene. No increases in expression levels of the major carotenoid biosynthetic genes could be detected in the transgenic tubers, despite the large increase in carotenoid accumulation. Microarray analysis was used to identify a number of genes that were consistently up- or down-regulated in transgenic crtB tubers compared with empty vector controls. The implications of these data from a nutritional standpoint and for further modifications of tuber carotenoid content are discussed.  相似文献   

8.
We isolated a strain of Corynebacterineae from surface seawater from the Inland Sea of Japan. This strain, AIST-1, was determined to be a strain of Gordonia terrae based on its 16S rRNA gene sequence. The colony was red-colored, and the pigments were identified to be carotenoid derivatives. The structures of two major carotenoids were (2'S)-deoxymyxol 1'-glucoside, a dihydroxyl derivative of gamma-carotene with 12 conjugated double bonds, and (2'S)-4-ketodeoxymyxol 1'-glucoside. Their glucosyl acyl esters and mycoloyl esters were also identified. While these carotenoid moieties have been found in only a few other bacteria, the carotenoid mycoloyl esters are novel carotenoid derivatives. The type strain of G. terrae NBRC 10016T also contained the same carotenoids, but the composition of the two carotenoid glucosides was low and the total carotenoid content was less than one tenth of that of strain AIST-1.  相似文献   

9.
Direct evidence of carotenoid/cyclodextrin inclusion complex formation was obtained for the water-soluble sodium salt of beta-caroten-8'-oic acid (IV) by using 1H NMR and UV-Vis absorption spectroscopy. It was shown that this carotenoid forms a stable 1:1 inclusion complex with beta-cyclodextrin (stability constant K11 approximately 1500 M(-1)). All other carotenoids under study in the presence of cyclodextrins (CDs) form large aggregates in aqueous solution as demonstrated by very broad absorption spectra and considerable change in color. By using the EPR spin trapping technique, the scavenging ability of IV toward OOH radicals was compared in DMSO and in the aqueous CD solution. A considerable decrease in PBN/OOH spin adduct yield was detected in the presence of uncomplexed IV because of a competing reaction of the carotenoid with OOH radical. No such decrease occurred in the presence of the IV/CD complex. Moreover, a small increase in spin adduct yield (pro-oxidant effect) is most likely due to the reaction of the carotenoid with Fe3+ to regenerate Fe2+, which in turn regenerates the OOH radical. Our data show that CD protects the carotenoid from reactive oxygen species. On the other hand, complexation with CD results in considerable decrease in antioxidant ability of the carotenoid.  相似文献   

10.
Fiedor L  Akahane J  Koyama Y 《Biochemistry》2004,43(51):16487-16496
A simple reconstitution technique has been developed and then applied to prepare a series of light-harvesting antenna 1 (LH1) complexes with a programmed carotenoid composition, not available from native photosynthetic membranes. The complexes were reconstituted with different C(40) carotenoids, having two structural parameters variable: the functional side groups and the number of conjugated C-C double bonds, systematically increasing from 9 to 13. The complexes, differing only in the type of carotenoid, bound to an otherwise identical bacteriochlorophyll-polypeptide matrix, can serve as a unique model system in which the relationship between the carotenoid character and the functioning of pigment-protein complexes can be investigated. The reconstituted LH1 complexes resemble the native antenna, isolated from wild-type Rhodospirillum rubrum, but their coloration is entirely determined by carotenoid. Along with the increase in its conjugation size, the carotenoid absorption transitions gradually shift to the red. Thus, the extension of the conjugation size of the antenna carotenoids provides a mechanism for the spectral tuning of light harvesting in the visible part of the spectrum. The carotenoids in the reconstitution system promote the LH1 formation and seem to bind and transfer the excitation energy specifically only to a species with characteristically red-shifted absorption and emission maxima, apparently, due to a cooperative effect. Monitoring the LH1 formation by steady-state absorption and fluorescence spectroscopies reveals that in the presence of carotenoids it proceeds without spectrally resolved intermediates, leading directly to B880. The effect of the carotenoid is enhanced when the pigment contains the hydroxy or methoxy side groups, implying that, in parallel to hydrophobic interactions and pi-pi stacking, other interactions are also involved in the formation and stabilization of LH1.  相似文献   

