首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Summary To analyse the respective role of TL- and TR-DNA in root induction by agropine-type Agrobacterium rhizogenes Ri plasmids, deletions covering the TL- or the TR-regions were constructed in vitro and introduced into pRiA4 by marker exchange. Each T-region of pRiHRI was also cloned separately on an independent replicon and used in a binary system with the virulence functions of either an Ri or a Ti plasmid provided in trans. Transformed roots were induced on tobacco and tomato explants by TL-DNA as well as by TR-DNA, suggesting that agropine type Ri plasmids from strains A4 and HRI can induce root proliferation by two independent transformation mechanisms. The root induction by the TR-DNA is probably due to auxin biosynthesis by gene products of aux loci homologous to the tms genes of Ti plasmid T-DNA. The molecular mechanism of root proliferation induced by the TL-DNA is probably equivalent to that of mannopine type Ri plasmid T-DNA.  相似文献   

2.
A physical map was constructed for the 250-kilobase plasmid pRiA4b, which confers the virulence properties of a strain of Agrobacterium rhizogenes for hairy root disease in plants. The complete HindIII and KpnI restriction map was determined from a collection of overlapping HindIII partial digest clones. Homologous regions with two well-characterized plasmids that confer virulence for crown gall disease, plasmids pTiA6 and pTiT37, were mapped on pRiA4b. As much as 160 kilobases of pRiA4b had detectable homology to one or both of these crown-gall-tumor-inducing plasmids. About 33 kilobases of pRiA4b hybridized to the vir region of pTiA6, a segment of DNA required for virulence of Agrobacterium tumefaciens. Portions of pTiA6 and pTiT37 transferred into plant cells in crown gall disease (T-DNA), shared limited homology with scattered regions of pRiA4b. The tumor morphology loci tms-1 and tms-2 from the T-DNA of pTiA6 hybridized to pRiA4b. A T-DNA fragment containing the tml and tmr tumor morphology loci also hybridized to pRiA4b, but the homology has not been defined to a locus and is probably not specific to tmr. A segment of pRiA4b T-DNA which was transferred into plant cells in hairy root disease lacked detectable homology to pTiA6 and had limited homology at one end to the T-DNA of pTiT37.  相似文献   

3.
4.
Analysis of published sequences for Ri TL-DNA (root-inducing left-hand transferred DNA) of Agrobacterium rhizogenes revealed several unsuspected structural features. First, Ri TL-DNA genes are redundant. Using redundancy as a criterion, three regions (left, middle and right) were discerned. The left one, ORFs (open reading frames) 1–7, contains no detectable redundancy. In the middle region a highly diverged gene family was detected in ORFs 8, 11, 12, 13 and 14. The right region contains an apparently recent duplication (ORF 15 =18+17). We interpret the phenomenon of redundancy, particularly in the central region that encodes the transformed phenotype, to be an adaptation that ensures function in a variety of host species. Comparison of Ri TL-DNA and Ti T-DNAs from Agrobacterium tumefaciens revealed common structures, unpredicted by previous nucleic acid hybridization studies. Ri TL-DNA ORF 8 is a diverged Ti T-DNA tms1. Both Agrobacterium genes consist of a member of the diverged gene family detected in the central part of the Ri TL-DNA, but fused to a sequence similar to iaaM of Pseudomonas savastonoi. Other members of this gene family were found scattered throughout Ti T-DNA. We argue that the central region of Ri and the part of Ti T-DNA including ORFs 5–10 evolved from a common ancestor. We present the hypothesis that the gene family encodes functions that alter developmental plasticity in higher plants.  相似文献   

5.
The presence of T-DNA was examined by Southern blot analysis in 16 regenerated shoot lines derived from 6 Agrobacterium rhizogenes-transformed root clones of Solanum tuberosum L. cv. Bintje.TR-DNA, present in regenerated shoot lines from 3 out of 6 root clones was correlated with the presence of opines. One root clone produced opines up to 2.5 years of subculture. However, plant regeneration from and prolonged subculturing of this root clone resulted in loss of opine synthesis, caused by deletion of TR-DNA.TL-DNA inserted at 1 to 5 independent loci was found in 14 of the 16 shoot lines. Surprisingly, 1 to 2 additional insertions next to similar insertions of TL-DNA were found in shoot lines from the same root clone (named sister shoot lines) in 2 out of 4 root clones. Nevertheless, this did not result in gross phenotypic variation between sister shoot lines. Another root clone regenerated 1 shoot line with an Ri phenotype, containing 1 insertion of TL-DNA, and 2 shoot lines with a normal Bintje phenotype without TL-DNA. The 5th root clone showed no difference between sister shoot lines and the 6th root clone produced only 1 shoot line.We conclude that during prolonged root culture and during shoot regeneration from root clones deletion of TL- and TR-DNA insertions can occur. The significance of the frequency of deletion of T-DNA of the Ri plasmid is discussed.  相似文献   

