首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The semisynthesis of homologues of aprotinin, the bovine pancreatic trypsin inhibitor, is described. The P1 lysine15 residue was replaced by two methods. The first procedure, which consisted of two enzymatic steps for the incorporation of other amino acids has previously been described. The second approach consisted of six steps of both enzymatic and chemical nature. The modified inhibitor, in which the lysine15-alanine16 peptide bond is hydrolyzed, was used as the starting material. All carboxyl groups of the modified inhibitor were esterified with methanol; the lysine15 methylester group was then selectively hydrolyzed. Afterward, lysine15 itself was split off. Arginine, glutamic acid, methionine, andl-2-aminohexanoic acid (norleucine, Nle) were incorporated using water-soluble carbodiimide combined with an acylation catalyst. The methylester group was used to prevent polymerization. The reactive-site peptide bonds were resynthesized using either chymotrypsin or trypsin.  相似文献   

2.
Mutant rat trypsin Asp189Ser was prepared and complexed with highly purified human α1-proteinase inhibitor. The complex formed was purified to homogeneity and studied by N-terminal amino acid sequence analysis and limited proteolysis with bovine trypsin. As compared to uncomplexed mutant trypsin, the mutant enzyme complexed with α1-proteinase inhibitor showed a highly increased susceptibility to enzymatic digestion. The peptide bond selectively attacked by bovine trypsin was identified as the Arg117-Val118 one of trypsin. The structural and mechanistic relevance of this observation to serine proteinase-substrate and serine proteinase-serpin reactions are discussed.  相似文献   

3.
Summary Neb-TMOF, the trypsin modulating oostatic factor of gray fleshflyNeobellieria bullata, is a hexapeptide with the following sequence: H-Asn-Pro-Thr-Asn-Leu-His-OH. It has been isolated from vitellogenic ovaries in 1994. TMOF, the newly discovered insect peptide, inhibits trypsin biosynthesis in the gut, lowers yolk polypeptide concentration in the hemolymph and strongly inhibits ecdysone biosynthesis by larval ring glands. It is interesting that this short non-protected peptide contains in its molecule two Asn residues at positions 1 and 4 and His at its C-terminus. To obtain information about the role of the His-6 and Asn-4 residues we synthesised two series of Neb-TMOF analogs, modified: (1) in position 6 byd-His (I), His(Bzl) (II) and Phe(p-X) derivatives, where X=NH2 (III), NO2 (IV), OEt (V) and OH (VI) and (2) in position 4 by such amino acid residues as Ser (VII), Thr (VIII), Gly (IX), Asp (X), Glu (XI) andd-Asn (XII). The influence of these peptides on trypsin biosynthesis inN. bullata was determinedin vivo. In preliminary investigations, we found that Neb-TMOF, [Phe(NH2)6], and [Phe(NO2)6]-Neb-TMOF inhibited trypsin biosynthesis, whereas [d-His)6]- and [d-His(Bzl)6]-Neb-TMOF were inactive. In further biological studies performedin vitro on heart ofTenebrio molitor were found that-TMOF and [Phe(p-NH2)6]-Neb-TMOF showed weak cardioexcitatory activity, about 30% of the cardioexcitatory activity of proctolin, an insect neuromodulating peptide.  相似文献   

4.
The synthesis of a backbone bicyclic nonapeptide that mimics the binding site of bovine pancreatic trypsin inhibitor (BPTI) is described. The BPTI mimetic, which contains cis-thioproline replacing Cys38 of the protein, inhibits trypsin with a Ki of 76 M.  相似文献   

