首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K J Vener  B M Calkins 《FASEB journal》1991,5(12):2640-2644
A cohort of phase I and phase II summary statements for the SBIR grant applications was evaluated to determine the strengths and weaknesses in approved and disapproved applications. An analysis of outcome variables (disapproval or unfunded status) was examined with respect to exposure variables (strengths or shortcomings). Logistic regression models were developed for comparisons to measure the predictive value of shortcomings and strengths to the outcomes. Disapproved phase I results were compared with an earlier 1985 study. Although the magnitude of the frequencies of shortcomings was greater in the present study, the relative rankings within shortcoming class were more alike than different. Also, the frequencies of shortcomings were, with one exception, not significantly different in the two studies. Differences in the summary statement review may have accounted for some differences observed between the 1985 data and results of the present study. Comparisons of Approved/Disapproved and Approved-Unfunded/Funded yielded the following observations. For phase I applicants, a lack of a clearly stated, testable hypothesis, a poorly qualified or described investigative team, and inadequate methodological approaches contributed significantly (in that order) to a rating of disapproval. A critical flaw for phase II proposals was failure to accomplish objectives of the phase I study. Methodological issues also dominate the distinctions in both comparison groups. A clear result of the data presented here and that published previously is that SBIR applicants need continuing assistance to improve the chances of their success. These results should serve as a guide to assist NIH staff as they provide information to prospective applicants focusing on key elements of the application. A continuing review of the SBIR program would be helpful to evaluate the quality of the submitted science.  相似文献   

2.
Extramural funding provides major support for biomedical research in academia, and National Institutes of Health (NIH) grants often constitute direct evaluation criteria for promotions and tenure. Therefore, NIH budget trends influence long-term scientific strategies and career decisions, as well as the progress of science itself. Our analysis of the last 37 years of NIH awards, however, reveals that the success rate of grant applications submitted for funding is negatively related to the total yearly amount of (inflation-adjusted) NIH extramural expenditure. Instead, as might be expected, the ratio between available funding and the number of submission directly predicts the probability of winning support in any given year. We purport that the considerable success rate variability can be parsimoniously explained by a proportional but delayed reaction of the number of applications to budget fluctuations. As a counterintuitive consequence, grant proposals conceived during lean periods might stand the best chance of success.  相似文献   

3.
What’s Your Cap: Know When to Put a Lid on Drinking (WYC) is a student-led and research-based binge-drinking prevention campaign at the University of Saskatchewan, Canada. It was formed to encourage a culture of alcohol moderation on the university campus through peer-to-peer engagement that emphasizes promotional items and activities of interest to students. Since its development in 2011, WYC has been guided by a logic model that promotes: 1) perceived and actual student drinking norms on campus; 2) benefits of a student-led initiative; and 3) merits of working with community partners. With the release of a clinical guide in Canada for alcohol screening, brief intervention, and referral (SBIR) in 2013, WYC was prompted to consider whether it is a form of population-based SBIR. SBIR is commonly undertaken in the substance use field by health care practitioners, and this paper shares the potential for a student-based SBIR modification on a university campus.  相似文献   

4.
Phosphoinositide 3OH-kinases (PI3K) are a family of lipid kinases that activates signalling pathways important for migration, cytoskeletal rearrangements, and cell survival. These processes are important hallmarks in transformation. We have evaluated the functional role of PI3K for development of a transformed morphology and migratory responses of murine fibroblasts (NIH/sis and COL1A1/NIH3T3 cell lines) stimulated in an autocrine fashion by constitutive expression of platelet-derived growth factor-BB (PDGF-BB). We show that prolonged treatment with the specific PI3K inhibitor LY294002, induced a reversion of the transformed morphology, and prevented density-independent growth and focus formation. Functional PI3K was also required for development of the transformed morphology of NIH/sis and COL1A1/NIH3T3. Furthermore, treatment with LY294002 completely perturbed random migration of the cells. In addition our data show that, in the signalling pathways downstream of PI3K, activation of the small GTPase Rac was a prerequisite for the transformation signal. Our data also indicate the presence of a suramin-insensitive PI3K activity. Most likely this was due to the presence of a suramin-insensitive intracellular PDGFR pool that allowed activation of PI3K located in intracellular compartments. In conclusion these data show that intact PI3K activity was required for the morphological alterations and the enhanced migratory response that are hallmarks for PDGF induced autocrine transformation.  相似文献   