11.
Chromatophores and peripheral light-harvesting complexes B800–850 with a trace of carotenoids were isolated from Chromatium minutissimum cells in which carotenoid biosynthesis was inhibited by diphenylamine. Three methods previously used for the reconstitution of carotenoids into either the light-harvesting (LH1) type complexes or reaction centers (RC) of carotenoidless mutants were examined for the possibility of carotenoid reconstitution into the carotenoid depleted chromatophores. All these methods were found to be unsuitable because carotenoid depleted complex B800–850 from Chr. minutissimum is characterized by high lability. We have developed a novel method maintaining the native structure of the complexes and allowing reconstitution of up to 80% of the carotenoids as compared to the control. The reconstituted complex has a similar CD spectrum in the carotenoid region as the control, and its structure restores its stability. These data give direct proof for the structural role of carotenoids in bacterial photosynthesis.  相似文献   

12.
The aim of this work was to evaluate the carotenoid content and genetic variability of banana accessions from the Musa germplasm collection held at Embrapa Cassava and Tropical Fruits, Brazil. Forty-two samples were analyzed, including 21 diploids, 19 triploids and two tetraploids. The carotenoid content was analyzed spectrophotometrically and genetic variability was estimated using 653 DArT markers. The average carotenoid content was 4.73 μg.g (-1) , and ranged from 1.06 μg.g (-1) for the triploid Nanica (Cavendish group) to 19.24 μg.g (-1) for the triploid Saney. The diploids Modok Gier and NBA-14 and the triploid Saney had a carotenoid content that was, respectively, 7-fold, 6-fold and 9-fold greater than that of cultivars from the Cavendish group (2.19 μg.g (-1)). The mean similarity among the 42 accessions was 0.63 (range: 0.24 to 1.00). DArT analysis revealed extensive genetic variability in accessions from the Embrapa Musa germplasm bank.  相似文献   

13.
Photoautotrophic cultivation of Chlorococcum humicola was performed in batch and continuous modes in different cultivating system arrangements to compare biomass and carotenoids’ concentration and their productivities. Batch result from stirred tank and airlift photobioreactors indicated the positive effect of increasing light intensity on growth and carotenoid production, whereas the finding from continuous cultivation indicated that carotenoid enhancement preferred high light intensity and nitrogen-deficient environment. The highest biomass (1.31?±?0.04?g?L?1) and carotenoid (4.59?±?0.06?mg?L?1) concentration as well as the highest productivities, 0.46?g?L?1 d?1 for biomass and 1.61?mg?L?1 d?1 for carotenoids, were obtained when maintaining high light intensity of 10 klx, BG-11 medium and 2% (v/v) CO2 simultaneously, while the highest carotenoid content (4.84?mg?g?1) was associated with high light intensity and nitrogen-deficient environment, which was induced by feed-modified BG-11 growth medium containing nitrate 20 folds lower than the original medium. Finally, the cultivating system arranged into smaller stirred tank photobioreactors in series yielded approximately 2.5 folds increase in both biomass and carotenoid productivities relative to using single airlift photobioreactor with equivalent working volume and similar operating condition.  相似文献   

14.
The influence of growth temperature (21–41°C) and light intensity on compositions of four carotenoids, and of fatty acids from carotenoid glucoside ester (carotenoid K-G-FA) and from the cellular lipids in Rhodococcus rhodochrous RNMS1 were quantitatively investigated. Lowering the temperature increased the total carotenoid content and the proportion of carotenoid K-G-FA. It increased the proportion of unsaturated fatty acids in both carotenoid K-G-FA and the cellular lipids, decreased that of saturated ones, and slightly decreased that of branched-chain ones. This bacterium adapted itself to low temperature by desaturating its fatty acids. The light intensity affected neither the content and the composition of carotenoids nor the composition of the fatty acids in carotenoid K-G-FA and the cellular lipids. This bacterium was a scotochromogenic strain.  相似文献   