5.
Catalytic amounts of bovine beta-trypsin, bovine alpha-chymotrypsin and porcine plasmin establish a true thermodynamic equilibrium between virgin (I) (reactive site Lys15-Ala16 peptide bond intact) and modified (I) (this bond hydrolyzed) bovine trypsin/kallikrein inhibitor (Kunitz). The very slow reaction rates for attaining equilibrium are pH-dependent and differ for different enzymes. Optimal rates are for beta-trypsin at pH 3.75, for alpha-chymotrypsin at pH 5.5, and for plasmin at pH 5.0. Under conditions of optimum pH the equilibrium is reached with the highest rate by plasmin. In 10(-5)M inhibitor solutions the equilibrium concentrations of virgin and modified inhibitor are established by plasmin after almost 300 days starting from either pure virgin or pure modified inhibitor. Thus, the hydrolysis constant KHyd = [I]/[I] is determined to be 0.33 at pH 5.0. In spite of many unsuccessful attempts, this demonstrates that the reactive site peptide bond Lys15-Ala16 in the bovine trypsin inhibitor (Kunitz) can be hydrolyzed by catalytic amounts of endopeptidase. It further confirms that the hydrolyzed Lys15-Ala16 peptide bond in modified inhibitor is subject to thermodynamic control resynthesis.  相似文献   

6.
Synthesis of zervamicin IIB, specifically labeled at the -position of glutamine-11 with 15N, was achieved by the Fmoc/tert.-butyl strategy in solution using a fragment condensation approach. Three fragments of zervamicin IIB were obtained by stepwise elongation with Fmoc amino acids using BOP as a coupling reagent. For the introduction of the highly sterically hindered -aminoisobutyric acid residues, BOP/DMAP activation was applied. Peptide fragments were coupled by means of the coupling reagent, CF3-PyBOP. Using the strategy developed, zervamicin IIB specifically 15N labeled has been synthesized in 30% overall yield based on the isotopically labeled amino acid. From 600 MHz NMR spectroscopy the position of the 15N-label was clearly detected. The isotope enrichment (98 ± 2%) was determined by FAB-mass spectrometry.  相似文献   

7.
Summary The coat protein of the RNA containing bacteriophage fr has been hydrolyzed and its amino acid composition determined (Table 1). Furthermore, the protein was split with trypsin and the tryptic peptides were separated by column chromatography on Dowex 1 (Figure 1) and purified by paper chromatography and electrophoresis.The amino acid composition of all but one tryptic peptide are given in Table 2. The large peptide T13 which is much more difficult to purify than all other peptides, was isolated by several methods. Its amino acid composition is shown in Table 3. All tryptic peptides are compiled in Table 4.Amino acid sequences have been fully or partially determined for 9 tryptic peptides (Table 5) and the others are presently being investigated.These findings are compared with the results from other RNA phages, especially f2. It is concluded from the available data that the relationship between the coat proteins of the RNA phages is similar to that between the various naturally occurring strains of tobacco mosaic virus whose amino acid sequences are known.

Herrn Prof.G. Melchers zum 60. Geburtstag gewidmet.  相似文献   

8.
Previous work in our laboratory described the in vitro killing of Borrelia burgdorferi when co-cultured with saliva from adult Amblyomma americanum. Borreliacidal activity was not evident using Ixodes scapularis saliva. Mixing trypsin with saliva eliminated the borreliacidal activity of A. americanum saliva, while incorporating a trypsin inhibitor restored all borreliacidal activity, indicating this factor was of protein or peptide origin. One-dimensional PAGE indicated at least 7 major protein differences between I. scapularis and A. americanum saliva. To determine the borreliacidal factor, A. americanum saliva was fractionated by gel filtration and subsequent killing of B. burgdorferi was associated with a single fraction. Two-dimensional gel analysis indicated protein and/or peptide(s) in borreliacidal fractions running between 38 and 64 kDa. Finally, admixing saliva with the phospholipase A2 inhibitor oleyloxyethyl phosphorylcholine completely eliminated the ability of A. americanum saliva to kill B. burgdorferi. These studies indicate the borreliacidal activity found in A. americanum saliva is likely due to phospholipase A2 enzymatic activity.  相似文献   

