首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To locate functional domains of the interleukin-2 (IL-2) protein, a cDNA clone encoding biologically active human IL-2 was mutagenized using synthetic oligonucleotides to incorporate defined amino acid substitutions and deletions in the mature protein. The IL-2 analogs were then produced in Escherichia coli and assayed for the ability to induce proliferation of IL-2-dependent cells and the ability to compete for binding to the IL-2 receptor. Our analysis of over 50 different mutations demonstrated that the integrity of at least three regions of the IL-2 molecule is required for full biological activity: the NH2 terminus (residues 1-20), the COOH terminus (residues 121-133), and 2 of the 3 cysteine residues (58 and 105). Deletion of the NH2-terminal 20 amino acids or the COOH-terminal 10 amino acids resulted in the loss of greater than 99% of bioactivity and binding. Amino acid substitutions at specific positions in these regions also resulted in proteins which retained less than 1% activity. The NH2 terminus and an adjacent internal region were recognized by neutralizing anti-IL-2 antibodies. In combination with the results from epitope competition analysis with neutralizing antibodies, these data are consistent with the IL-2 protein being folded such that the NH2 terminus, the COOH terminus, and the internal 30- to 60-region are juxtaposed to form the binding site recognized by the IL-2 receptor.  相似文献   

2.
The waaJ gene encodes an alpha-1,2-glucosyltransferase involved in the synthesis of the outer core region of the lipopolysaccha-ride of some Escherichia coli and Salmonella isolates. WaaJ belongs to glycosyltransferase CAZy family 8, characterized by the GT-A fold, a DXD motif, and by retention of configuration at the anomeric carbon of the donor sugar. Detailed kinetic and structural information for bacterial family 8 glycosyltransferases has resulted from studies of Neisseria meningitidis LgtC. As many as 28 amino acids could be deleted from the C terminus of LgtC without affecting its in vitro catalytic behavior. This C-terminal domain has a high ratio of positively charged and hydrophobic residues, a feature conserved in WaaJ and some other family 8 representatives. Unexpectedly, deletion of as few as five residues from the C terminus of WaaJ resulted in substantially reduced in vivo activity. With deletions of 15 residues or less, activity was only detected when levels of expression were elevated. No in vivo activity was detected after the removal of 20 amino acids, regardless of expression levels. Longer deletions (20 residues and greater) compromised the ability of WaaJ to associate with the membrane. However, the reduced in vivo activity in enzymes lacking 5-12 C-terminal residues also reflected a dramatic drop in catalytic activity in vitro (a 294-fold decrease in the apparent kcat/Km,LPS). Deletions removing 20 or more residues resulted in a protein showing no detectable in vitro activity. Therefore, the C-terminal domain of WaaJ plays a critical role in enzyme function.  相似文献   

3.
In the course of experiments on the role of the COOH-terminal residues in pancreatic deoxyribonuclease, we undertook to ascertain whether the presence of sodium dodecyl sulfate would render the normally unavailable terminus susceptible to hydrolysis by carboxypeptidase A. When DNase A is dissolved in 0.005% sodium dodecyl sulfate the protein becomes enzymically inactive when assayed against DNA in the same sodium dodecyl sulfate concentration. The loss of activity caused by treatment with sodium dodecyl sulfate for 1 hour at 45 degrees can be fully restored if the detergent-containing solution is diluted 10-fold into 6 M guanidinium chloride and then 10-fold into a pH 7.0 buffer, 10 mM in CaCl2, prior to a 100-fold dilution for assay. The presence of Ca2+ is essential for the refolding process. If the same degree of dilution is made into sodium dodecyl sulfate-free buffer without the guanidinium chloride step, there is very little reversal of the inactivation. An almost complete loss of regenerable activity is caused by 1 hour of digestion by carboxypeptidase at 45 degrees in the presence of 0.03% sodium dodecyl sulfate. Although up to 6 amino acid residues can be removed from the COOH terminus, the loss of activity can be correlated with the removal of either 1 or 2 amino acid residues (-Leu-Thr) from the COOH-terminal sequence. Thus, DNase A is one of the several enzymes in which residues at the COOH terminus are essential to the active conformation. If the enzyme minus 2 to 6 terminal residues was mixed with a 15-residue COOH-terminal peptide (obtained by cyanogen bromide cleavage), only about 2% activity could be regenerated.  相似文献   

