首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of two renin inhibitors, S 86,2033 and S 86,3390, with the uptake system for beta-lactam antibiotics and small peptides in the brush border membrane of enterocytes from rabbit small intestine was investigated using brush border membrane vesicles. Both renin inhibitors inhibited the uptake of the orally active cephalosporin cephalexin into brush border membrane vesicles from rabbit small intestine in a concentration-dependent manner. 1.1 mM of S 86,3390 and 2.5 mM of S 86,2033 led to a half-maximal inhibition of the H(+)-dependent uptake of cephalexin. Both renin inhibitors were stable against peptidases of the brush border membrane. The uptake of cephalexin into brush border membrane vesicles (1 min of incubation) was competitively inhibited by S 86,2033 and S 86,3390 suggesting a direct interaction of these compounds with the intestinal peptide uptake system. The renin inhibitors are transported across the brush border membrane into the intravesicular space as was shown by equilibrium uptake studies dependent upon the medium osmolarity. The uptake of S 86,3390 was stimulated by an inwardly directed H(+)-gradient and occurred with a transient accumulation against a concentration gradient (overshoot phenomenon). The renin inhibitors S 86,2033 and 86,3390 also caused a concentration-dependent inhibition in the extent of photoaffinity labeling of the putative peptide transport protein of apparent Mr 127,000 in the brush border membrane of small intestinal enterocytes. In conclusion, these studies show that renin inhibitors specifically interact with the intestinal uptake system shared by small peptides and beta-lactam antibiotics.  相似文献   

2.
The effectiveness of a beta-lactamase inhibitor/beta-lactam combination against Gram-negative pathogens depends on many interplaying factors, one of which is the penetration of the inhibitor across the outer membrane. In this work we have measured the relative penetrations of clavulanic acid, sulbactam, tazobactam and BRL 42715 into two strains of Escherichia coli producing TEM-1 beta-lactamase, two strains of Klebsiella pneumoniae producing either TEM-1 or K-1, and two strains of Enterobacter cloacae each producing a Class C beta-lactamase. It was shown that clavulanic acid penetrated the outer membranes of all these strains more readily than the other beta-lactamase inhibitors. For the strains of E. coli and K. pneumoniae clavulanic acid penetrated approximately 6 to 19 times more effectively than tazobactam, 2 to 9 times more effectively than sulbactam and 4 to 25 times more effectively than BRL 42715. The superior penetration of clavulanic acid observed in this study is likely to contribute to the efficacy of clavulanic acid/beta-lactam combinations in combating beta-lactam resistant bacterial pathogens.  相似文献   

3.
R Srikumar  X Z Li    K Poole 《Journal of bacteriology》1997,179(24):7875-7881
A major feature of the MexAB-OprM multidrug efflux pump which distinguishes it from the MexCD-OprJ and MexEF-OprN multidrug efflux systems in Pseudomonas aeruginosa is its ability to export a wide variety of beta-lactam antibiotics. Given the periplasmic location of their targets it is feasible that beta-lactams exit the cell via the outer membrane OprM without interaction with MexA and MexB, though the latter appear to be necessary for OprM function. To test this, chimeric MexAB-OprJ and MexCD-OprM efflux pumps were reconstituted in delta mexCD delta oprM and delta mexAB delta oprJ strains, respectively, and the influence of the exchange of outer membrane components on substrate (i.e., beta-lactam) specificity was assessed. Both chimeric pumps were active in antibiotic efflux, as evidenced by their contributions to resistance to a variety of antimicrobial agents, although there was no change in resistance profiles relative to the native pumps, indicating that OprM is not the determining factor for the beta-lactam specificity of MexAB-OprM. Thus, one or both of inner membrane-associated proteins MexA and MexB are responsible for drug recognition, including recognition of beta-lactams.  相似文献   