9.
The replacement of amino acids in the P1 and P2 position of aprotinin, the bovine pancreatic trypsin inhibitor, is described. Using the modified inhibitor as starting material, with the hydrolyzed reactive-site peptide bond Lys15-Ala16, the residues P1 (Ala16) and P2 (Arg17) were split off by the action of aminopeptidase K. Incorporation of suitable dipeptides containing a basic residue (Lys or Arg) in the C-terminal position was carried out in a one pot reaction involving trypsin-catalyzed coupling. In this way, the native fragment Ala16-Arg17 was reintroduced and also replaced by Gly-Arg, Ala-Lys, and Leu-Arg yielding intact inhibitor molecules. The mechanism for incorporation of dipeptides was investigated by treating the aprotinin derivative with the Arg17-Ile18 peptide bond hydrolyzed with trypsin under proteosynthetic conditions. We established that only inhibitor molecules cleaved between Lys15 and Xaa16 are intermediates leading to the desired products. The inhibitory properties of the new aprotinin homologues were tested, and the significance of the P1 residue for the inhibition of trypsin, kallikrein, and chymotrypsin was deduced.  相似文献   

10.
Neuropeptide Y (NPY) Y1 receptors are overexpressed in human breast carcinomas. They also have important functional roles in breast tumour growth and metastasis. This study investigates the synthesis of 15 truncated NPY analogues as models for Y1 receptor specific radiopharmaceuticals, using competition radioreceptor binding assays from brain tissue homogenates from Y2Y4-double knockout mice. These peptides are based on the previously reported BVD15 scaffold. Different measures to improve Y1 affinity and plasma metabolic stability were investigated. Extending from the previously reported [Lys(DOTA)4]BVD15 analogue, it was found that lysine4 is capable of tolerating various modifications, including prosthetic groups and other bifunctional chelators, but also that [Lys4]BVD15 has improved Y1 affinity, relative to BVD15 itself. Substitution of lysine4 for side chain shortened analogues retains Y1 receptor affinity of the analogues. Furthermore, modifications at the N-terminal isoleucine resulted in dramatic reduction of Y1 affinity.  相似文献   

11.
ThepH dependence of the equilibrium constant KHyd for the hydrolysis of the Lys15-Ala16 reactive-site peptide bond of the bovine pancreatic trypsin inhibitor (aprotinin) was investigated over thepH range 2.3–6.5. Solutions of aprotinin, modified aprotinin with the Lys15-Ala16 peptide bond cleaved and mixtures of both species were incubated with 10 mol% porcine -trypsin. The state of equilibrium was determined by analytical cation-exchange HPLC. The KHyd values obtained did not exactly obey the simple equation of Dobry et al. (1952), which had to be used in an extended form with two additional parameters for a satisfactory fit. ThepH-independent equilibrium constant is 0.90 and thepK values of the Lys15 carboxyl group and of the Ala16 amino group are 3.10 and 8.22, respectively. ThepK of an additional group is apparently perturbed by the peptide-bond hydrolysis. It is 4.60 in the native and 4.40 in the modified aprotinin.  相似文献   

12.
A trypsin was purified from the hepatopancreas of snakehead (Channa argus) by ammonium sulfate fractionation and a series of column chromatographies including DEAE-Sepharose, Sephacryl S-200 HR and Hi-Trap Capto-Q. The molecular mass of the purified trypsin was about 22 kDa, as estimated by SDS-PAGE. The optimum pH and temperature of the purified trypsin were 9.0 and 40 °C, respectively. The trypsin was stable in the pH range of 7.5-9.5 and below 45 °C. The enzymatic activity was strongly inhibited by serine proteinase inhibitors, such as MBTI, Pefabloc SC, PMSF, LBTI and benzamidine. Peptide mass fingerprinting (PMF) of the purified protein obtained 2 peptide fragments with 25 amino acid residues and were 100% identical to the trypsinogen from pufferfish (Takifugu rubripes). The activation energy (Ea) of this enzyme was 24.65 kJ·M− 1. Apparent Km was 1.02 μM and kcat was 148 S− 1 for fluorogenic substrate Boc-Phe-Ser-Arg-MCA. A trypsinogen gene encoding 247 amino acid residues was further cloned on the basis of the sequence obtained from PMF and the conserved site peptide of trypsinogen together with 5′-RACE and 3′-RACE. The deduced amino acid sequence contains a signal peptide of 15 residues and an activation peptide of 9 amino acid residues with a mature protein of 223 residues. The catalytic triad His-64, Asp-107, Ser-201 and 12 Cys residues which may form 6 disulfide bonds were conserved. Compared with the PMF data, only 2 amino acid residues difference were identified, suggesting the cloned trypsinogen is quite possibly the precursor of the purified trypsin.  相似文献   