15.
The orange carotenoid protein (OCP) governs photoprotection in the majority of cyanobacteria. It is structurally and functionally modular, comprised of a C‐terminal regulatory domain (CTD), an N‐terminal effector domain (NTD) and a ketocarotenoid; the chromophore spans the two domains in the ground state and translocates fully into the NTD upon illumination. Using both the canonical OCP1 from Fremyella diplosiphon and the presumably more primitive OCP2 paralog from the same organism, we show that an NTD‐CTD heterodimer forms when the domains are expressed as separate polypeptides. The carotenoid is required for the heterodimeric association, assembling an orange complex which is stable in the dark. Both OCP1 and OCP2 heterodimers are photoactive, undergoing light‐driven heterodimer dissociation, but differ in their ability to reassociate in darkness, setting the stage for bioengineering photoprotection in cyanobacteria as well as for developing new photoswitches for biotechnology. Additionally, we reveal that homodimeric CTD can bind carotenoid in the absence of NTD, and name this truncated variant the C‐terminal domain‐like carotenoid protein (CCP). This finding supports the hypothesis that the OCP evolved from an ancient fusion event between genes for two different carotenoid‐binding proteins ancestral to the NTD and CTD. We suggest that the CCP and its homologs constitute a new family of carotenoproteins within the NTF2‐like superfamily found across all kingdoms of life.  相似文献   

16.

Background

Carotenoids are multifunctional, taxonomically widespread and biotechnologically important pigments. Their biosynthesis serves as a model system for understanding the evolution of secondary metabolism. Microbial carotenoid diversity and evolution has hitherto been analyzed primarily from structural and biosynthetic perspectives, with the few phylogenetic analyses of microbial carotenoid biosynthetic proteins using either used limited datasets or lacking methodological rigor. Given the recent accumulation of microbial genome sequences, a reappraisal of microbial carotenoid biosynthetic diversity and evolution from the perspective of comparative genomics is warranted to validate and complement models of microbial carotenoid diversity and evolution based upon structural and biosynthetic data.

Methodology/Principal Findings

Comparative genomics were used to identify and analyze in silico microbial carotenoid biosynthetic pathways. Four major phylogenetic lineages of carotenoid biosynthesis are suggested composed of: (i) Proteobacteria; (ii) Firmicutes; (iii) Chlorobi, Cyanobacteria and photosynthetic eukaryotes; and (iv) Archaea, Bacteroidetes and two separate sub-lineages of Actinobacteria. Using this phylogenetic framework, specific evolutionary mechanisms are proposed for carotenoid desaturase CrtI-family enzymes and carotenoid cyclases. Several phylogenetic lineage-specific evolutionary mechanisms are also suggested, including: (i) horizontal gene transfer; (ii) gene acquisition followed by differential gene loss; (iii) co-evolution with other biochemical structures such as proteorhodopsins; and (iv) positive selection.

Conclusions/Significance

Comparative genomics analyses of microbial carotenoid biosynthetic proteins indicate a much greater taxonomic diversity then that identified based on structural and biosynthetic data, and divides microbial carotenoid biosynthesis into several, well-supported phylogenetic lineages not evident previously. This phylogenetic framework is applicable to understanding the evolution of specific carotenoid biosynthetic proteins or the unique characteristics of carotenoid biosynthetic evolution in a specific phylogenetic lineage. Together, these analyses suggest a “bramble” model for microbial carotenoid biosynthesis whereby later biosynthetic steps exhibit greater evolutionary plasticity and reticulation compared to those closer to the biosynthetic “root”. Structural diversification may be constrained (“trimmed”) where selection is strong, but less so where selection is weaker. These analyses also highlight likely productive avenues for future research and bioprospecting by identifying both gaps in current knowledge and taxa which may particularly facilitate carotenoid diversification.  相似文献   

17.
Since the yeast Phaffia rhodozyma was first described some 35 years ago, there has been significant interest in the development of commercial processes to exploit its ability to produce carotenoids (approximately 80% astaxanthin). However, the optimal conditions for carotenoid production are not well understood. A key limitation has been the lack of an appropriate sensor for on-line carotenoid quantification. In this study, an in situ Raman spectroscopy probe was used to monitor intracellular carotenoid production for three consecutive P. rhodozyma fed-batch experiments. Raman spectroscopy is particularly well suited to the study of carotenoids due to a resonance effect, which greatly enhances the intensity of the three fundamental carotenoid bands, nu(1) (1513 cm(-1), C(-) (-)C stretch), nu(2) (1154 cm(-1), C-C stretch), and nu(3) (1003 cm(-1), CH(3) rock). For all three cultures, the peak height of these bands was linearly correlated with intracellular carotenoid content (1 to 45 mg/L) to a precision of better than 5%, and the correlation from one experiment was directly applicable to others.  相似文献   