4.
刘佳佳  刘钢 《微生物学报》2016,56(3):461-470
头孢菌素C由丝状真菌顶头孢霉产生,属于β-内酰胺类抗生素。其经改造后的7-氨基头孢烷酸是头孢类抗生素的重要中间体。头孢类抗生素在国内外抗生素市场中占有巨大的份额,是临床上的主要抗感染药物。随着分子生物学的发展,头孢菌素C的生物合成途径已基本阐明。为提高头孢菌素C的产量和降低生产成本,越来越多的研究者开始关注其较为精细、复杂的调控机制。本文重点对头孢菌素C生物合成及其调控机制的最新进展进行了简述,希望为今后头孢菌素C生产菌株的菌种改造和传统产业的升级换代提供一定的借鉴。  相似文献   

5.
Cephalosporin production by a highly productive Cephalosporium acremonium strain was carried out and optimized by fed-batch operation in a 40 l stirred tank reactor using a complex medium containing 30-120 g l-1 peanut flour. The concentrations of cephalosporin C (CPC) and its precursors: penicillin N (PEN N), deacetoxy cephalosporin C (DAOC), and deacetyl cephalosporin C (DAC) were monitored with an on-line HPLC. The concentrations of amino acids valine (VAL), cysteine (CYS), alpha-amino adipic acid (alpha-AAA), the dipeptide alpha-amino-adipyl-cysteine (AC), and the tripeptide alpha-amino-adipyl-cysteinyl-valine (ACV), were determined off-line by HPLC. The RNA content and dry weight of the sediment as well as the oxygen transfer rate (OTR) and the CO2 production rate (CPR) were used to calculate the cell mass concentration (X). The influences of peanut flour (PF) and the on-line monitored and controlled medium components: glucose (GLU), phosphate, methionine (MET) as well as the dissolved oxygen (DOC) on the cell growth, the product formation, and the pathway of cephalosporin C biosynthesis were investigated and evaluated. When the glucose fed-batch cycle was optimized and oxygen transfer limitation was avoided (DOC greater than 20% of the saturation value), high process performance (103.5 g l-1 X, 11.84 g l-1 CPC, a maximum CPC productivity of 118 mg l-1 h-1, and the whole concentration of the beta-lactam antibiotics CPC, DAC, DAOC, PEN N 17.34 g l-1) was achieved by using 100 g l-1 PF in the medium with the optimum concentration of phosphate (260-270 mg l-1) and a low glucose concentration (less than 0.5 g l-1). The cultivations with different medium concentrations demonstrated that the product formation was directly proportional to the cell mass concentration. On the average, the cell mass-based yield coefficient of CPC: YCPC/X amounted to 0.115 g CPC per g cell mass.  相似文献   

6.
The protein(s) responsible for metabolite transport through the outer membrane of the yeast Saccharomyces cerevisiae mitochondria depleted of mitochondrial porin (also known as voltage-dependent anion selective channel), termed here porin1, is (are) still unidentified. It is postulated that the transport may be supported by the protein import machinery of the outer membrane, the TOM complex (translocase of the outer membrane). We demonstrate here that in the absence of functional porin1, the blockage of the TOM complex by the fusion protein termed pb(2)-DHFR (consisting of the first 167 amino acids of yeast cytochrome b(2) preprotein connected to mouse dihydrofolate reductase) limits the access of external NADH to mitochondria. It was measured by the ability of the blockage to inhibit external NADH oxidation by the proper dehydrogenase located at the outer surface of the inner membrane. The inhibition depends on external NADH concentration and increases with decreasing amounts of the substrate. In the presence of 1 microg of pb(2)-DHFR per 50 microg of mitochondrial protein almost quantitative inhibition was observed when external NADH was applied at the concentration of 70 nmol per mg of mitochondrial protein. On the other hand, external NADH decreases the levels of pb(2)-DHFR binding at the trans site of the TOM complex in porin1-depleted mitochondria in a concentration-dependent fashion. Our data define an important role of the TOM complex in the transport of external NADH across the outer membrane of porin1-depleted mitochondria.  相似文献   