5.
The regulation of cell morphology is a dynamic process under the control of multiple protein complexes acting in a coordinated manner. Phosphoinositide 3-kinases (PI3K) and their lipid products are widely involved in cytoskeletal regulation by interacting with proteins regulating RhoGTPases. Class II PI3K isoforms have been implicated in the regulation of the actin cytoskeleton, although their exact role and mechanism of action remain to be established. In this report, we have identified Dbl, a Rho family guanine nucleotide exchange factor (RhoGEF) as an interaction partner of PI3KC2β. Dbl was co-immunoprecipitated with PI3KC2β in NIH3T3 cells and cancer cell lines. Over-expression of Class II phosphoinositide 3-kinase PI3KC2β in NIH3T3 fibroblasts led to increased stress fibres formation and cell spreading. Accordingly, we found high basal RhoA activity and increased serum response factor (SRF) activation downstream of RhoA upon serum stimulation. In contrast, the dominant-negative form of PI3KC2β strongly reduced cell spreading and stress fibres formation, as well as SRF response. Platelet-derived growth factor (PDGF) stimulation of wild-type PI3KC2β over-expressing NIH3T3 cells strongly increased Rac and c-Jun N-terminal kinase (JNK) activation, but failed to show similar effect in the cells with the dominant-negative enzyme. Interestingly, epidermal growth factor (EGF) and PDGF stimulation led to increased extracellular signal-regulated kinase (Erk) and Akt pathway activation in cells with elevated wild-type PI3KC2β expression. Furthermore, increased expression of PI3KC2β protected NIH3T3 from detachment-dependent death (anoikis) in a RhoA-dependent manner. Taken together, these findings suggest that PI3KC2β modulates the cell morphology and survival through a specific interaction with Dbl and the activation of RhoA.  相似文献   

6.
Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma, a transmissible lung cancer of sheep. The envelope of JSRV may have oncogenic properties, since it can morphologically transform mouse NIH 3T3 cells and other fibroblast lines. Recently, we found that the cytoplasmic tail of the envelope transmembrane (TM) protein is necessary for transformation, and in particular a consensus binding motif (YXXM) for phosphatidylinositol 3-kinase (PI3K) is important. Moreover, JSRV-transformed cells show phosphorylation (activation) of Akt/protein kinase B, a downstream target of PI3K. In these studies, we directly tested for the involvement of PI3K in transformation by JSRV. Contrary to expectations, four different experiments indicated that PI3K is not necessary for JSRV-induced transformation: (i) cotransfection with a dominant negative truncated form of the PI3K regulatory subunit (Deltap85) did not affect transformation frequency, (ii) cells stably expressing Deltap85 showed the same frequencies of transformation as parental NIH 3T3 cells, (iii) fibroblasts established from double-knockout mice lacking PI3K p85alpha and p85beta could be transformed with JSRV envelope, and (iv) incubation of cells with the PI3K inhibitor LY294002 did not specifically inhibit transformation, nor did the drug reverse transformation of JSRV-transformed cells. One alternate explanation for the lack of transformation by YXXM mutants could be that they were defective in intracellular trafficking. However, confocal microscopy of epitope-tagged envelope proteins of both wild-type and nontransforming YXXM mutants showed a cell surface or plasma membrane localization. While PI3K is not required for JSRV-induced transformation of NIH 3T3 cells, the downstream target Akt kinase was found to be activated (phosphorylated) in JSRV-transformed PI3K-negative cells. Therefore, JSRV envelope can induce PI3K-independent phosphorylation of Akt.  相似文献   

7.
Some recent criticisms and critiques of numerical taxonomy are reviewed, together with some of its present shortcomings. It is pointed out that most of the problems are equally severe for orthodox taxonomy, and many of them can only be investigated by numerical techniques. The reasons for the general success of numerical methods in bacterial classification are discussed. Besides bringing deeper insights into taxonomy as a whole, numerical taxonomy is entering a new and heuristic phase, which includes potential applications to the study of evolution.  相似文献   

