首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P-glycoprotein (P-gp, ABCB1) actively transports a broad range of cytotoxic compounds out of the cell. The COOH terminus of P-gp contains a dileucine motif (Leu(1260)-Leu(1261)) and a conserved phenylalanine (Phe(1268)). Similar residues in SUR1 (ABCC8) were reported to be important plasma membrane-targeting signals (Sharma, N., Crane, A., Clement, J. P. t., Gonzalez, G., Babenko, A. P., Bryan, J., and Aguilar-Bryan, L. (1999) J. Biol. Chem. 274, 20628-20632). Here, we used alanine-scanning mutagenesis to test whether these residues were essential for trafficking of P-gp to the cell surface. Mutant L1260A expressed a 150-kDa immature protein that did not reach the cell surface and was sensitive to digestion by Endo H(f). By contrast, mutants L1261A, F1268A, and wild-type P-gps expressed the 170-kDa mature proteins at the cell surface. Mutation of Leu(1260) to Gly, Ile, Trp, Lys, or Glu also resulted in the expression of the 150-kDa immature protein. All of the mutants, however, expressed the 170-kDa protein in the presence of the drug substrate/specific chemical chaperone cyclosporin A. Mutant L1260A P-gp exhibited drug-stimulated ATPase activities similar to that of wild-type enzyme after rescue with cyclosporin A. Deletion of the last 22 amino acids (Q(1259)-Q(1280)) also caused misprocessing. The mutant, however, was rescued by expression in the presence of cyclosporin A and conferred resistance to colchicine in transfected cells. These results show that the dileucine motif is not a plasma membrane targeting signal. The COOH terminus is required for proper folding of P-gp but not for activity.  相似文献   

2.
The conformations of the gamma chain COOH terminus of intact fibrinogen and various fragments containing this region have been compared by an immunochemical analysis. Location of a major epitope in the sequence gamma 391-405 was successfully predicted from a hydrophobicity profile. An antibody population specific for the native epitope within the gamma 391-405 segment was isolated by immunoadsorption. Between 19.2 and 22.8% of antibodies were obtained from three different antisera, indicating that this region represents one of the major epitopes of native fibrinogen. Anti-gamma 391-405(N) antibodies were used to determine the value of Kconf, the equilibrium constant for the interconversion of the non-native and native conformations of this epitope. The measurements were done using native fibrinogen, fragments D1 and DD, gamma chain, and gamma 391-405. In addition, the effect of 5 M guanidine HCl on the conformation of fragments D1 and DD, which is known to abolish their antipolymerizing activity, was studied. Radioiodinated fibrinogen was used in the determination of Kconf, CI50%, and CIs (quantitative analytical parameters calculated from competitive inhibition radioimmunoassays) by measuring the competition between 125I-fibrinogen and the fibrinogen derivatives under study for binding to the immunochemically purified antibody. The measurements indicated that the epitope is unperturbed by iodination of fibrinogen and that 38.5% of fragment D1, 8.9% of fragment DD, 3.6% of the gamma chain, and less than 0.008% of the gamma 391-405 molecules adopt in aqueous solution the native conformation within the epitope. Denaturation of fragment D1 with 5 M guanidine HCl affected only slightly the conformation of this gamma chain determinant. More significant changes in the conformation were observed when fragment DD was denatured. The results suggest that long-range interactions are necessary for the stabilization of the native structure in the region of fibrinogen that interacts with the antibody and which is in close vicinity to the polymerization site, cross-linking site, and platelet recognition site.  相似文献   

3.
ClpB from Thermus thermophilus belongs to the Clp/Hsp100 protein family and reactivates protein aggregates in cooperation with the DnaK chaperone system. The mechanism of protein reactivation and interaction with the DnaK system remains unclear. ClpB possesses two nucleotide binding domains, which are essential for function and show a complex allosteric behavior. The role of the N-terminal domain that precedes the first nucleotide binding domain is largely unknown. We purified and characterized an N-terminal shortened ClpB variant (ClpBDeltaN; amino acids 140-854), which remained active in refolding assays with three different substrate proteins. In addition the N-terminal truncation did not significantly change the nucleotide binding affinities, the nucleotide-dependent oligomerization, and the allosteric behavior of the protein. In contrast casein binding and stimulation of the ATPase activity by kappa-casein were affected. These results suggest that the N-terminal domain is not essential for the chaperone function, does not influence the binding of nucleotides, and is not involved in the formation of intermolecular contacts. It contributes to the casein binding site of ClpB, but other substrate proteins do not necessarily interact with the N terminus. This indicates a substantial difference in the binding mode of kappa-casein that is often used as model substrate for ClpB and other possibly more suitable substrate proteins.  相似文献   