7.
The influence of chemical modification of functional amino acid side-chains in proteins on the H(+)-dependent uptake system for orally active alpha-amino-beta-lactam antibiotics and small peptides was investigated in brush-border membrane vesicles from rabbit small intestine. Neither a modification of cysteine residues by HgCl2, NEM, DTNB or PHMB and of vicinal thiol groups by PAO nor a modification of disulfide bonds by DTT showed any inhibition on the uptake of cephalexin, a substrate of the intestinal peptide transporter. In contrast, the Na(+)-dependent uptake systems for D-glucose and L-alanine were greatly inhibited by the thiol-modifying agents. With reagents for hydroxyl groups, carboxyl groups or arginine the transport activity for beta-lactam antibiotics also remained unchanged, whereas the uptake of D-glucose and L-alanine was inhibited by the carboxyl specific reagent DCCD. A modification of tyrosine residues with N-acetylimidazole inhibited the peptide transport system and did not affect the uptake systems for D-glucose and L-alanine. The involvement of histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics and small peptides (Kramer, W. et al. (1988) Biochim. Biophys. Acta 943, 288-296) was further substantiated by photoaffinity labeling studies using a new photoreactive derivative of the orally active cephalosporin cephalexin, 3-[phenyl-4-3H]azidocephalexin, which still carries the alpha-amino group being essential for oral activity. 3-Azidocephalexin competitively inhibited the uptake of cephalexin into brush-border membrane vesicles. The photoaffinity labeling of the 127 kDa binding protein for beta-lactam antibiotics with this photoprobe was decreased by the presence of cephalexin, benzylpenicillin or dipeptides. A modification of histidine residues in brush-border membrane vesicles with DEP led to a decreased labeling of the putative peptide transporter of Mr 127,000 compared to controls. This indicates a decrease in the affinity of the peptide transporter for alpha-amino-beta-lactam antibiotics by modification of histidine residues. The data presented demonstrate an involvement of tyrosine and histidine residues in the transport of orally active alpha-amino-beta-lactam antibiotics across the enterocyte brush-border membrane.  相似文献   

8.
It has been proposed that penicillin and other beta-lactam antibiotics are substrate analogs which inactivate certain essential enzymes of bacterial cell wall biosynthesis by acylating a catalytic site amino acid residue (Tipper, D.J., and Strominger, J.L. (1965) Proc. Natl. Acad. Sci. U.S.A. 54, 1133-1141). A key prediction of this hypothesis, that the penicilloyl moiety and an acyl moiety derived from substrate both bind to the same active site residue, has been examined. D-Alanine carboxypeptidase, a penicillin-sensitive membrane enzyme, was purified from Bacillus subtilis and labeled covalently at the antibiotic binding site with [14C]penicillin G or with the cephalosporin [14C]cefoxitin. Alternatively, an acyl moiety derived from the depsipeptide substrate [14C]diacetyl L-Lys-D-Ala-D-lactate was trapped at the catalytic site in near-stoichiometric amounts by rapid denaturation of an acyl-enzyme intermediate. Radiolabeled peptides were purified from a pepsin digest of each of the 14C-labeled D-alanine carboxypeptidases and their amino acid sequences determined. Antibiotic- and substrate-labeled peptic peptides had the same sequence: Tyr-Ser-Lys-Asn-Ala-Asp-Lys-Arg-Leu-Pro-Ile-Ala-Ser-Met. Acyl moieties derived from antibiotic and from substrate were shown to be bound covalently in ester linkage to the identical amino acid residue, a serine at the penultimate position of the peptic peptide. These studies establish that beta-lactam antibiotics are indeed active site-directed acylating agents. Additional amino acid sequence data were obtained by isolating and sequencing [14C]penicilloyl peptides after digestion of [14C]penicilloyl D-alanine carboxypeptidase with either trypsin or cyanogen bromide and by NH2-terminal sequencing of the uncleaved protein. The sequence of the NH2-terminal 64 amino acids was thus determined and the active site serine then identified as residue 36. A computer search for homologous proteins indicated significant sequence homology between the active site of D-alanine carboxypeptidase and the NH2-terminal portion of beta-lactamases. Maximum homology was obtained when the active site serine of D-alanine carboxypeptidase was aligned correctly with a serine likely to be involved in beta-lactamase catalysis. These findings provide strong evidence that penicillin-sensitive D-alanine carboxypeptidases and penicillin-inactivating beta-lactamases are related evolutionarily.  相似文献   