8.
We previously demonstrated that beta(4) integrin subunit overexpression increases in vitro invasiveness of NIH3T3 cells that have been transformed by ErbB-2 oncogene. We used this model to identify domains within the large beta(4) cytoplasmic domain that are involved in the interaction of alpha(6)beta(4) with ErbB-2, invasion, and phosphatidylinositol 3-kinase (PI3K) activation. For this purpose, we expressed deletion mutants of beta(4) that lacked either all or portions of the beta(4) cytoplasmic domain in NIH3T3/ErbB-2 cells. We also used an ecto-domain mutant in which most of the extracellular domain of beta(4) was replaced with a c-Myc tag. These transfectants were examined for their ability to invade Matrigel and their ability to activate PI3K, as well as for the ability of alpha(6)beta(4) to co-immunoprecipitate with ErbB-2. The results obtained revealed that a region of the beta(4) cytoplasmic domain between amino acids 854 and 1183 is critical for the ability of alpha(6)beta(4) integrin to increase invasion. Interestingly, the extracellular domain of beta(4) is not necessary for alpha(6)beta(4) to stimulate invasion. The association of alpha(6)beta(4) with ErbB-2 is dependent upon the beta(4) cytoplasmic domain and can occur in the absence of alpha(6)beta(4) heterodimerization. Finally, we observed strong activation of PI3K with beta(4) wild type and with those beta(4) deletion mutants that were able to stimulate invasion upon the expression in NIH3T3/ErbB-2 cells. In conclusion, our results establish that there is cooperation between alpha(6)beta(4) and ErbB-2 in promoting PI3K-dependent invasion and implicate a specific region of the beta(4) cytoplasmic domain (amino acids 854-1183) in this event.  相似文献   

9.
Omary MB  Offhaus H  Kunkel SL 《FASEB journal》2011,25(12):4108-4110
The U.S. National Institutes of Health (NIH) are facing significant budgetary challenges as a result of the current economic climate. The recent sunset of investigator-initiated R01-type research grants after one revised submission, coupled with the present lack of an NIH retooling funding mechanism for such grant applicants, creates a concerning risk that talented and well-trained investigators may be forced to give up their research careers. Existing NIH retooling mechanisms include the R55 Shannon Award, which was established in 1991 and was essentially replaced in 2005 by the R56 award. There is an urgent need to either significantly expand the R55/R56 mechanisms and definition of NIH grant bridging/retooling support for unfunded meritorious proposals or introduce a new mechanism that provides specific support to investigators with competitive but unfunded R01 revised grants. An expanded retooling funding mechanism deserves implementation during continuing assessment of whether allowance of only one revision of research proposals has achieved its initial intended goals.  相似文献   

10.
Phosphatidylinositol (PI) 3-kinase is required for G1 to S phase cell cycle progression stimulated by a variety of growth factors and is implicated in the activation of several downstream effectors, including p70S6K. However, the molecular mechanisms by which PI 3-kinase is engaged in activation of the cell cycle machinery are not well understood. Here we report that the expression of a dominant negative (DN) form of either the p110α catalytic or the p85 regulatory subunit of heterodimeric PI 3-kinase strongly inhibited epidermal growth factor (EGF)-induced upregulation of cyclin D1 protein in NIH 3T3(M17) fibroblasts. The PI 3-kinase inhibitors LY294002 and wortmannin completely abrogated increases in both mRNA and protein levels of cyclin D1 and phosphorylation of pRb, inducing G1 arrest in EGF-stimulated cells. By contrast, rapamycin, which potently suppressed p70S6K activity throughout the G1 phase, had little inhibitory effect, if any, on either of these events. PI 3-kinase, but not rapamycin-sensitive pathways, was also indispensable for upregulation of cyclin D1 mRNA and protein by other mitogens in NIH 3T3 (M17) cells and in wild-type NIH 3T3 cells as well. We also found that an enforced expression of wild-type p110 was sufficient to induce cyclin D1 protein expression in growth factor-deprived NIH 3T3(M17) cells. The p110 induction of cyclin D1 in quiescent cells was strongly inhibited by coexpression of either of the PI 3-kinase DN forms, and by LY294002, but was independent of the Ras-MEK-ERK pathway. Unlike mitogen stimulation, the p110 induction of cyclin D1 was sensitive to rapamycin. These results indicate that the catalytic activity of PI 3-kinase is necessary, and could also be sufficient, for upregulation of cyclin D1, with mTOR signaling being differentially required depending upon cellular conditions.  相似文献   