4.
Placental alkaline phosphatase (PLAP) is anchored to the plasma membrane by a phosphatidylinositol-glycan (PI-G) moiety. During processing of nascent PLAP, a 29-residue COOH-terminal peptide is cleaved out and the PI-G moiety is attached to the newly created COOH terminus of the mature protein. To investigate the structural requirements of the COOH terminus of the nascent protein for PI-G tailing and anchoring to the plasma membrane, we have transfected COS cells with wild type and mutant forms of cDNA encoding human prepro-PLAP. Utilizing a series of COOH-terminal deletion mutants of prepro-PLAP, it was found that to be PI-G-tailed the newly synthesized protein must possess an uncharged, predominantly hydrophobic amino acid sequence of a minimal length in the COOH-terminal peptide. While forms of prepro-PLAP with 17 consecutive hydrophobic residues in the terminal sequence yielded PI-G-tailed and membrane-bound products, prepro-PLAP mutants with 13 or fewer of such residues yielded hydrophilic proteins that were no longer PI-G-tailed but efficiently secreted into the medium. Studies using cassette mutants demonstrated that the precise amino sequence of the COOH-terminal region could be altered as long as minimal hydrophobicity and length was maintained.  相似文献   

5.
A set of C-terminal deletion mutants of the RecA protein of Escherichia coli, progressively removing 6, 13, 17, and 25 amino acid residues, has been generated, expressed, and purified. In vivo, the deletion of 13 to 17 C-terminal residues results in increased sensitivity to mitomycin C. In vitro, the deletions enhance binding to duplex DNA as previously observed. We demonstrate that much of this enhancement involves the deletion of residues between positions 339 and 346. In addition, the C-terminal deletions cause a substantial upward shift in the pH-reaction profile of DNA strand exchange reactions. The C-terminal deletions of more than 13 amino acid residues result in strong inhibition of DNA strand exchange below pH 7, where the wild-type protein promotes a proficient reaction. However, at the same time, the deletion of 13-17 C-terminal residues eliminates the reduction in DNA strand exchange seen with the wild-type protein at pH values between 7.5 and 9. The results suggest the existence of extensive interactions, possibly involving multiple salt bridges, between the C terminus and other parts of the protein. These interactions affect the pK(a) of key groups involved in DNA strand exchange as well as the direct binding of RecA protein to duplex DNA.  相似文献   

6.
Mutations in the potassium channel encoded by the human ether-a-go-go-related gene (HERG) have been linked to the congenital long QT syndrome (LQTS), a cardiac disease associated with an increased preponderance of ventricular arrhythmias and sudden death. The COOH terminus of HERG harbors a large number of LQTS mutations and its removal prevents functional expression for reasons that remain unknown. In this study, we show that the COOH terminus of HERG is required for normal trafficking of the ion channel. We have identified a region critical for trafficking between residues 860 and 899 that includes a novel missense mutation at amino acid 861 (HERGN861I). Truncations or deletion of residues 860-899, characterized in six different expression systems including a cardiac cell line, resulted in decreased expression levels and an absence of the mature glycosylated form of the HERG protein. Deletion of this region did not interfere with the formation of tetramers but caused retention of the assembled ion channels within the endoplasmic reticulum. Consequently, removal of residues 860-899 resulted in the absence of the ion channels from the cell surface and a more rapid turnover rate than the wild type channels, which was evident very early in biogenesis. This study reveals a novel role of the COOH terminus in the normal biogenesis of HERG channels and suggests defective trafficking as a common mechanism for abnormal channel function resulting from mutations of critical COOH-terminal residues, including the LQTS mutant HERGN861I.  相似文献   