9.
3H and 14C from (2R,3S)[U-14C,3-3H1]cysteine and (2R,3R)-[U-14C,2,3-3H2]cysteine were incorporated into cephalosporin C by Cephalosporium acremonium. Analysis of the radioactive cephalosporin C indicated that the formation of its beta-lactam ring occurs stereospecifically and with retention of configuration at C-3 of cysteine.  相似文献   

10.
The attacins are antibacterial proteins which accumulate in the hemolymph of the giant silk moth, Hyalophora cecropia, in response to a bacterial infection. Here we show that the permeability barrier function of the outer membrane is affected shortly after addition of attacin to growing cultures of Escherichia coli. Specifically, the penetration through the outer membrane of beta-lactam antibiotics, chicken egg white lysozyme and the detergent Triton X-100 was found to be facilitated. The sensitivity of E. coli to cecropin B, another antibacterial protein present in the hemolymph of H. cecropia, was also found to be increased after treatment with attacin. The results suggest that the target of the attacins in E. coli is the outer membrane. Other effects of the attacins which have been observed are likely to be indirect consequences of the alteration in the properties of the outer membrane. These effects include changes in the cell shape, irregular patterns of cell division and lysis. The minimal concentration at which the attacins affected the growth of E. coli was 1 and 0.5 microM for the neutral (pI 7) and basic (pI 9) attacins, respectively, which corresponds to less than 2% of the concentration of the attacins in the hemolymph of infected pupae.  相似文献   

11.
Shape and dynamics of thermoregulating honey bee clusters   总被引:1,自引:0,他引:1  
Bacterial transport systems are traditionally treated as enzymes exhibiting a saturable binding site giving rise to an apparent K(m)of transport, whereas the maximal rate of transport is regarded equivalent to the V(max)of enzymatic reactions. Thus, the Michaelis-Menten theory is usually applied in the analysis of transport data and K(m)and V(max)are derived from the treatment of data obtained from the rate of transport at varying substrate concentrations. Such an analysis tacitly assumes that the substrate recognition site of the transport system is freely accessible to substrate. However, this is not always the case. In systems endowed with high affinity in the micro M range or those recognizing large substrates or those exhibiting high V(max), the diffusion through the outer membrane may become rate determining, particularly at low external substrate concentrations. In such a situation the dependence of the overall rate of transport (from the medium into the cytoplasm) on the substrate concentration in the medium will no longer follow Michaelis-Menten kinetics. By analysing the deviation of transport data from the corresponding ideal Michaelis-Menten plot we developed a method that allows us to determine diffusion limitation through the outer membrane. The method allows us to find the correct K(m)of the transport system functioning at the inner membrane even under conditions of strong diffusion limitation through the outer membrane. The model was tested and validified with the Escherichia coli binding protein-dependent ABC transporter for maltose. The corresponding systems for sn -glycerol-3-phospate of Escherichia coli and the alpha -cyclodextrin transport of Klebsiella oxitoca were used as test systems.  相似文献   

12.
Competing interaction of two novel N-acyl derivatives of ampicillin i.e. N'-benzylchlorbenzimidazole (No. 48) and N-pyrazolytiazole (No. 72) derivatives and 14C-benzylpenicillin with penicillin-binding proteins (PBP) of E. coli was studied. It was shown that ampicillin and its derivative No. 48 markedly differed in their affinity to various PBPs. Derivative No. 72 did not prevent binding of the labeled benzylpenicillin to any PBP which corresponded to its low antimicrobial activity. Analogous experiments with new cephalosporin structures i.e. active and inactive N-acyl derivatives of cephalosporin showed that the active derivative No. 94 i.e. N-methyltiobenzimidazole derivative had the highest affinity to PBP-2 and PBP-5. The inactive derivative No. 68 i.e. N-chlorbenzimidazole derivative also had high affinity to PBP-1b, PBP-2 and PBP-3 essential for the cell. No activity of the latter compound against intact cells of E. coli was probably due to its low penetration through the outer membrane of the bacterial cell. Estimation of affinity of the beta-lactam structures to various PBPs not only provided data on the mechanism of their action but also made it possible to explain in some cases the peculiarities of their antimicrobial spectrum.  相似文献   

