首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria are central to iron homeostasis. However, various proteins involved in iron metabolism inside the mitochondria are still to be identified. Herein we report that nuclear coded mitochondrial protein prohibitin binds to iron and involved in intracellular iron homeostasis. Like other iron regulated proteins, prohibitin mRNA contains functional iron-response element and is regulated by intracellular iron levels. Tyrosine residues involved in iron binding attribute of prohibitin are identified using site-directed mutagenesis. These data together suggest that prohibitin functions as an intracellular iron binding protein and plays a role in intracellular iron homeostasis.  相似文献   

2.
3.
4.
Mechanistic studies of ATP-dependent proteolysis demonstrate that substrate unfolding is a prerequisite for processive peptide bond hydrolysis. We show that mitochondrial Lon also degrades folded proteins and initiates substrate cleavage non-processively. Two mitochondrial substrates with known or homology-derived three-dimensional structures were used: the mitochondrial processing peptidase alpha-subunit (MPPalpha) and the steroidogenic acute regulatory protein (StAR). Peptides generated during a time course of Lon-mediated proteolysis were identified and mapped within the primary, secondary, and tertiary structure of the substrate. Initiating cleavages occurred preferentially between hydrophobic amino acids located within highly charged environments at the surface of the folded protein. Subsequent cleavages proceeded sequentially along the primary polypeptide sequence. We propose that Lon recognizes specific surface determinants or folds, initiates proteolysis at solvent-accessible sites, and generates unfolded polypeptides that are then processively degraded.  相似文献   

5.
DNA binding and nucleotide flipping by the human DNA repair protein AGT   总被引:5,自引:0,他引:5  
O(6)-alkylguanine-DNA alkyltransferase (AGT), or O(6)-methylguanine-DNA methyltransferase (MGMT), prevents mutations and apoptosis resulting from alkylation damage to guanines. AGT irreversibly transfers the alkyl lesion to an active site cysteine in a stoichiometric, direct damage reversal pathway. AGT expression therefore elicits tumor resistance to alkylating chemotherapies, and AGT inhibitors are in clinical trials. We report here structures of human AGT in complex with double-stranded DNA containing the biological substrate O(6)-methylguanine or crosslinked to the mechanistic inhibitor N(1),O(6)-ethanoxanthosine. The prototypical DNA major groove-binding helix-turn-helix (HTH) motif mediates unprecedented minor groove DNA binding. This binding architecture has advantages for DNA repair and nucleotide flipping, and provides a paradigm for HTH interactions in sequence-independent DNA-binding proteins like RecQ and BRCA2. Structural and biochemical results further support an unpredicted role for Tyr114 in nucleotide flipping through phosphate rotation and an efficient kinetic mechanism for locating alkylated bases.  相似文献   

6.
7.
Lon protease is a multifunctional enzyme, and its functions include the degradation of damaged proteins and naturally short lived proteins, ATPase and chaperone-like activities, as well as DNA binding. A thermostable Lon protease from Brevibacillus thermoruber WR-249 (Bt-Lon) has been cloned and characterized with an N-terminal domain, a central ATPase domain that includes a sensor and substrate discrimination (SSD) domain, and a C-terminal protease domain. Here we present a detailed structure-function characterization of Bt-Lon, not only dissecting the individual roles of Bt-Lon domains in oligomerization, catalytic activities, chaperone-like activity, and DNA binding activity but also describing the nature of oligomerization. Seven truncated mutants of Bt-Lon were designed, expressed, and purified. Our results show that the N-terminal domain is essential for oligomerization. The truncation of the N-terminal domain resulted in the failure of oligomerization and led to the inactivation of proteolytic, ATPase, and chaperone-like activities but retained the DNA binding activity, suggesting that oligomerization of Bt-Lon is a prerequisite for its catalytic and chaperone-like activities. We further found that the SSD is involved in DNA binding based on gel mobility shift assays. On the other hand, the oligomerization of Bt-Lon proceeds through a dimer <--> tetramer <--> hexamer assembly model revealed by chemical cross-linking experiments. The results also showed that hydrophobic interactions may play important roles in the dimerization of Bt-Lon, and ionic interactions are mainly responsible for the assembly of hexamers.  相似文献   

8.
9.
In mice, targeted deletion of the serine protease HtrA2 (also known as Omi) causes mitochondrial dysfunction leading to a neurodegenerative disorder with parkinsonian features. In humans, point mutations in HtrA2 are a susceptibility factor for Parkinson's disease (PARK13 locus). Mutations in PINK1, a putative mitochondrial protein kinase, are associated with the PARK6 autosomal recessive locus for susceptibility to early-onset Parkinson's disease. Here we determine that HtrA2 interacts with PINK1 and that both are components of the same stress-sensing pathway. HtrA2 is phosphorylated on activation of the p38 pathway, occurring in a PINK1-dependent manner at a residue adjacent to a position found mutated in patients with Parkinson's disease. HtrA2 phosphorylation is decreased in brains of patients with Parkinson's disease carrying mutations in PINK1. We suggest that PINK1-dependent phosphorylation of HtrA2 might modulate its proteolytic activity, thereby contributing to an increased resistance of cells to mitochondrial stress.  相似文献   