7.
Glycyl-tRNA synthetase is one of two aminoacyl-tRNA synthetases in Escherichia coli that is comprised of heterologous subunits which are organized in an alpha 2 beta 2 quaternary structure. The two subunits are encoded by a single mRNA with the region for alpha (303 codons) subunit followed by that for beta (689 codons) subunit. Five COOH-terminal deletions in the beta subunit coding region have been created. Each deletion protein has been investigated for its synthesis and stability in vivo, adenylate synthesis activity in vitro, and aminoacylation activity in vivo and in vitro. This has been done in the presence of free alpha subunit and, additionally, with alpha subunit that is fused by its carboxyl terminus to the amino terminus of each of the beta subunit deletion proteins. With a fused or unfused alpha chain, over 100 amino acids can be deleted from the carboxyl terminus of the beta chain without loss of in vivo complementation of a delta glyS (deletion) strain. Further analysis shows that the alpha subunit and approximately the amino-terminal half of the beta subunit are sufficient for the adenylate synthesis activity. In particular, a deletion of 306 amino acids from the COOH terminus of the beta subunit has little effect on the Km parameter for ATP or glycine in the pyrophosphate exchange reaction. The tRNA-dependent step in aminoacylation requires additional beta subunit sequences on the COOH-terminal side of those needed for adenylate synthesis. In these respects, the functional organization of the beta chain parallels that of several aminoacyl-tRNA synthetases which have only homologous subunits. In the case of the glycine enzyme, however, the heterologous alpha subunit is required for the elucidation of activities encoded by functional determinants of the beta chain.  相似文献   

8.
Carboxyl-terminal proteolytic processing of matrix Gla protein   总被引:3,自引:0,他引:3  
The present study was undertaken to determine the extent of COOH-terminal proteolytic processing in matrix Gla protein (MGP), a 10-kDa protein which contains 5 residues of the vitamin K-dependent Ca2+ binding amino acid, gamma-carboxyglutamic acid (Gla). Two forms of MGP were isolated from demineralization and urea extracts of bovine cortical bone, one 79 residues in length with the COOH terminus Phe-Arg-Gln and the other 83 residues in length with the COOH terminus Phe-Arg-Gln-Arg-Arg-Gly-Ala. The 84-residue form of bovine MGP predicted from the message structure could not be detected in the bone extracellular matrix extracts, and it therefore seems probable that the lysine at position 84 was removed by the action of a carboxypeptidase B-like enzyme prior to secretion. A plausible sequence of proteolytic cleavages that could generate the 79-residue form of MGP would be a trypsin-like cleavage at Arg80-Arg81 or Arg81-Gly82 followed by carboxypeptidase B-like cleavage to remove COOH-terminal arginine(s). Since essentially equal amounts of the 79- and 83-residue forms of MGP were also detected in bovine articular cartilage and plasma, it seems likely that the COOH-terminal processing events identified in bone apply to many of the other tissues which synthesize this protein. Only one form of MGP was detected in human bone extracts, a 77-residue protein that lacks the COOH-terminal residues Arg-Lys-Arg-Arg-Gly-Thr-Lys. This shortened version of human MGP is consistent with the proposed model for COOH-terminal processing, since the amino acid substitution in the COOH terminus of the human protein, Lys79 for Gln79, would allow removal of the additional basic residues from the human MGP COOH terminus by the action of the carboxypeptidase B-like enzymic activity. Recent studies have shown that MGP is strongly induced by retinoic acid in fibroblasts, chondrocytes, and osteoblasts, a response which suggests that MGP mediates an action of retinoic acid on an aspect of cell growth or differentiation. If this hypothesis is true, the present evidence for complex COOH-terminal processing events could provide a means to regulate the as yet unknown activity of MGP in the extracellular environment in a mechanism similar to the activation of hormones such as anaphlotoxins and kinins.  相似文献   