13.
The transport of dipeptides and beta-lactam antibiotics across the rat renal basolateral membrane was examined. The initial uptake of glycylsarcosine and cefadroxil by rat renal basolateral membrane vesicles was inhibited by the presence of all the di- and tripeptides and beta-lactam antibiotics that were tested in this study. However, the uptake of both substrates was not inhibited by glycine, an amino acid. The initial uptake of zwitterionic beta-lactam antibiotics, cefadroxil, cephradine, and cephalexin, was stimulated by preloaded glycylsarcosine (countertransport effect). On the other hand, the uptake of dianionic beta-lactam antibiotics, ceftibuten and cefixime, was not affected. A concentration-dependent initial uptake of glycylsarcosine and cefadroxil suggested the existence of a carrier-mediated mechanism, whereas the transport of ceftibuten did not show any saturated uptake. The transporter that participates in the permeation of dipeptides and beta-lactam antibiotics across basolateral membranes showed lower affinity than did PEPT1 and PEPT2. This is the first study that showed an evidence for a peptide transporter, expressed in the rat renal basolateral membrane, that recognizes zwitterionic beta-lactam antibiotics using basolateral membrane vesicles isolated from normal rat kidney.  相似文献   

14.
Precursor proteins of the solute carrier family and of channel forming Tim components are imported into mitochondria in two main steps. First, they are translocated through the TOM complex in the outer membrane, a process assisted by the Tim9/Tim10 complex. They are passed on to the TIM22 complex, which facilitates their insertion into the inner membrane. In the present study, we have analyzed the function of the Tim9/Tim10 complex in the translocation of substrates across the outer membrane of mitochondria. The purified TOM core complex was reconstituted into lipid vesicles in which purified Tim9/Tim10 complex was entrapped. The precursor of the ADP/ATP carrier (AAC) was found to be translocated across the membrane of such lipid vesicles. Thus, these components are sufficient for translocation of AAC precursor across the outer membrane. Peptide libraries covering various substrate proteins were used to identify segments that are bound by Tim9/Tim10 complex upon translocation through the TOM complex. The patterns of binding sites on the substrate proteins suggest a mechanism by which portions of membrane-spanning segments together with flanking hydrophilic segments are recognized and bound by the Tim9/Tim10 complex as they emerge from the TOM complex into the intermembrane space.  相似文献   

15.
Autoradiography of cell envelope ghosts obtained from a strain of Escherichia coli which lacks two major outer membrane proteins has been used to demonstrate the polar concentration of another major outer membrane protein, ompA protein. The beta-lactam antibiotic cephalexin prevents the insertion of newly synthesized ompA protein into the poles but removal of the antibiotic allows the randomly dispersed protein to migrate to the polar and possibly the septal areas of the cell. Labelling of whole cells with bacteriophage K3 has confirmed a polar concentration of ompA protein.  相似文献   

16.
This study provided analysis of in vivo enzyme kinetics in a model system which consisted of alkaline phosphatase in the periplasm of Escherichia coli. Modeling of complete substrate titration curves was achieved for a wide range of intraperiplasmic enzyme levels and outer membrane permeabilities. The results helped to identify the features most important to optimize in vivo reaction velocity. For many situations, a surprising finding was that maximum enzyme expression was not a major concern. For example, for moderate enzyme expression levels and moderate substrate levels (ca 0-5 mM), the limiting step for the enzyme in the periplasm was substrate (para-nitrophenylphosphate) diffusion through the outer membrane. In vivo reaction velocity was directly proportional to substrate concentration, outer membrane permeability, and the cell concentration. Velocity was also quite insensitive to a potent inhibitor of the enzyme. Even though diffusion-limited, periplasmic reaction velocity was quite sensitive to temperature, suggesting that the conformation of porin proteins in the E. coli outer membrane governed the average size of the pore. This model system therefore defined important features of bacterial whole cell biocatalyst design, which may also apply to other reactors using intact cells as catalysts.  相似文献   