4.
Natural human interferon gamma(IFN-gamma) was purified from the conditioned medium of peripheral blood leukocytes using selective silica gel adsorption and antibody-affinity chromatography. SDS-PAGE and Western blot analysis demonstrated three major species with molecular masses of 25 kDa, 20 kDa and 17 kDa. Structural analysis of this natural IFN-gamma preparation demonstrated a pyroglutamate residue at the amino terminus and a heterogeneous carboxyl terminus. The longest and most predominant polypeptide was 138 amino acids in length, which is five residues shorter than the sequence predicted from the cDNA. The presence of multiple-carboxyl-terminal forms indicated possible proteolytic processing during induction or protein purification. Limited proteolytic digestion of full-length recombinant IFN-gamma with endoproteinase Lys-C and trypsin revealed that the carboxyl-terminal 15 residues could be released under conditions in which the core portion of the polypeptide chain remained intact. Thus, the heterogeneity of natural IFN-gamma may be explained by partial proteolytic degradation of the molecule and differences in the degree of glycosylation as previously reported [Rinderknecht, E., O'Conner, B. H. & Rodriguez, H. (1984) J. Biol. Chem. 259, 6790-6797].  相似文献   

5.
The COOH terminus of Rho-kinase negatively regulates rho-kinase activity.   总被引:10,自引:0,他引:10  
Rho-kinase is implicated in the phosphorylation of myosin light chain downstream of Rho, which is thought to induce smooth muscle contraction and stress fiber formation in non-muscle cells. Here, we examined the mode of action of inhibitors of Rho-kinase. The chemical compounds such as HA1077 and Y-32885 inhibited not only the Rho-kinase activity but also the activity of protein kinase N, one of the targets of Rho, but had less of an effect on the activity of myotonic dystrophy kinase-related Cdc42-binding kinase beta (MRCKbeta). The COOH-terminal portion of Rho-kinase containing Rho-binding (RB) and pleckstrin homology (PH) domains (RB/PH (TT)), in which point mutations were introduced to abolish the Rho binding activity, interacted with Rho-kinase and thereby inhibited the Rho-kinase activity, whereas RB/PH (TT) had no effect on the activity of protein kinase N or MRCKbeta, suggesting that the COOH-terminal region of Rho-kinase is a possible negative regulatory region of Rho-kinase. The expression of RB/PH (TT) specifically blocked the stress fiber and focal adhesion formation induced by the active form of Rho or Rho-kinase in NIH 3T3 cells, but not that induced by the active form of MRCKbeta or myosin light chain. Thus, RB/PH (TT) appears to specifically inhibit Rho-kinase in vivo.  相似文献   

6.
Deletion of nine amino acids from the carboxyl terminus of human IFN gamma (residues 138--146; LFRGRRASQ) resulted in a 7-fold increase in specific antiviral activity. Similar increases in receptor binding affinity were seen. Deletion of residues 136 and 137 (QM) had little additional effect, but removal of Ser135 resulted in a sharp drop in antiviral activity. Further removal of residues 133 and 134 (KR) lowered antiviral activity to 1% of the peak value. Comparison of the proton NMR spectra of selected deletions down to residue 132 showed that there was no significant change in the core protein structure. Deletions down to residue 125 had the same antiviral activity as those to 132, but changes could now be seen in the aromatic proton NMR spectrum of this shorter derivative. Substitution of the homologous murine sequence between residues 124 and 130 (human SPAAKTG; murine LPESSLR) resulted in only a small decrease in antiviral activity, further suggesting that the precise sequence in this region was not critical for activity. Ser135 was substituted with a number of other amino acids with little or no change in activity. The importance of the residues between 131 and 134 for biological activity was corroborated by mutagenesis, although some substitutions in this region were tolerated.  相似文献   

7.
An Escherichia coli K-12 strain was constructed with a chromosomal deletion (mutSdelta800) in the mutS gene that produced the removal of the C-terminal 53 amino acids which are not present in the MutS crystal structure. This strain has a MutS null phenotype for mutation avoidance, anti-recombination, and sensitivity to cytotoxic agents in a dam mutant background.  相似文献   