9.
Gelsolin can sever actin filaments, nucleate actin filament assembly, and cap the fast-growing end of actin filaments. These functions are activated by Ca2+ and inhibited by polyphosphoinositides (PPI). We report here studies designed to delineate critical domains within gelsolin by deletional mutagenesis, using COS cells to secrete truncated plasma gelsolin after DNA transfection. Deletion of 11% of gelsolin from the COOH terminus resulted in a major loss of its ability to promote the nucleation step in actin filament assembly, suggesting that a COOH-terminal domain is important in this function. In contrast, derivatives with deletion of 79% of the gelsolin sequence exhibited normal PPI-regulated actin filament-severing activity. Combined with previous results using proteolytic fragments, we deduce that an 11-amino acid sequence in the COOH terminus of the smallest severing gelsolin derivative identified here mediates PPI-regulated binding of gelsolin to the sides of actin filaments before severing. Deletion of only 3% of gelsolin at the COOH terminus, including a dicarboxylic acid sequence similar to that found on the NH2 terminus of actin, resulted in a loss of Ca2+-requirement for filament severing and monomer binding. Since these residues in actin have been implicated as potential binding sites for gelsolin, our results raise the possibility that the analogous sequence at the COOH terminus of gelsolin may act as a Ca2+-regulated pseudosubstrate. However, derivatives with deletion of 69-79% of the COOH-terminal residues of gelsolin exhibited normal Ca2+ regulation of severing activity, establishing the intrinsic Ca2+ regulation of the NH2-terminal region. One or both mechanisms of Ca2+ regulation may occur in members of the gelsolin family of actin-severing proteins.  相似文献   

10.
Using a deletion approach on the alpha subunit of DNA polymerase III from Escherichia coli, we show that there is an N-proximal polymerase domain which is distinct from a more C-proximal tau and beta binding domain. Although deletion of 60 residues from the alpha N terminus abolishes polymerase activity, deletions of 48, 169, and 342 amino acids from the C terminus progressively impair its catalytic efficiency but preserve an active site. Deletion of 342 C-terminal residues reduces k(cat) 46-fold, increases the Km for gapped DNA 5.5-fold, and increases the Km for deoxynucleoside triphosphates (dNTPs) twofold. The 818-residue protein with polymerase activity displays typical Michaelis-Menten behavior, catalyzing a polymerase reaction that is saturable with substrate and linear with time. With the aid of newly acquired sequences of the polymerase III alpha subunit from a variety of organisms, candidates for two key aspartate residues in the active site are identified at amino acids 401 and 403 of the E. coli sequence by inspection of conserved acidic amino acids. The motif Pro-Asp-X-Asp, where X is a hydrophobic amino acid, is shown to be conserved among all known DnaE proteins, including those from Bacillaceae, cyanobacteria, Mycoplasma, and mycobacteria. The E. coli DnaE deletion protein with only the N-terminal 366 amino acids does not have polymerase activity, consistent with the proposed position of the active-site residues.  相似文献   