11.
This study identifies some early events contributing to the redox regulation of platelet-derived growth factor receptor (PDGFr) activation and its signalling in NIH3T3 fibroblasts. We demonstrate for the first time that the redox regulation of PDGFr tyrosine autophosphorylation and its signalling are related to NADPH oxidase activity through protein kinase C (PKC) and phosphoinositide-3-kinase (PI3K) activation and H2O2 production. This event is also essential for complete PDGF-induced activation of c-Src kinase by Tyr416 phosphorylation, and the involvement of c-Src kinase on H2O2-induced PDGFr tyrosine phosphorylation is demonstrated, suggesting a role of this kinase on the redox regulation of PDGFr activation. Finally, it has been determined that not only PI3K activity, but also PKC activity, are related to NADPH oxidase activation due to PDGF stimulation in NIH3T3 cells, as it occurs in non-phagocyte cells. Therefore, we suggest a redox circuit whereby, upon PDGF stimulation, PKC, PI3K and NADPH oxidase activity contribute to complete c-Src kinase activation, thus promoting maximal phosphorylation and activation of PDGFr tyrosine phosphorylation.  相似文献   

12.
The secreted growth factor pleiotrophin (PTN) can induce mitogenesis in cells that express the receptor for this growth factor, anaplastic lymphoma kinase (ALK). Here we examine the ability of PTN to produce anti-apoptotic signals. We demonstrate that PTN is a survival factor for SW-13 epithelial cells and show that ribozyme-mediated depletion of ALK from SW-13 cells abolishes this effect of PTN. Furthermore, in serum-starved NIH3T3 fibroblasts PTN prevents apoptosis (measured by annexin V staining) with an EC(50) of 0.2 ng/ml and induces cell growth at higher concentrations of PTN. A polyclonal antibody against the PTN ligand-binding domain of the ALK receptor (alpha-LBD) was a partial agonist for ALK in NIH3T3 cells. This alpha-LBD antibody showed high agonist activity for anti-apoptosis (56 +/- 9% relative to PTN), low agonist activity for cell growth (21 +/- 1% relative to PTN), and was an antagonist of PTN-induced cell growth (61 +/- 2% inhibition). Both MAP kinase and phosphatidylinositol (PI) 3-kinase cascades in NIH3T3 cells were activated by PTN, and this effect persisted for up to 3 h. Surprisingly, the anti-apoptotic effect of PTN was completely blocked by the MAP kinase inhibitor UO126, but was not affected by the PI 3-kinase inhibitor LY294002. In contrast, PTN-dependent cell growth required both MAPK and PI 3-kinase activity. We conclude that anti-apoptotic signaling of PTN through ALK in NIH3T3 fibroblasts is via the MAP kinase pathway.  相似文献   

13.
PTEN is a tumor suppressor gene encoding a phosphatase, and it negatively regulates cell survival mediated by the phosphoinositol 3-kinase (PI3-Kinase)-Akt pathway. To elucidate PTEN expression and its effect on the PI3-kinase-Akt pathway in fibroblasts and macrophages, we investigated the expression of PTEN and the phosphorylation status of Akt in NIH3T3 and RAW264.7 cells treated with LPS. Phosphorylation of Akt was induced by LPS treatment in a dose-dependent manner in RAW264.7 cells, but not in NIH3T3 cells. LPS induced the expression of PTEN in a dose and time-dependent manner in NIH3T3 cells (0-1 microg/ml, 0-6h). However, LPS did not stimulate PTEN expression in RAW264.7 cells. These data indicate the existence of diverse mechanisms for PTEN expression and Akt activation in fibroblasts and macrophages. RNA interference using double-stranded RNA specific for the PTEN gene reduced both mRNA and protein levels of PTEN in NIH3T3 cells treated or not with LPS. The phosphorylation status of Akt in NIH3T3 cells stimulated with LPS did not change when the PTEN expression had been inhibited by RNA interference. The present results suggest that the up-regulation of PTEN expression by LPS is not involved in the activation of Akt in NIH3T3 cells. PTEN expression might be involved in the diverse inflammatory responses to LPS in fibroblasts and macrophages.  相似文献   

14.
Phosphatidylinositol 3-kinase (PI 3-kinase) activity has been detected in immune complexes with active protein tyrosine kinases, and its products have been measured in intact cells in response to growth stimuli. Both methods do not directly evaluate whole cell PI 3-kinase enzymatic activity. We have developed a sensitive method to measure PI 3-kinase activity in diluted, detergent-containing whole cell extracts and used this method to determine total, soluble, and membrane-associated PI 3-kinase activity in PDGF-stimulated NIH 3T3 fibroblasts. PDGF stimulation induced a 1.4-fold increase in total Nonidet P-40-extractable PI 3-kinase activity, which occurred within 1 min and was maintained above basal levels at 10 min. At the same time, PI 3-kinase activity in the soluble fraction decreased 30-50%. However, membrane-bound PI 3-kinase activity increased 2.4-fold at 1 min and 3.1-fold at 5 min. Translocation of the p85 PI 3-kinase subunit to the membrane was maximal at 10 min. These results suggest that PDGF-mediated activation of PI 3-kinase in membrane fraction results from initial intrinsic enzymatic activation followed by translocation from the cytosol.  相似文献   