10.
RNA binding proteins often contain multiple arginine glycine repeats, a sequence that is frequently methylated by protein arginine methyltransferases. The role of this posttranslational modification in the life cycle of RNA binding proteins is not well understood. Herein, we report that Sam68, a heteronuclear ribonucleoprotein K homology domain containing RNA binding protein, associates with and is methylated in vivo by the protein arginine N-methyltransferase 1 (PRMT1). Sam68 contains asymmetrical dimethylarginines near its proline motif P3 as assessed by using a novel asymmetrical dimethylarginine-specific antibody and mass spectrometry. Deletion of the methylation sites and the use of methylase inhibitors resulted in Sam68 accumulation in the cytoplasm. Sam68 was also detected in the cytoplasm of PRMT1-deficient embryonic stem cells. Although the cellular function of Sam68 is unknown, it has been shown to export unspliced human immunodeficiency virus RNAs. Cells treated with methylase inhibitors prevented the ability of Sam68 to export unspliced human immunodeficiency virus RNAs. Other K homology domain RNA binding proteins, including SLM-1, SLM-2, QKI-5, GRP33, and heteronuclear ribonucleoprotein K were also methylated in vivo. These findings demonstrate that RNA binding proteins are in vivo substrates for PRMT1, and their methylation is essential for their proper localization and function.  相似文献   

11.
12.
13.
14.
Protein splicing is a post-translational process by which an intervening polypeptide, the intein, excises itself from the flanking polypeptides, the exteins, coupled to ligation of the exteins. The lon protease of Pyrococcus abyssi (Pab) is interrupted by an intein. When over-expressed as a fusion protein in Escherichia coli, the Pab lon protease intein can promote efficient protein splicing. Mutations that block individual steps of splicing generally do not lead to unproductive side reactions, suggesting that the intein tightly coordinates the splicing process. The intein can splice, although it has Lys in place of the highly conserved penultimate His, and mutants of the intein in the C-terminal region lead to the accumulation of stable branched-ester intermediate.  相似文献   

15.
16.
17.
DEAD-box helicases perform diverse cellular functions in virtually all steps of RNA metabolism from Bacteria to Humans. Although DEAD-box helicases share a highly conserved core domain, the enzymes catalyze a wide range of biochemical reactions. In addition to the well established RNA unwinding and corresponding ATPase activities, DEAD-box helicases promote duplex formation and displace proteins from RNA. They can also function as assembly platforms for larger ribonucleoprotein complexes, and as metabolite sensors. This review aims to provide a perspective on the diverse biochemical features of DEAD-box helicases and connections to structural information. We discuss these data in the context of a model that views the enzymes as integrators of RNA, nucleotide, and protein binding. This article is part of a Special Issue entitled: The Biology of RNA helicases — Modulation for life.  相似文献   

18.
Nonstructural (NS) protein 3 is a DEXH/D-box motor protein that is an essential component of the hepatitis C viral (HCV) replicative complex. The full-length NS3 protein contains two functional modules, both of which are essential in the life cycle of HCV: a serine protease domain at the N terminus and an ATPase/helicase domain (NS3hel) at the C terminus. Truncated NS3hel constructs have been studied extensively; the ATPase, nucleic acid binding, and helicase activities have been examined and NS3hel has been used as a target in the development of antivirals. However, a comprehensive comparison of NS3 and NS3hel activities has not been performed, so it remains unclear whether the protease domain plays a vital role in NS3 helicase function. Given that many DEXH/D-box proteins are activated upon interaction with cofactor proteins, it is important to establish if the protease domain acts as the cofactor for stimulating NS3 helicase function. Here we show that the protease domain greatly enhances both the direct and functional binding of RNA to NS3. Whereas electrostatics plays an important role in this process, there is a specific allosteric contribution from the interaction interface between NS3hel and the protease domain. Most importantly, we establish that the protease domain is required for RNA unwinding by NS3. Our results suggest that, in addition to its role in cleavage of host and viral proteins, the NS3 protease domain is essential for the process of viral RNA replication and, given its electrostatic contribution to RNA binding, it may also assist in packaging of the viral RNA.  相似文献   

19.
We found that a mouse homolog of human DNA polymerase delta interacting protein 38, referred to as Mitogenin I in this paper, and mitochondrial single-stranded DNA-binding protein (mtSSB), identified as upregulated genes in the heart of mice with juvenile visceral steatosis, play a role in the regulation of mitochondrial morphology. We demonstrated that overexpression of Mitogenin I or mtSSB increased elongated or fragmented mitochondria in mouse C2C12 myoblast cells, respectively. On the other hand, the silencing of Mitogenin I or mtSSB by RNA interference led to an increase in fragmented or elongated mitochondria in the cells, respectively, suggesting that Mitogenin I and mtSSB are involved in the processes of mitochondrial fusion and fission, respectively. In addition, we showed that the silencing of Mitogenin I resulted in an increase in the number of trypan blue-positive cells and the silencing of mtSSB resulted in an enhancement of the sensitivity of the cells to apoptotic stimulation by etoposide. The present results demonstrated that these proteins play a role in cell survival.  相似文献   

20.
Human replication protein A (RP-A) (also known as human single-stranded DNA binding protein, or HSSB) is a multisubunit complex involved in both DNA replication and repair. Potentially important to both these functions, it is also capable of complex formation with the tumor suppressor protein p53. Here we show that although p53 is unable to prevent RP-A from associating with a range of single-stranded DNAs in solution, RP-A is able to strongly inhibit p53 from functioning as a sequence-specific DNA binding protein when the two proteins are complexed. This inhibition, in turn, can be regulated by the presence of various lengths of single-stranded DNAs, as RP-A, when bound to these single-stranded DNAs, is unable to interact with p53. Interestingly, the lengths of single-stranded DNA capable of relieving complex formation between the two proteins represent forms that might be introduced through repair and replicative events. Increasing p53 concentrations can also overcome the inhibition by steady-state levels of RP-A, potentially mimicking cellular points of balance. Finally, it has been shown previously that p53 can itself be stimulated for site-specific DNA binding when complexed through the C terminus with short single strands of DNA, and here we show that p53 stays bound to these short strands even after binding a physiologically relevant site. These results identify a potential dual role for single-stranded DNA in the regulation of DNA binding by p53 and give insights into the p53 response to DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号