11.
We have identified a novel peroxisomal targeting sequence (PTS) at the extreme COOH terminus of human catalase. The last four amino acids of this protein (-KANL) are necessary and sufficient to effect targeting to peroxisomes in both human fibroblasts and Saccharomyces cerevisiae, when appended to the COOH terminus of the reporter protein, chloramphenicol acetyl transferase. However, this PTS differs from the extensive family of COOH-terminal PTS tripeptides collectively termed PTS1 in two major aspects. First, the presence of the uncharged amino acid, asparagine, at the penultimate residue of the human catalase PTS is highly unusual, in that a basic residue at this position has been previously found to be a common and critical feature of PTS1 signals. Nonetheless, this asparagine residue appears to constitute an important component of the catalase PTS, in that replacement with aspartate abolished peroxisomal targeting (as did deletion of the COOH-terminal four residues). Second, the human catalase PTS comprises more than the COOH-terminal three amino acids, in that COOH-terminal-ANL cannot functionally replace the PTS1 signal-SKL in targeting a chloramphenicol acetyl transferase fusion protein to peroxisomes. The critical nature of the fourth residue from the COOH terminus of the catalase PTS (lysine) is emphasized by the fact that substitution of this residue with a variety of other amino acids abolished or reduced peroxisomal targeting. Targeting was not reduced when this lysine was replaced with arginine, suggesting that a basic amino acid at this position is required for maximal functional activity of this PTS. In spite of these unusual features, human catalase is sorted by the PTS1 pathway, both in yeast and human cells. Disruption of the PAS10 gene encoding the S. cerevisiae PTS1 receptor resulted in a cytosolic location of chloramphenicol acetyl transferase appended with the human catalase PTS, as did expression of this protein in cells from a neonatal adrenoleukodystrophy patient specifically defective in PTS1 import. Furthermore, through the use of the two-hybrid system, it was demonstrated that both the PAS10 gene product (Pas10p) and the human PTS1 receptor can interact with the COOH-terminal region of human catalase, but that this interaction is abolished by substitutions at the penultimate residue (asparagine-to- aspartate) and at the fourth residue from the COOH terminus (lysine-to-glycine) which abolish PTS functionality. We have found no evidence of additional targeting information elsewhere in the human catalase protein. An internal tripeptide (-SHL-, which conforms to the mammalian PTS1 consensus) located nine to eleven residues from the COOH terminus has been excluded as a functional PTS. Additionally, in contrast to the situation for S. cerevisiae catalase A, which contains an internal PTS in addition to a COOH-terminal PTS1, human catalase lacks such a redundant PTS, as evidenced by the exclusive cytosolic location of human catalase mutated in the COOH-terminal PTS. Consistent with this species difference, fusions between catalase A and human catalase which include the catalase A internal PTS are targeted, at least in part, to peroxisomes regardless of whether the COOH-terminal human catalase PTS is intact.  相似文献   

12.
To identify a receptor binding site of human interleukin-6 (IL-6), we created a library of IL-6 variants with single amino acid substitutions in the last 15 residues (171-185) in the COOH terminus of IL-6. Twenty-seven IL-6 variants were tested for biological activity on a human hepatoma and a mouse hybridoma cell line. Most variants were additionally tested in a receptor binding assay using a human myeloma cell line. Several single amino acid substitutions in the COOH terminus of IL-6 were found to decrease biological activity significantly. This is especially seen in variants with amino acid substitutions that alter the postulated amphipathical alpha-helix structure between residues 178 and 183. The two highly conserved Arg residues at positions 180 and 183 seem to play a very important role in biological activity. The loss of biological activity in all inactive variants is completely paralleled by a decrease of IL-6 receptor binding, as determined by competition binding experiments. One mutant (Leu171) displayed a higher activity on human cells and a higher binding affinity to the receptor and can be considered an IL-6 agonist. It is concluded that the amphipathical alpha-helix structure in the COOH terminus of IL-6 is critical for ligand receptor interaction. Furthermore, the region between residues Ser178 and Arg183 (Ser-Leu-Arg-Ala-X-Arg) is identified as a receptor binding site in the COOH terminus of human IL-6.  相似文献   