18.
AIMS: To identify beneficial oxygen vectors for Phaffia rhodozyma in liquid cultures, and to evaluate their use to improve the oxygen transfer and carotenoid production in the yeast cultures. METHODS AND RESULTS: Several liquid hydrocarbons were tested as oxygen vectors for improving the yeast growth and carotenoid production in shake-flask cultures of P. rhodozyma. While all nontoxic organic liquids (Log P: > or =5.6) showed a positive effect, n-hexadecane was proved to be the most beneficial for the yeast growth and carotenoid production. The addition of 9% (v/v) n-hexadecane to the liquid medium at the time of inoculation was found to be optimal, increasing the carotenoid yield by 58% (14.5 mg l(-1) vs 9.2 g l(-1) in the control) and the oxygen transfer rate (OTR) by 90%. CONCLUSIONS: The addition of n-hexadecane to shake-flask cultures of P. rhodozyma significantly improved the oxygen transfer in culture, thus increasing the carotenoid production. SIGNIFICANCE AND IMPACT OF THE STUDY: Use of organic oxygen vectors such as n-hexadecane may be a simple and useful means for enhancing oxygen transfer and carotenoid production in liquid fermentation of P. rhodozyma.  相似文献   

19.
Considering the importance of dietary constraints for the widely held view of carotenoid pigmentation as an honest quality indicator, there is surprisingly little data on carotenoid availability in different natural diets or along environmental gradients. Here we investigate the carotenoid availability in the main diet of breeding great tits Parus major , living in urban and rural environments with known differences in carotenoid pigmentation. Carotenoid availability for nestling great tits was investigated in two respects: (1) quantity and quality of diet (i.e., caterpillar abundance and their carotenoid concentration), and (2) parental feeding frequency. First, caterpillars were generally more abundant in the urban environment and the four common Lepidoptera (i.e., caterpillars) genera studied were also heavier here. Second, as determined by HPLC analysis of the caterpillar genera, carotenoid concentration was significantly lower in the urban caterpillars. Furthermore, all except one of the caterpillar genera had higher lutein/zeaxanthin ratio in urban areas, which is in accordance with earlier studies of carotenoid composition in great tit yolk. Third, parental feeding frequency was about twice as high to urban broods compared to rural broods. This result may simply reflect the higher caterpillar abundance (shorter search time) in the urban environment. Poor food quality (low carotenoid concentration) seems therefore to be compensated by quantity in the urban environment. As a consequence the carotenoid availability seems to be similar for nestlings in the two environments.  相似文献   

20.
Carotenoid pigments accumulate in the retinas of many animals, including humans, where they play an important role in visual health and performance. Recently, birds have emerged as a model system for studying the mechanisms and functions of carotenoid accumulation in the retina. However, these studies have been limited to a small number of domesticated species, and the effects of dietary carotenoid access on retinal carotenoid accumulation have not been investigated in any wild animal species. The purpose of our studies was to examine how variation in dietary carotenoid types and levels affect retinal accumulation in house finches (Carpodacus mexicanus), a common and colorful North American songbird. We carried out three 8-week studies with wild-caught captive birds: (1) we tracked the rate of retinal carotenoid depletion, compared to other body tissues, on a very low-carotenoid diet, (2) we supplemented birds with two common dietary carotenoids (lutein + zeaxanthin) and measured the effect on retinal accumulation, and (3) we separately supplemented birds with high levels of zeaxanthin - an important dietary precursor for retinal carotenoids - or astaxanthin - a dominant retinal carotenoid not commonly found in the diet (i.e. a metabolic derivative). We found that carotenoids depleted slowly from the retina compared to other tissues, with a significant (∼50%) decline observed only after 8 weeks on a very low-carotenoid diet. Supplementation with lutein + zeaxanthin or zeaxanthin alone significantly increased only retinal galloxanthin and ε-carotene levels, while other carotenoid types in the retina remained unaffected. Concentrations of retinal astaxanthin were unaffected by direct dietary supplementation with astaxanthin. These results suggest highly specific mechanisms of retinal carotenoid metabolism and accumulation, as well as differential rates of turnover among retinal carotenoid types, all of which have important implications for visual health maintenance and interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号