15.
16.
The 14-3-3 proteins are a set of highly conserved scaffolding proteins that have been implicated in the regulation of a variety of important cellular processes such as the cell cycle, apoptosis and mitogenic signaling. Recent evidence indicates that the expression of some of the family members is elevated in human cancers suggesting that they may play a role in tumorigenesis. In the present study, the oncogenic potential of 14-3-3γ was shown by focus formation and tumor formation in SCID mice using 14-3-3γ transfected NIH3T3 mouse fibroblast cells. In contrast, 14-3-3σ, a putative tumor suppressor, inhibited NIH3T3 transformation by H-ras and c-myc. We also report that activation of both MAP kinase and PI3K signaling pathways are essential for transformation by 14-3-3γ. In addition, we found that 14-3-3γ interacts with phosphatidylinositol 3-kinase (PI3K) and TSC2 proteins indicating that it could stimulate PI3K signaling by acting at two points in the signaling pathway. Overall, our studies establish 14-3-3γ as an oncogene and implicate MAPK and PI3K signaling as important for 14-3-3γ induced transformation.  相似文献   

17.
OBJECTIVES--To investigate applications for general practice partnership vacancies by established general practitioner principals, the reasons for changing partnerships, and the disincentives to these moves. DESIGN--Confidential postal questionnaire. SUBJECTS--Applicants to 367 general practices in the United Kingdom advertising for a new full time partner. MAIN OUTCOME MEASURES--The proportion of job applications containing at least one application from established principals, proportion of principals appointed as new partners, incentives and disincentives to changing partnership. RESULTS--Of 325 replies (89% response rate) received, 292 were suitable for further analysis. 210/241 (87%) of all applications contained some applications from at least one established principal. 12% of all applications were made by principals. 41/296 (14%) of the newly appointed partners had previously been an established principal. The main reasons for leaving the previous partnership were a desire to move locality or not getting on with previous partners. The disincentives to changing partnerships were largely financial, including the cost of the move and loss of income. CONCLUSIONS--It is possible for established principals in general practice to overcome the disincentives and to change partnerships. There did not seem to be any overall prejudice against appointing principals, in contrast to previously published views.  相似文献   

18.
19.
20.
Using loss-of-function mutants of Ros and inducible epidermal growth factor receptor-Ros chimeras we investigated the role of various signaling pathways in Ros-induced cell transformation. Inhibition of the mitogen-activated protein kinase (MAPK) pathway with the MEK (MAP/extracellular signal-regulated kinase kinase) inhibitor PD98059 had little effect on the Ros-induced monolayer and anchorage-independent growth of chicken embryo fibroblasts and NIH3T3 cells even though more than 70% of the MAPK was inhibited. In contrast, inhibiting the phosphatidylinositol 3-kinase (PI3K) pathway with the drug LY294002, a dominant negative mutant of PI3K, Deltap85, or the phosphatidylinositol phosphatase PTEN (phosphatase and tensin homologue deleted in chromosome ten) resulted in a dramatic reduction of v-Ros- and epidermal growth factor receptor-Ros-promoted anchorage-independent growth of chicken embryo fibroblasts and NIH3T3 cells, respectively. Parallel and downstream components of PI3K signaling such as the Rho family GTPases (Rac, Rho, Cdc42) and the survival factor Akt were all shown to contribute to Ros-induced anchorage-independent growth, although Rac appeared to be less important for Ros-induced colony formation in NIH3T3 cells. Furthermore, the transformation-attenuated v-Ros mutants F419 and DI could be complemented by constitutively active mutants of PI3K and Akt. Finally, we found that overexpressing a constitutively active mutant of STAT3 (STAT3C) conferred a resistance to the inhibition of Ros-induced anchorage-independent growth by LY294002, suggesting a possible overlap of functions between PI3K and STAT3 signaling in mediating Ros-induced anchorage-independent growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号