13.
We have constructed a series of deletion mutations of the cloned Escherichia coli K-12 mtlA gene, which encodes the mannitol-specific enzyme II of the phosphoenolpyruvate (PEP)-dependent carbohydrate phosphotransferase system. This membrane-bound permease consists of 637 amino acid residues and is responsible for the concomitant transport and phosphorylation of D-mannitol in E. coli. Deletions into the 3' end of mtlA were constructed by exonuclease III digestion. Restriction mapping of the resultant plasmids identified several classes of deletions that lacked approximately 5% to more than 75% of the gene. Immunoblotting experiments revealed that many of these plasmids expressed proteins within the size range predicted by the restriction analyses, and all of these proteins were membrane localized, which demonstrated that none of the C-terminal half of the permease is required for membrane insertion. Functional analyses of the deletion proteins, expressed in an E. coli strain deleted for the chromosomal copy of mtlA, showed that all but one of the strains containing confirmed deletions were inactive in transport and PEP-dependent phosphorylation of mannitol, but deletions removing up to at least 117 amino acid residues from the C terminus of the permease were still active in catalyzing phospho exchange between mannitol 1-phosphate and mannitol. A deletion protein that lacked 240 residues from the C terminus of the permease was inactive in phospho exchange but still bound mannitol with high affinity. These experiments localize sites important for transport and PEP-dependent phosphorylation to the extreme C terminus of the mannitol permease, sites important for phospho exchange to between residues 377 and 519, and sites necessary for mannitol binding to the N-terminal 60% of the molecule. The results are discussed with respect to the fact that the mannitol permease consists of structurally independent N- and C-terminal domains.  相似文献   

14.
Intracellular ATP and membrane-associated phosphatidylinositol phospholipids, like PIP(2) (PI(4,5)P(2)), regulate the activity of ATP-sensitive K(+) (K(ATP)) and Kir1.1 channels by direct interaction with the pore-forming subunits of these channels. We previously demonstrated direct binding of TNP-ATP (2',3'-O-(2,4,6-trinitrophenylcyclo-hexadienylidene)-ATP) to the COOH-terminal cytosolic domains of the pore-forming subunits of Kir1.1 and Kir6.x channels. In addition, PIP(2) competed for TNP-ATP binding on the COOH termini of Kir1.1 and Kir6.x channels, providing a mechanism that can account for PIP(2) antagonism of ATP inhibition of these channels. To localize the ATP-binding site within the COOH terminus of Kir1.1, we produced and purified maltose-binding protein (MBP) fusion proteins containing truncated and/or mutated Kir1.1 COOH termini and examined the binding of TNP-ATP and competition by PIP(2). A truncated COOH-terminal fusion protein construct, MBP_1.1CDeltaC170, containing the first 39 amino acid residues distal to the second transmembrane domain was sufficient to bind TNP-ATP with high affinity. A construct containing the remaining COOH-terminal segment distal to the first 39 amino acid residues did not bind TNP-ATP. Deletion of 5 or more amino acid residues from the NH(2)-terminal side of the COOH terminus abolished nucleotide binding to the entire COOH terminus or to the first 49 amino acid residues of the COOH terminus. PIP(2) competed TNP-ATP binding to MBP_1.1CDeltaC170 with an EC(50) of 10.9 microm. Mutation of any one of three arginine residues (R188A/E, R203A, and R217A), which are conserved in Kir1.1 and K(ATP) channels and are involved in ATP and/or PIP(2) effects on channel activity, dramatically reduced TNP-ATP binding to MBP_1.1DeltaC170. In contrast, mutation of a fourth conserved residue (R212A) exhibited slightly enhanced TNP-ATP binding and increased affinity for PIP(2) competition of TNP-ATP (EC(50) = 5.7 microm). These studies suggest that the first 39 COOH-terminal amino acid residues form an ATP-PIP(2) binding domain in Kir1.1 and possibly the Kir6.x ATP-sensitive K(+) channels.  相似文献   