13.
The physiological consequences for NO3 utilization by the plant of underexpression and overexpression of nitrate reductase (NR) were investigated in nine transformants of Nicotiana tabacum and Nicotiana plumbaginifolia. The in vitro NR activities (NRAs) in both roots and leaves of low- and high-NR tobacco transformants ranged from 5–10% to 150–200%, respectively, of those measured in wild-type plants. The level of NR expression markedly affected the NO3 reduction efficiency in detached leaves and intact plants. In both species, 15NO3 reduction ranged from 15–45% of 15NO3 uptake in the low-NR plants, to 40–80% in the wild-type, and up to 95% in high-NR plants. In the high-NR genotypes, however, total 15NO3 assimilation was not significantly increased when compared with that in wild-type plants, because the higher 15NO3 reduction efficiency was offset by lower 15NO3 uptake by the roots. The inhibition of NO3 uptake appeared to be the result of negative feedback regulation of NO3 influx, and is interpreted as an adjustment of NO3 uptake to prevent excessive amino acid synthesis. In genotypes underexpressing NR, the low 15NO3 reduction efficiency also was generally associated with a decrease in net 15NO3 uptake as compared with the wild type. Thus, underexpression of NR resulted in an inhibition of reduced 15N synthesis in the plant, although the effect was much less pronounced than that expected from the very low NRAs. The restricted NO3 uptake in low-NR plants emphasizes the point that the products of NO3 assimilation are not the only factors responsible for down-regulation of the NO3 uptake system.  相似文献   

14.
The semisynthesis of homologues of aprotinin (BPTI) is described. The P1 amino acid residue of these homologues was substituted by other amino acids using peptide synthetic methods. The reactive-site-modified inhibitor (with the Lys15-Ala16 peptide bond hydrolyzed) was used as starting material. All carboxyl groups of the modified inhibitor were esterified with methanol, then the Lys15 methyl ester group was hydrolyzed selectively. Afterwards, Lys15 itself was split off. A new amino acid residue was incorporated by using water-soluble carbodiimide combined with an acylation catalyst. tert-Butyl-ester-protected amino acids were used for reinsertion. The method was tested by re-insertion of Lys15 to reconstitute the original inhibitor. Thirteen BPTI homologues with coded (Lys, Glu, Gly, Ala, Val, Ile, Leu) or uncoded amino acids (Abu, Ape, aIle, Ahx, tLeu, Neo) in position 15 were synthesized and the specificity of the inhibitors investigated. Amongst these, [Val15]BPTI was shown to be an excellent inhibitor for human polymorphonuclear leukocyte elastase having a complex dissociation constant of 0.11 nM. This inhibitor showed no detectable affinity to bovine pancreatic trypsin.  相似文献   

15.
A novel enzymatic process for the optical resolution of racemic pantolactone through the stereo-specific hydrolysis of d-pantolactone by lactonohydrolase of Fusarium oxysporum is described. F. oxysporum cells were found to catalyze the stereoselective hydrolysis of the d-enantiomer of racemic pantolactone. With 135 g/l dl-pantolactone as the substrate, 41% was hydrolyzed and pantoic acid with an optical purity of 90% enantiomeric excess (for d-pantoic acid) was formed.  相似文献   

16.
Two major azoverdins were isolated from the cultures of Azomonas macrocytogenes ATCC 12334 grown in irondeficient medium. Their structures have been established using fast atom bombardment-mass spectroscopy, homonuclear and heteronuclear two-dimensional 15N, 13C and 1H NMR, and circular dichroism techniques. These siderophores are chromopeptides possessing at the N-terminal end of their peptide chain the chromophore derived from 2,3-diamino-6,7-dihydroxyquinoline common to pyoverdins. The linear peptide chain (l)-Hse-(d)-AcOHOrn-(d)-Ser-(l)-AcOHOrn-(d)-Hse-(l)-CTHPMD has at its C-terminal end a new natural amino acid which is the result of the condensation of 1 mol of homoserine and 1 mol of 2,4-diaminobutyric acid forming a cyclic amidine belonging to the tetrahydropyrimidine family: 2-homoseryl-4-carboxyl-3,4,5,6-tetrahydropyrimidine. The azoverdins differ only by a substitutent bound to the nitrogen on C-3 of the chromophore: azoverdin, the most abundant one, possesses a succinamide moiety, whereas azoverdin A bears a succinic acid moiety. 15N-labelled azoverdin afforded readily, after the complete assignment of the 15N spectrum of the siderophore, a sequence determination of the peptidic part of the molecule and gave evidence for the presence of two tetrahydropyrimidine groups on the molecule: one on the chromophore and the second at the C-terminal end of the siderophore.  相似文献   