8.
Arylamine N-acetyltransferases (NATs) are a homologous family of enzymes, which acetylate arylamines, arylhydroxylamines, and arylhydrazines by acetyl transfer from acetyl-coenzyme A (Ac-CoA) and are found in many organisms. NAT was first identified as the enzyme responsible for the inactivation of the anti-tubercular drug isoniazid in humans. The three-dimensional structure of NAT from Salmonella typhimurium has been resolved and shown to have three distinct domains and an active site catalytic triad composed of "Cys(69)-His(107)-Asp(122)," which is typical of hydrolytic enzymes such as the cysteine proteases. The crystal unit cell consists of a dimer of tetramers, with the C terminus of individual monomers juxtaposed. To investigate the function of the first two domains of full-length NAT from S. typhimurium and to investigate the role of the C terminus of NAT, truncation mutants were made with either the C-terminal undecapeptide or the entire third domain (85 amino acids) missing. Unlike the full-length NAT protein (281 amino acids), the truncation mutants of NAT from S. typhimurium are toxic when overexpressed intracellularly in Escherichia coli. Full-length NAT hydrolyses Ac-CoA but only in the presence of an arylamine substrate. Both truncation mutants, however, hydrolyze Ac-CoA even in the absence of arylamine substrate, illustrating that the C-terminal undecapeptide controls hydrolysis of Ac-CoA by NAT from S. typhimurium.  相似文献   

9.
A panel of 18 murine monoclonal antibodies was raised in BALB/c mice to the full-length, 146 amino acid residue recombinant human gamma interferon (rHuIFN gamma-A). Two monoclonal antibodies, designated 47N3-6 and 30N47-1, were purified from ascites tumors and further characterized. Antibody 47N3-6 neutralized both the antiviral and antiproliferative activities of rHuIFN gamma-A. Both Western blotting and enzyme-linked immunosorbent assays indicated that antibody 47N3-6 could bind to rHuIFN gamma-A as well as to a genetically engineered truncated form lacking the first three amino-terminal residues (rHuIFN gamma-D) but did not recognize a genetically engineered variant terminating at residue 131 (rHuIFN gamma-B). This antibody also demonstrated binding to a 15 amino acid residue oligopeptide, designated F-1, corresponding to residues 132-146 at the carboxyl terminus of rHuIFN gamma-A. Chemical cleavage of peptide F-1 with cyanogen bromide produced two fragments that were separated by reversed-phase high-pressure liquid chromatography. Dot-blot analysis indicated that antibody 47N3-6 could bind to a fragment, KRKRSQHse, derived from residues 132-137 of rHuIFN gamma-A, but could bind only weakly to the cyanogen bromide fragment corresponding to residues 138-146. It was consistent with these results that antibody 47N3-6 demonstrated binding to a form lacking the five carboxyl-terminal amino acids (rHuIFN gamma-D') but did not bind to a synthetic polypeptide corresponding to residues 138-146. Peptide F-1 exhibited neither antiviral nor antiproliferative activity, and it did not antagonize the antiviral activity of rHuIFN gamma-A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The polytopic membrane protein presenilin 1 (PS1) is a component of the -secretase complex that is responsible for the intramembranous cleavage of several type I transmembrane proteins, including the -amyloid precursor protein (APP). Mutations of PS1, apparently leading to aberrant processing of APP, have been genetically linked to early-onset familial Alzheimer’s disease. PS1 contains 10 hydrophobic regions (HRs) sufficiently long to be -helical membrane spanning segments. Most topology models for PS1 place its COOH terminal 40 amino acids, which include HR 10, in the cytosolic space. However, several recent observations suggest that HR 10 may be integrated into the membrane and involved in the interaction between PS1 and APP. We have applied three independent methodologies to investigate the location of HR 10 and the extreme COOH terminus of PS1. The results from these methods indicate that HR 10 spans the membrane and that the COOH terminal amino acids of PS1 lie in the extracytoplasmic space. Alzheimer’s disease; -secretase; -amyloid; intramembranous protease; transmembrane topology  相似文献   