15.
The Na+-HCO3- cotransporter NBC1 is located exclusively on the basolateral membrane and mediates vectorial transport of bicarbonate in a number of epithelia, including kidney and pancreas. To identify the motifs that direct the targeting of kidney NBC1 to basolateral membrane, wild type and various carboxyl-terminally truncated kidney NBC1 mutants were generated, fused translationally in-frame to GFP, and transiently expressed in kidney epithelial cells. GFP was linked to the NH2 terminus of NBC1, and labeling was examined by confocal microscopy. Full-length (1035 aa) and mutants with the deletion of 3 or 20 amino acids from the COOH-terminal end of NBC1 (lengths 1032 and 1015 aa, respectively) showed strong and exclusive targeting on the basolateral membrane. However, the deletion of 26 amino acid residues from the COOH-terminal end (length 1010 aa) resulted in retargeting of NBC1 to the apical membrane. Expression studies in oocytes demonstrated that the NBC1 mutant with the deletion of 26 amino acid residues from the COOH-terminal end is functional. Additionally, the deletion of the last 23 amino acids or mutation in the conserved residue Phe at position 1013 on the COOH-terminal end demonstrated retargeting to the apical membrane. We propose that a carboxyl-terminal motif with the sequence QQPFLS, which spans amino acid residues 1010-1015, and specifically the amino acid residue Phe (position 1013) are essential for the exclusive targeting of NBC1 to the basolateral membrane.  相似文献   

16.
E(rns) is a structural glycoprotein of pestiviruses found to be attached to the virion and to membranes within infected cells via its COOH terminus, although it lacks a hydrophobic anchor sequence. The COOH-terminal sequence was hypothesized to fold into an amphipathic alpha-helix. Alanine insertion scanning revealed that the ability of the E(rns) COOH terminus to bind membranes is considerably reduced by the insertion of a single amino acid at a wide variety of positions. Mutations decreasing the hydrophobicity of the apolar face of the putative helix led to reduction of membrane association. Proteinase K protection assays showed that E(rns) translated in vitro in the presence of microsomal membranes was protected, whereas a mutant with an artificial transmembrane region and a short cytosolic tag was shortened by the protease treatment. A tag fused to the COOH terminus of wild type E(rns) was not accessible for antibodies within digitonin-permeabilized cells, but the variant with the tag located downstream of the artificial transmembrane region was detected under the same conditions. These results are in accordance with the model that the COOH-terminal membrane anchor of E(rns) represents an amphipathic helix embedded in plane into the membrane. The integrity of the membrane anchor was found to be important for recovery of infectious virus.  相似文献   

17.
I gamma CAT is a hybrid protein that inserts into the membrane of the endoplasmic reticulum as a type II membrane protein. These proteins span the membrane once and expose the NH2-terminal end on the cytoplasmic side and the COOH terminus on the exoplasmic side. I gamma CAT has a single hydrophobic segment of 30 amino acid residues that functions as a signal for membrane insertion and anchoring. The signal-anchor region in I gamma CAT was analyzed by deletion mutagenesis from its COOH-terminal end (delta C mutants). The results show that the 13 amino acid residues on the amino-terminal side of the hydrophobic segment are not sufficient for membrane insertion and translocation. Mutant proteins with at least 16 of the hydrophobic residues are inserted into the membrane, glycosylated, and partially proteolytically processed by a microsomal protease (signal peptidase). The degree of processing varies between different delta C mutants. Mutant proteins retaining 20 or more of the hydrophobic amino acid residues can span the membrane like the parent I gamma CAT protein and are not proteolytically processed. Our data suggest that in the type II membrane protein I gamma CAT, the signals for membrane insertion and anchoring are overlapping and that hydrophilic amino acid residues at the COOH-terminal end of the hydrophobic segment can influence cleavage by signal peptidase. From this and previous work, we conclude that the function of the signal-anchor sequence in I gamma CAT is determined by three segments: a positively charged NH2 terminus, a hydrophobic core of at least 16 amino acid residues, and the COOH-terminal flanking hydrophilic segment.  相似文献   