6.
D Bouchez  J Tourneur 《Plasmid》1991,25(1):27-39
The agropine/mannopine synthesis region of the TR region of the Ri plasmid of Agrobacterium rhizogenes strain A4 was localized on the basis of sequence similarity with probes from Ti plasmids of Agrobacterium tumefaciens and analysis of transposon insertions. The nucleotide sequence of the right part of the TR-DNA of pRiA4, encompassing the three genes involved in mannityl-opine synthesis, was determined and compared to the sequence of the corresponding region of the octopine-type Ti plasmid pTi15955. The organization of this region is strongly conserved between Ri and Ti plasmids, but the similarity is restricted to the coding sequences: no homology was detected in the 5' and 3' flanking sequences. The mas1' and ags proteins are the most conserved, showing more than 68% amino acid conservation, whereas the mas2' proteins are only 59% identical. Significant G/C content and codon usage differences are observed between pTi15955 and pRiA4. An open reading frame strongly similar to that of bacterial repressors is situated immediately to the right of the TR region.  相似文献   

7.
A Charon 4A phage library, containing insert DNA isolated from a morning glory (Convolvulus arvensis) plant genetically transformed by Ri T-DNA from Agrobacterium rhizogenes strain A4, was used to isolate a lambda clone that contains part of the Ri TL-DNA and the complete TR-DNA. The two Ri T-DNAs were recovered adjacent to each other in a tail-to-tail configuration (i.e. with the TR-DNA inverted with respect to the TL-DNA). Comparison of nucleotide sequences from this lambda clone with the corresponding sequences from the Ri plasmid allowed us to determine the location of the T-DNA/plant junction for the right end of the TL-DNA and the left and right ends of the TR-DNA. We located, near each of these borders, a 24 bp sequence that is similar to the 24 bp consensus sequence found near the pTi T-DNA extremities. In addition, sequences similar to the core overdrive sequence from pTi are located near each right border. Hybridization and nucleotide sequence analysis of the DNA adjacent to the TL/TR junction shows that no plant DNA is located between the TL and TR-DNAs and suggests that the plant DNA adjacent to the end of the TR-DNA may have been rearranged during the integration into the plant genome.  相似文献   

8.
Summary Agrobacterium rhizogenes induces root formation at the wound site of inoculation in plants and inserts a fragment of its plasmid (Ri) into the plant nuclear DNA. Parts of the transferred region (T-region) of the Ri plasmid of A. rhizogenes strain A4 or 8196 are cloned in Escherichia coli. Insertions of the E. coli lacZ coding region into the hybrid plasmids were made in vivo using transduction by miniMu. Twenty insertions localized in the TL-DNA of pRiA4 (or pRi1855) and 2 inserts in the T-DNA of pRi8196 were obtained in E. coli. One of the TL-DNA insertions is saved up because it is linked to an internal T-DNA deletion; the others because they confer a lactose plus phenotype on E. coli; this indicates that the T-DNA harbours sequences that are expressed in E. coli. Fifteen of these T-DNA insertions were transfered to Agrobacterium where they substitute the corresponding wild-type T-DNA of the Ri plasmid by homologous recombination. These strains corresponding to insertion-directed mutagenesis were used to inoculate Daucus carota slices and stems and leaves of Kalanchoe daigremontiana. The two insertions strains obtained in the T-DNA of pRi8196 are avirulent on K. daigremontiana; but their phenotypes differ on D. carota slices, suggesting that insertions affect distinct loci on the T-DNA involved in hairy root formation. Only one insertion out of the twenty obtained in the TL-DNA of pRiA4 (or 1855) induces a loss of virulence on leaves of K. daigremontiana. However the TL-DNA deletion harbouring strain induces a loss of virulence on D. carota and K. daigremontiana (stems and leaves), confirming the importance of the TL-DNA for hairy root induction. re]19850711 rv]19851230 ac]19860114  相似文献   