11.
A key step in the regulation of heat shock genes in Escherichia coli is the stress-dependent degradation of the heat shock promoter-specific sigma(32) subunit of RNA polymerase by the AAA protease, FtsH. Previous studies implicated the C termini of protein substrates, including sigma(32), as degradation signals for AAA proteases. We investigated the role of the C terminus of sigma(32) in FtsH-dependent degradation by analysis of C-terminally truncated sigma(32) mutant proteins. Deletion of the 5, 11, 15, and 21 C-terminal residues of sigma(32) did not affect degradation in vivo or in vitro. Furthermore, a peptide comprising the C-terminal 21 residues of sigma(32) was not degraded by FtsH in vitro and thus did not serve as a recognition sequence for the protease, while an unrelated peptide of similar length was efficiently degraded. The truncated sigma(32) mutant proteins remained capable of associating with DnaK and DnaJ in vitro but showed intermediate (5-amino-acid deletion) and strong (11-, 15-, and 21-amino-acid deletions) defects in association with RNA polymerase in vitro and biological activity in vivo. These results indicate an important role for the C terminus of sigma(32) in RNA polymerase binding but no essential role for FtsH-dependent degradation and association of chaperones.  相似文献   

12.
L Ozmen  M Aguet  G Trinchieri    G Garotta 《Journal of virology》1995,69(12):8147-8150
The injection of 20 ng of mouse interleukin-12 (IL-12) protects mice from a lethal infection with encephalomyocarditis virus. In vitro, an anti-gamma interferon (anti-IFN-gamma) monoclonal antibody but not an anti-IL-12 monoclonal antibody neutralizes the antiviral activity present in the supernatants of splenocytes stimulated with IL-12. Finally, IL-12 fails to protect 129 Sv/Ev IFN-gamma R0/0 mice against encephalomyocarditis virus infection. These results demonstrate that IL-12 exerts its antiviral activity through the induction of endogenous IFN-gamma.  相似文献   

13.
The gamma-secretase complex catalyzes the cleavage of the amyloid precursor protein in its transmembrane domain resulting in the formation of the amyloid beta-peptide and the cytoplasmic APP intracellular domain. The active gamma-secretase complex is composed of at least four subunits: presenilin (PS), nicastrin, Aph-1, and Pen-2, where the presence of all components is critically required for gamma-cleavage to occur. The PS proteins are themselves subjected to endoproteolytic cleavage resulting in the generation of an N-terminal and a C-terminal fragment that remain stably associated as a heterodimer. Here we investigated the effects of modifications on the C terminus of PS1 on PS1 endoproteolysis, gamma-secretase complex assembly, and activity in cells devoid of endogenous PS. We report that certain mutations and, in particular, deletions of the PS1 C terminus decrease gamma-secretase activity, PS1 endoproteolysis, and gamma-secretase complex formation. We demonstrate that the N- and C-terminal PS1 fragments can associate with each other in mutants having C-terminal truncations that cause loss of interaction with nicastrin and Aph-1. In addition, we show that the C-terminal fragment of PS1 alone can mediate interaction with nicastrin and Aph-1 in PS null cells expressing only the C-terminal fragment of PS1. Taken together, these data suggest that the PS1 N- and C-terminal fragment intermolecular interactions are independent of an association with nicastrin and Aph-1, and that nicastrin and Aph-1 interact with the C-terminal part of PS1 in the absence of an association with full-length PS1 or the N-terminal fragment.  相似文献   

14.
15.
Species lacking either 8 or 10 residues at the amino terminus of recombinant human interferon-gamma (Hu-IFN-gamma) were generated by limited digestion with Staphylococcus aureus V8 protease. A crude digest, consisting predominantly of these species, were completely inactive in inducing antiviral activity and the expression of HLA-DR antigens on HL-60 cells. The NH2-terminal deletion fragments were separated from residual intact IFN-gamma and from smaller polypeptides by reverse phase high performance liquid chromatography (HPLC) at pH 2.2. Intact IFN-gamma, purified by HPLC and subsequently refolded by dilution in 0.1 M sodium phosphate buffer (pH 7.5, 0.1% bovine serum albumin) was similar to untreated IFN-gamma in terms of binding to its cell surface receptor and in inducing antiviral activity and the expression of HLA-DR molecules. Conversely, biological activity was not detected in purified fragments 8-139 and 10-139. Examination of fragments 8-139 and 10-139 by far-UV circular dichroism revealed that cleavage of 8-10 residues at the amino terminus accompanied a dramatic change in secondary structure (6% alpha-helical and 36% beta-sheet content) as compared to untreated or HPLC-purified IFN-gamma (66% alpha-helix and 0% beta-sheet content). In summary, these results indicate that the amino terminus contributes to the structural integrity of the IFN-gamma molecule.  相似文献   