18.
Several lines of evidence suggest that neutral ceramidase is involved in the regulation of ceramide-mediated signaling. Recently, the enzymes from mouse and rat were found to be localized at plasma membranes as a type II integral membrane protein, occasionally being detached from the cells after proteolytic processing of the NH(2)-terminal anchoring region (Tani, M., Iida, H., and Ito, M. (2003) J. Biol. Chem. 278, 10523-10530). We report here that conserved hydrophobic amino acid residues in the COOH-terminal tail are indispensable for the correct folding and localization, and enzyme activity of neutral ceramidase. Truncation of four, but not three, amino acid residues from the COOH terminus of rat neutral ceramidase resulted in a complete loss of enzyme activity as well as cell surface expression in HEK293 cells. Point mutation analysis revealed that Ile(758), the 4(th) amino acid residue from the COOH terminus, and Phe(756) are essential for the enzyme to function. The truncated and mutated enzymes were found to be retained in the endoplasmic reticulum (ER) and rapidly degraded without transportation to the Golgi apparatus. Treatment of the cells expressing the aberrant COOH-terminal enzyme with MG-132, a specific inhibitor for the proteasome, increased the accumulation of the enzyme in the ER, indicating that the misfolded enzyme was degraded by the proteasome. It was also found that the COOH-terminal tail was indispensable for the enzyme activity and correct folding of the prokaryote ceramidase from Pseudomonas aeruginosa, indicating that the importance of the COOH-terminal tail of the enzyme has been preserved through evolution.  相似文献   

19.
The capsid (C) protein of alphaviruses consists of two protein domains: a serine protease at the COOH terminus and an NH2-terminal domain which is thought to interact with RNA in the virus nucleocapsid (NC). The latter domain is very rich in positively charged amino acid residues. In this work, we have introduced large deletions into the corresponding region of a full-length cDNA clone of Semliki Forest virus, expressed the transcribed RNA in BHK-21 cells, and monitored the autoprotease activity of C, the formation of intracellular NCs, and the release of infectious virus. Our results show that if the gene region encoding the whole NH2-terminal domain is removed, the expressed C protein fragment cannot assemble into NCs and virus particles but it is still able to function as an autoprotease. Thus, these results underline the general importance of the NH2-terminal domain in the virus assembly process and furthermore show that the serine protease domain can function independently of the NH2 terminus. Surprisingly, analysis of additional C protein deletion variants showed that not all of the NH2-terminal domain is required for virus assembly, but large deletions involving up to one-third of its positively charged residues are still compatible with NC and virus formation. The fact that so much flexibility is allowed in the structure of the NH2-terminal domain of C suggests that most of this region is involved in nonspecific interactions with the encapsidated RNA, probably through its positively charged amino acid residues.  相似文献   

20.
In this study we examine for the first time the roles of the various domains of human RNase H1 by site-directed mutagenesis. The carboxyl terminus of human RNase H1 is highly conserved with Escherichia coli RNase H1 and contains the amino acid residues of the putative catalytic site and basic substrate-binding domain of the E. coli RNase enzyme. The amino terminus of human RNase H1 contains a structure consistent with a double-strand RNA (dsRNA) binding motif that is separated from the conserved E. coli RNase H1 region by a 62-amino acid sequence. These studies showed that although the conserved amino acid residues of the putative catalytic site and basic substrate-binding domain are required for RNase H activity, deletion of either the catalytic site or the basic substrate-binding domain did not ablate binding to the heteroduplex substrate. Deletion of the region between the dsRNA-binding domain and the conserved E. coli RNase H1 domain resulted in a significant loss in the RNase H activity. Furthermore, the binding affinity of this deletion mutant for the heteroduplex substrate was approximately 2-fold tighter than the wild-type enzyme suggesting that this central 62-amino acid region does not contribute to the binding affinity of the enzyme for the substrate. The dsRNA-binding domain was not required for RNase H activity, as the dsRNA-deletion mutants exhibited catalytic rates approximately 2-fold faster than the rate observed for wild-type enzyme. Comparison of the dissociation constant of human RNase H1 and the dsRNA-deletion mutant for the heteroduplex substrate indicates that the deletion of this region resulted in a 5-fold loss in binding affinity. Finally, comparison of the cleavage patterns exhibited by the mutant proteins with the cleavage pattern for the wild-type enzyme indicates that the dsRNA-binding domain is responsible for the observed strong positional preference for cleavage exhibited by human RNase H1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号