9.
A tumor-inducing (Ti) plasmid from a strain of Agrobacterium tumefaciens that induces tumors on only a limited range of plants was characterized and compared with the Ti plasmids from strains that induce tumors on a wide range of plants. Whereas all wide-host-range Ti plasmids characterized to date contain closely linked oncogenic loci within a single transferred DNA (T-DNA) region, homology to these loci is divided into two widely separated T-DNA regions on the limited-host-range plasmid. These two plasmid regions, TA-DNA and TB-DNA, are separated by approximately 25 kilobases of DNA which is not maintained in the tumor. The TA-DNA region resembles a deleted form of the wide-host-range TL-DNA and contains a region homologous to the cytokinin biosynthetic gene. However, a region homologous to the two auxin biosynthetic loci of the wide-host-range plasmid mapped within the TB-DNA region. These latter genes play an important role in tumor formation because mutations in these loci result in a loss of virulence on Nicotiana plants. Furthermore, the TB-DNA region alone conferred tumorigenicity onto strains with an intact set of vir genes. Our results suggest that factors within both the T-DNA and the vir regions contribute to the expression of host range in Agrobacterium species. There was a tremendous variation among plants in susceptibility to tumor formation by various A. tumefaciens strains. This variation occurred not only among different plant species, but also among different varieties of plants within the same genus.  相似文献   

10.
We have constructed a Charon 4A phage library containing insert DNA isolated from a morning glory (Convolvulus arvensis) plant (clone 7) regenerated from a root organ culture incited by Agrobacterium rhizogenes, strain A4. Using a subcloned region of the Ri plasmid as 32P-labeled probe, two lambda clones containing most of the 'left' T-DNA (TL) region were isolated. One of these lambda clones contains the left TL-DNA/plant junction, which was located by comparing nucleotide sequences from the appropriate regions of the Ri plasmid and this lambda clone. A 25-bp sequence found near this left TL-DNA/plant junction matches the 25-bp terminal sequence found at or near T-DNA/plant junctions of both nopaline- and octopine-type A. tumefaciens Ti plasmids. A possible location for the right Ri TL-DNA/plant junction in C. arvensis clone 7 was found by obtaining the nucleotide sequence surrounding its mapped location. Hybridization of plant DNA found adjacent to the left TL-DNA/plant junction against total C. arvensis DNA shows that this T-DNA integration occurred in a plant DNA region that does not contain highly repetitive DNA sequences. Nucleotide sequence analysis of 1004 bp of this plant DNA revealed no complete or partial open reading frames, but this plant DNA does have the potential to form various secondary structures which might play a role in the T-DNA integration event.  相似文献   

11.
Agrobacterium rhizogenes induces root formation at the site of inoculation in plants and inserts fragments of its Ri plasmid into the plant nuclear DNA. The transferred region (T-DNA) of the Ri plasmid of the A. rhizogenes strain A4 is made of two fragments, namely TL and TR; the latter harbors a sequence homology with the tms loci (responsible for auxin synthesis) of A. tumefaciens. On Daucus carota slices, single insertion mutations on the TL region of A. rhizogenes do not confer a mutant phenotype while an insertion-deletion in the TR region do confer a Basatt phenotype. Six double mutants with a single insertion in the TL region and the same deletion-insertion of the TR region were constructed. Three of these double mutants were avirulent on D. carota which indicates that in A. rhizogenes A4 the TL and the TR regions cooperate to confer a full infectious phenotype.  相似文献   

12.
We report here the molecular characterization of transferred DNA (T-DNA) in leguminous tumors incited by Agrobacterium tumefaciens A281 harboring the tumor-inducing plasmid pTiBo542. The T-DNA is composed of two regions named TL (left portion)-DNA and TR (right portion)-DNA, in accordance with the nomenclature for the octopine strains. TL-DNA is defined by several internal HindIII restriction fragments totaling 10.8 kilobase pairs (kbp) in uncloned soybean and alfalfa tumors. Alfalfa tumor DNA may contain one more HindIII fragment at the left end of TL-DNA than does soybean tumor DNA. TR-DNA has a 5.8-kbp BamHI-EcoRI internal fragment. All borders other than the left border of TL-DNA appear to be the same within the detection limits of Southern blot hybridization experiments. The two T-DNA regions are separated by 16 to 19 kbp of DNA not stably maintained in tumors. The distance from the left border of TL-DNA to the right border of TR-DNA is approximately 40 kbp. Loci for the mannityl opines are situated in TR-DNA, based on genetic and biochemical criteria.  相似文献   