17.
ThepH dependence of the equilibrium constant KHyd for the hydrolysis of the Lys15-Ala16 reactive-site peptide bond of the bovine pancreatic trypsin inhibitor (aprotinin) was investigated over thepH range 2.3–6.5. Solutions of aprotinin, modified aprotinin with the Lys15-Ala16 peptide bond cleaved and mixtures of both species were incubated with 10 mol% porcine β-trypsin. The state of equilibrium was determined by analytical cation-exchange HPLC. The KHyd values obtained did not exactly obey the simple equation of Dobry et al. (1952), which had to be used in an extended form with two additional parameters for a satisfactory fit. ThepH-independent equilibrium constant is 0.90 and thepK values of the Lys15 carboxyl group and of the Ala16 amino group are 3.10 and 8.22, respectively. ThepK of an additional group is apparently perturbed by the peptide-bond hydrolysis. It is 4.60 in the native and 4.40 in the modified aprotinin.  相似文献   

18.
The K+-dependent p-nitrophenylphosphatase activity catalyzed by purified (Na+ + K+)-ATPase from pig kidney shows substrate inhibition (Ki about 9.5 mM at 2.1 mM Mg2+). Potassium antagonizes and sodium favours this inhibition. In addition, K+ reduces the apparent affinity for substrate activation, whereas p-nitrophenyl phosphate reduces the apparent affinity for K+ activation. In the absence of Mg2+, p-nitrophenyl phosphate, as well as ATP, accelerates the release of Rb+ from the Rb+ occluded unphosphorylated enzyme. With no Mg2+ and with 0.5 mM KCl, trypsin inactivation of (Na+ + K+)-ATPase as a function of time follows a single exponential but is transformed into a double exponential when 1 mM ATP or 5 mM p-nitrophenyl phosphate are also present. In the presence of 3 mM MgCl2, 5 mM p-nitrophenyl phosphate and without KCl the trypsin inactivation pattern is that described for the E1 enzyme form; the addition of 10 mM KCl changes the pattern which, after about 6 min delay, follows a single exponential. These results suggest that (i) the shifting of the enzyme toward the E1 state is the basis for substrate inhibition of the p-nitrophenulphosphatase acitivy of (Na+ + K+)-ATPase, and (ii) the substrate site during phosphatase activity is distinct from the low-affinity ATP site.  相似文献   

19.
20.
Here we describe the isolation of a novel C-terminally amidated octadecapeptide—SVIGCWTKSIPPRPCFVK-amide—that contains a disulphide loop between Cys5 and Cys15 that is consistent with a Bowman-Birk type protease inhibitor, from the skin secretion of the Chinese Bamboo odorous frog, Huia versabilis. Named HV-BBI, the peptide is encoded by a single precursor of 62 amino acid residues whose primary structure was deduced from cloned skin cDNA. The precursor exhibits the typical organization of that encoding an amphibian skin peptide with a highly-conserved signal peptide, an intervening acidic amino acid residue-rich domain and a single HV-BBI-encoding domain located towards the C-terminus. A synthetic replicate of HV-BBI, with the wild-type K (Lys-8) residue in the presumed P1 position, was found to be a potent inhibitor of trypsin with a Ki just slightly less than 19 nM. Substitution at this site with R (Arg) resulted in a significant reduction in potency (Ki 57 nM), whereas replacement of K with F (Phe) resulted in the complete abolition of trypsin inhibitory activity. Thus, HV-BBI is a potent inhibitor of trypsin and the lysyl (K) residue that occupies the P1 position appears to be optimal for potency of action against this protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号