17.
One of the strategies used by Gram-negative bacteria to secrete proteins across the two membranes which delimit the cells, is sec independent and dedicated to proteins lacking an N-terminal signal peptide. It depends on ABC protein-mediated exporters, which consist of three cell envelope proteins, two inner membrane proteins, an ATPase (the ABC protein), a membrane fusion protein (MFP) and an outer membrane polypeptide. Erwinia chrysanthemi metalloproteases B and C and Serratia marcescens hemoprotein HasA are secreted by such homologous pathways and interact with the ABC protein. Using as protein substrates HasA and GST-PrtC, a chimeric protein which has a glutathione S-transferase moiety fused to a large C-terminal domain of protease C, we developed a simple system to identify proteins bound to the substrate based on substrate affinity-chromatography using heme- or glutathione-agarose. We show an ordered association between the protein substrates and the three exporter components: the substrate recognizes the ABC protein which interacts with the MFP which in turn binds the outer membrane component. Substrate binding is required for assembly of the three components.  相似文献   

18.
Brief exposure of Pseudomonas aeruginosa to a temperature of 10 degrees C or lower caused a significant leakage of the periplasmic beta-lactamase into the medium. The extent of leakage increased as the incubation temperature was lowered to 4 degrees C and reached a maximum at 0 degrees C. Cells grown in the presence of beta-lactamase inducers were unsuitable for the permeability assay. It was found that the diffusion rates of beta-lactams through the outer membrane of P. aeruginosa were much lower than those previously reported, as assayed under refined conditions. The diffusion rates of beta-lactams in one of the mutants tested were an order of magnitude lower than those of the other strains, despite the fact that the outer membrane protein profile of the strain appeared to be indistinguishable from those of the others. These results suggest that beta-lactam antibiotics diffuse through the outer membrane of P. aeruginosa, at least partly, through a non-porin pathway.  相似文献   

19.
The molecular weights of monomeric and oligomeric forms of the newly identified porins, protein D2, of the outer membrane of Pseudomonas aeruginosa appeared to be 47,000 and 137,000, respectively, as determined by the light scattering technique. Presence of the trimeric aggregates of the homologous subunits in the intact outer membrane, the liposome membrane, and the non-ionic surfactant were confirmed through cross-linking experiments and immunoblotting techniques. The protein D2 monomers prepared in 0.1% of sodium dodecyl sulfate at 23 degrees C spontaneously reassembled into the trimeric aggregate when the surfactant dropped below critical concentration. The diffusion rates of saccharides and beta-lactam antibiotics through the liposome membranes reconstituted from the reassembled protein D2 trimers were indistinguishable from those of the native protein D2. This study shed some light on the porin trimer assembly as well as on the mechanism of carbapenem diffusion through the protein D2 pores.  相似文献   

20.
We describe a chromogenic detection system for beta-lactamase which yields water-insoluble colored products. The assay is based on kinetic measurement of the appearance of color due to the beta-lactamase-initiated redox reaction. The substrates are C3' thiolate-substituted cephalosporins, which, after enzyme-catalyzed hydrolysis of the beta-lactam ring, undergo elimination of the thiolate ion. This thiolate, in a postenzymatic step, reduces the tetrazolium salts, which are water-soluble colorless compounds, to a colored water-insoluble precipitate of formazan. Our model in this study was a beta-lactamase Enterobacter cloacae P-99-catalyzed reaction of thiolacetate cephalosporin with several tetrazolium salts. We found that the reaction rate is dependent on the concentration of the electron carrier 5-methyl phenazinium methyl sulfate, the pKa of the C3' thiolate substituent of the cephalosporin substrate, and the reduction potential of the tetrazolium salts. A kinetic study of this system yielded a rate law for the reaction. We present a mechanism of the reaction and determination of the kinetic parameters for the process. The sensitivity of this kinetic assay is very high; we detect 3 x 10(-10) M beta-lactamase P-99, which is approximately 30 mIU. The assay times are very short, lasting from 2 to 5 min. The new assay system is particularly suitable for a rapid detection of beta-lactamases in bacterial colonies and in enzyme immunoassays where beta-lactamase may be used as the label.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号