13.
J Brevet  J Tempé 《Plasmid》1988,19(2):75-83
Recombinant plasmids carrying segments of the Agrobacterium rhizogenes T-DNA regions of the three Ri plasmids 1855 (TL-DNA only), 8196, and 2659 were used for establishing homology maps by electron microscope examination of heteroduplexes. Plasmid DNA was linearized by digestion with suitable restriction endonucleases in order to generate large T-DNA segments. Heteroduplexes were prepared in 50% formamide and spread under standard conditions. Measurements of double and single strands allowed the drawing of homology maps. The three T-DNAs share mainly two homologous sequences of respectively about 2.5 and 1.5 kb, bracketing a largely nonhomologous central part which is about 5.5 kb long. The T-DNAs from pRi1855 and pRi2659 appear to be more related to each other than to that of pRi8196. With reference to the published nucleotide sequence of the TL-DNA of pRiA4 (probably identical to that of pRi1855), ORFs 8 and 14 seem to be the most conserved sequences of the three T-DNAs. The significance of these conserved sequences is unclear since the genetic loci involved in rhizogenicity of agropine strains identified previously are located in nonhomologous regions.  相似文献   

14.
The establishment of efficient transformation system of Populus tomentosa by Agrobacterium is reported. The strains of Agrobacterium used in experiments were: 1. A. rhizogenes R1000, which harboured the Ri plasmid pRiA4b. 2. A. rhizogenes R1000 (pTVK85), which carried the plasmids pRiA4b and pTVK85 Containing supervirulent region. 3. A. tumefaciens C58C1 (pBZ693), the plasmid pBZ693 containing genes 1 and 2. After being cocultured with the bacteria on media containing 0.5 ppm kinetin for 2 days, explants of P. tomentosa were transferred to MS medium containing 500 ppm cefotaxime. Roots appeared on the explants in a week. The roots induced by A. tume[aciens were morphologically different from those induced by A. rhizogenes. The frequency of the explants transformed by A. rhizogenes R1000 (pTVK85) was nearly up to 60%. Some Ri plasmid transformed roots could spontaneously produce adventitious shoots or calli. By adding appropriate plant growth regulators in the media, we could have all of the root lines transformed produce adventitious shoots which would develop into intact plantlets on a hormone-free medium. Some phenotypical differences were observed among clones of the transformed plantlets. Some clones had short internodes, large number of leaves, reduced apical dominance, rich root systems with a great quantity of branches and root hairs, whereas in other clones aboveground parts of plantlets were morphologically normal and only their root systems were different from those of untransformed plantlets. None of the plantlets transformed by A. rhizogenes had the phenomenon of wrinkle leaves and shapes these leaves were analogous to normal plantlets. It was often observed that roots were regenerated from stems above the medium surfaces. Southern analysis on three clones of the putative transformed plantlets by A. rhizogenes R1000 (pTVKS5) showed that two of them were hybridized positively with the probe covering the TL-DNA region of the plasmid pRiA4b.  相似文献   

15.
Agrobacterium rhizogenes strain A4 is a virulent agropine-type strain possessing three plasmids: plasmid a (pArA4a, 180 kb) is not necessary for plant transformation, plasmid b (250 kb) is the root-inducing plasmid (pRiA4), and plasmid c (pArA4c) is a cointegrate of pArA4a and pRiA4. The total plasmid DNA (pArA4) of strain A4 was cloned in the cosmid pHSG262 and the library obtained was used to establish BamHI maps of the three plasmids. The plasmids a and Ri have an apparently identical region and a partly homologous region, and are different in the remaining regions including their origins of replication. Another agropine-type A. rhizogenes strain, HRI, bears only one plasmid, which is the Ri plasmid (pRiHRI). pRiHRI and pRiA4 present the same restriction maps for a great part, but are different in a region of 48 kb; however, this region of pRiHRI is found unmodified in pArA4a and may have a role in the virulence of the bacteria. The comparison between the restriction maps of the plasmids of strain A4 leads us to propose that the recombination event leading to pArA4c formation occurs within the identical regions of pArA4a and pRiA4. In addition, the comparison with the already established map of pRiHRI suggests that strain HRI could have been derived from a recombination event between the two homologous regions of pArA4c with subsequent loss of the smaller plasmid.  相似文献   