16.
17.
The interaction of caldesmon with the COOH terminus of actin   总被引:1,自引:0,他引:1  
Caldesmon interacts with the NH2-terminal region of actin. It is now shown in airfuge centrifugation experiments that modification of the penultimate cysteine residue of actin significantly weakens its binding to caldesmon both in the presence and absence of tropomyosin. Furthermore, as revealed by fluorescence measurements, caldesmon increases the exposure of the COOH-terminal region of actin to the solvent. This effect of caldesmon, like its inhibitory effect on actomyosin ATPase activity, is enhanced in the presence of tropomyosin. Proteolytic removal of the last three COOH-terminal residues of actin, containing the modified cysteine residue, restores the normal binding between caldesmon and actin. These results establish a correlation between the binding of caldesmon to actin and the conformation of the COOH-terminal region of actin and suggest an indirect rather than direct interaction between caldesmon and this part of actin.  相似文献   

18.
It has been suggested that the last seven to nine amino acid residues at the C terminus of the gamma subunit of the ATP synthase act as a spindle for rotation of the gamma subunit with respect to the alpha beta subunits during catalysis (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628). To test this hypothesis we selectively deleted C-terminal residues from the chloroplast gamma subunit, two at a time starting at the sixth residue from the end and finishing at the 20th residue from the end. The mutant gamma genes were overexpressed in Escherichia coli and assembled with a native alpha3beta3 complex. All the mutant forms of gamma assembled as effectively as the wild-type gamma. Deletion of the terminal 6 residues of gamma resulted in a significant increase (>50%) in the Ca-dependent ATPase activity when compared with the wild-type assembly. The increased activity persisted even after deletion of the C-terminal 14 residues, well beyond the seven residues proposed to form the spindle. Further deletions resulted in a decreased activity to approximately 19% of that of the wild-type enzyme after deleting all 20 C-terminal residues. The results indicate that the tip of the gammaC terminus is not essential for catalysis and raise questions about the role of the C terminus as a spindle for rotation.  相似文献   

19.
The organic matrix in forming enamel consists largely of the amelogenin protein self-assembled into nanospheres that are necessary to guide the formation of the unusually long and highly ordered hydroxyapatite (HAP) crystallites that constitute enamel. Despite its ability to direct crystal growth, the interaction of the amelogenin protein with HAP is unknown. However, the demonstration of growth restricted to the c-axis suggests a specific protein-crystal interaction, and the charged COOH terminus is often implicated in this function. To elucidate whether the COOH terminus is important in the binding and orientation of amelogenin onto HAP, we have used solid state NMR to determine the orientation of the COOH terminus of an amelogenin splice variant, LRAP (leucine-rich amelogenin protein), which contains the charged COOH terminus of the full protein, on the HAP surface. These experiments demonstrate that the methyl 13C-labeled side chain of Ala46 is 8.0 A from the HAP surface under hydrated conditions, for the protein with and without phosphorylation. The experimental results provide direct evidence orienting the charged COOH-terminal region of the amelogenin protein on the HAP surface, optimized to exert control on developing enamel crystals.  相似文献   

20.
The aminoglycoside phosphotransferases (APHs) are widely distributed among pathogenic bacteria and are employed to covalently modify, and thereby detoxify, the clinically relevant aminoglycoside antibiotics. The crystal structure for one of these aminoglycoside kinases, APH(3')-IIIa, has been determined in complex with ADP and analysis of the electrostatic surface potential indicates that there is a large anionic depression present adjacent to the terminal phosphate group of the nucleotide. This region also includes a conserved COOH-terminal alpha-helix that contains the COOH-terminal residue Phe(264). We report here mutagenesis and computer modeling studies aimed at examining the mode of aminoglycoside binding to APH(3')-IIIa. Specifically, seven site mutants were studied, five from the COOH-terminal helix (Asp(261), Glu(262), and Phe(264)), and two additional residues that line the wall of the anionic depression (Tyr(55) and Arg(211)). Using a molecular modeling approach, six ternary complexes of APH(3')-IIIa.ATP with the antibiotics, kanamycin, amikacin, butirosin, and ribostamycin were independently constructed and these agree well with the mutagenesis data. The results obtained show that the COOH-terminal carboxylate of Phe(264) is critical for proper function of the enzyme. Furthermore, these studies demonstrate that there exists multiple binding modes for the aminoglycosides, which provides a molecular basis for the broad substrate- and regiospecificity observed for this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号