16.
Agrobacterium Ti (tumor-inducing) and Ri (root-inducing) plasmids transform dicot plant cells by insertion of a specific plasmid sector called T-DNA (transferred DNA) into host plant nuclear DNA. The mannopine-type Ri plasmid pRi8196 contains four BamHI fragments that encompass core T-DNA. We report Southern hybridization studies that show that these four fragments have no strong homology to octopine-, nopaline-, or agropine-type Ti plasmids. We detected and mapped very weak homology regions, most of which are assignable to opine synthase or opine catabolic functions on the Ti plasmid. We found no homology between Ri T-DNA and the region of Ti T-DNA that encodes tumor morphology functions.  相似文献   

17.
Cucumber explants were transformed by Agrabacterium strains carrying Ri plasmids with functional TL and TR-DNAs, and by strains whose pRi had an intact TR-DNA but a disarmed TL-DNA lacking open reading frames (ORFs) 3 to 9, 10 (rol A), 11 (rol B), 12 (rol C), 13, 14, 15 (rol D), 16 and 17. Roots induced by all strains exhibited extensive root hair formation under axenic conditions, synthesised opines, and contained TR-specific DNA. These results confirm that the TR-DNA of an agropine Ri plasmid is able to elicit the transformed root phenotype in this plant.  相似文献   

18.
Summary Plants regenerated from hairy root tumors induced on Nicotiana glauca and Nicotiana tabacum by Agrobacterium rhizogenes strain A4 were examined for the presence of T-DNA. Regenerated N. tabacum plants contained intact copies of both TL-DNA and TR-DNA. However, plants regenerated from N. glauca tumors did not contain the TR-DNA region corresponding to the tms (auxin synthesis) genes. Some of the regenerants exhibited an abnormal phenotype which is characterized by severe leaf wrinkling. This phenotype is correlated with the presence of TL-DNA, but not TR-DNA.  相似文献   

19.
《Plant science》1987,53(1):53-63
Two strategies were used to transfer into tobacco a 4.3-kb fragment of the TL-DNA of the Ri plasmid of Agrobacterium rhizogenes strain A4. In the liposome-mediated procedure a plasmid containing a neomycin phosphotransferase II (NPT II) gene conferring kanamycin resistance and another plasmid containing the 4.3-kb Eco RI fragment (pRiA4 Eco RI-15) were co-transferred into the tobacco genome. In the Agrobacterium transformation procedure, a micro-Ri vector containing a kanamycin resistance gene and the same pRiA4 fragment was used to transform tobacco leaf fragments. Kanamycin resistant plants were regenerated in both cases. They present a phenotype similar to that of plants regenerated from hairy roots induced by A. rhizogenes, that is wrinkled leaves, reduced apical dominance and ability to form hairy root on leaf fragments. In one plant (Ka158), the organization, expression and transmission to the progency of the inserted foreign DNA were analyzed more precisely.  相似文献   

20.
Agrobacterium rhizogenes induces root formation and inserts a fragment of its plasmid into the genome of infected plants. A part of the transferred region (TL-region) of the Ri plasmid of A. rhizogenes strain A4 was cloned in pBR322. Insertions of the Escherichia coli lacZ coding region into the hybrid plasmids were made in vivo using mini-Mu-duction. Two mini-Mus were used, one with the Mu A and B transposase genes (MudII1681) and the other without (MudII1734). Two inserts which result in E. coli lacZ expression where shown to be located in the T-DNA region. This indicates that portions of the T-DNA are capable of expression in bacteria. When these two hybrid plasmids were transformed into Agrobacterium only the one harboring MudII1734 insert gave transformants which correspond to homologous recombination. These results indicate that gene fusion and insertion directed mutagenesis can be simultaneously obtained with this mini-Mu and could be used to study Agrobacterium gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号