首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The substrate specificity of dextrin dextranase (EC 2.4.1.2; DDase) was investigated. This enzyme acted on maltose and isomaltose in addition to starch and dextrin, but did not act on other gluco-disaccharides. When various saccharides were allowed to react with salicin as a glucosyl acceptor, glucosyl residues were transferred to salicin on the reaction with maltose, isomaltose, starch, and dextran as glucosyl donors. On the other hand, when starch as a glucosyl donor was allowed to react with various saccharides, glucosyl residues of starch were transferred to d-glucose, d-xylose, and oligosaccharides that had glucosyl or xylosyl residues at non-reducing termini. Methyl α- and β-d-glucosides also acted as acceptors. Furthermore DDase transferred glucosyl residues from starch to glucose derivatives such as 2-deoxy-, 2-acetamido-2-deoxy-, 3-O-methyl-, and 6-deoxy-d-glucoses. When starch was used as a glucosyl donor, two products formed by transglucosylation to d-glucose as an acceptor were found to be maltose and isomaltose, and a product formed by transglucosylation to d-xylose as an acceptor was found to be glucosyl-α-l,4-xylose.  相似文献   

2.
Glucansucrases from Leuconostoc mesenteroides catalyze the transfer of glucosyl units from sucrose to other carbohydrates by acceptor reaction. We modified salicyl alcohol, phenol and salicin by using various glucansucrases and with sucrose as a donor of glucosyl residues. Salicin, phenyl glucose, isosalicin, isomaltosyl salicyl alcohol, and a homologous series of oligosaccharides, connected to the acceptors and differing from one another by one or more glucose residues, were produced as major reaction products. By using salicin and salicyl alcohol as acceptors, B-1355C2 and B-1299CB-BF563 dextransucrases synthesized most widely diverse products, producing more than 12 and 9 different kinds of saccharides, respectively. With phenol, two acceptor products and oligosaccharides were synthesized by using the B-1299CB-BF563 dextransucrase. Salicyl derivatives, as acceptor products, showed higher anti-coagulation activity compared with that of salicin or salicyl alcohol that were used as acceptors.  相似文献   

3.
Reactions of dextransucrase and sucrose in the presence of sugars (acceptors) of low molecular weight have been observed to give a dextran of low molecular weight and a series of oligosaccharides. The acceptor reaction of dextransucrase was examined in the absence and presence of sucrose by using d-[14C]glucose, d-[14C]fructose, and 14C-reducing-end labeled maltose as acceptors. A purified dextransucrase was pre-incubated with sucrose, and the resulting d-fructose and unreacted sucrose were removed from the enzyme by chromatography on columns of Bio-Gel P-6. The enzyme, which migrated at the void volume, was collected and referred to as “charged enzyme”. The charged enzyme was incubated with 14C-acceptor in the absence of sucrose. Each of the three acceptors gave two fractions of labeled products, a high molecular weight product, identified as dextran, and a product of low molecular weight that was an oligosaccharide. It was found that all three of the acceptors were incorporated into the products at the reducing end. Similar results were obtained when the reactions were performed in the presence of sucrose, but higher yields of labeled products were obtained and a series of homologous oligosaccharides was produced when d-glucose or maltose was the acceptor. We propose that the acceptor reaction proceeds by nucleophilic displacement of glucosyl and dextranosyl groups from a covalent enzyme-complex by a specific, acceptor hydroxyl group, and that this reaction effects a glycosidic linkage between the d-glucosyl and dextranosyl groups and the acceptor. We conclude that the acceptor reactions serve to terminate polymerization of dextran by displacing the growing dextran chain from the active site of the enzyme; the acceptors, thus, do not initiate dextran polymerization by acting as primers.  相似文献   

4.
The ability of several native and chemically synthesized, branched dextrans to stimulate the activity of an alpha-D-glucosyltransferase (GTF-I) of Streptococcus mutans has been compared. The enzyme catalysed the transfer of glucosyl residues from sucrose with the formation of water-insoluble (1----3)-alpha-D-glucan. The rate of this reaction was greatly increased in the presence of dextran, and the extent of stimulation was negatively correlated with the degree of branching of the added dextran. The results refute the concept that growth of water-insoluble glucan occurs from the multiple, non-reducing termini of dextran acceptors.  相似文献   

5.
Summary The total amount of novel oligosaccharides synthesized by -D-fructofuranosidase at pH 7.5 increased three-fold using a medium composed of 1.2M sucrose, 0.5M fructose and 0.1M glucose, as compared to that with only 1.8M sucrose solution. Using 0.6M of the three sugars did not increase yield but reduced rate of sucrose hydrolysis by 72.7%. Synthesis of fructosyl/glucosyl oligosaccharides based on -fructofuranosidase mediated transglycosylation is enhanced by supplementation of sucrose solution with appropriate concentrations fructose and glucose.  相似文献   

6.
1. The kinetic mechanism of beta-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21) of Botryodiplodia theobromae Pat. has been studied in the presence of competing glucosyl acceptors. 2. Glycerol, fructose, sucrose, cellobiose and to a much lesser extent, maltose can act as glucosyl acceptors, apart from water. 3. Evidence confirming and supporting the kinetic mechanism previously postulated (Umezurike, G.M. (1971) Biochim. Biophys. Acta. 250, 182-191) is presented. 4. A theoretical kinetic analysis of the behaviour of the enzyme in the presence of two alternative glucosyl acceptors in addition to water is found to be consistent with experimental observation, suggesting a system in which both donor and acceptors bind to the enzyme in a random fashion to form ternary complexes. 5. The results are discussed in terms of the mechanism of group-transfer reactions.  相似文献   

7.
A β-d-fructofuranosidase from Claviceps purpurea   总被引:1,自引:0,他引:1       下载免费PDF全文
Evidence suggests that sucrose is the main carbon source for growth of Claviceps spp. in the parasitic condition. The sucrose acts as substrate for an active beta-fructofuranosidase, produced by the fungus, which in the first instance converts the disaccharide into glucose and an oligofructoside. In this way, 50% of the glucose, supplied as sucrose, is made available to the parasite for assimilation. Subsequent action of the enzyme on both sucrose and the oligofructoside leads to the release of more glucose and the formation of additional oligosaccharides. The structures of the main oligosaccharides formed have been elucidated and the interactions of each compound studied. In experiments with purified enzyme in vitro the interaction of the oligosaccharides is rapid but in culture they are assimilated only slowly; in each case some free fructose is liberated. Free fructose is not assimilated in the presence of glucose and, further, inhibits growth at concentrations which might be expected to occur in the parasitic condition. A dual role has been suggested for the enzyme, with sucrose as substrate, in which glucose is made available to the growing parasite, while at the same time transfer of the fructose to form oligosaccharides prevents it from accumulating at inhibitory concentrations. Ultimately, when glucose becomes limiting, the fungus will adapt to fructose assimilation.  相似文献   

8.
Incubation of rat-spleen lymphocytes with UDP-glucose together with GDP-mannose and UDP-N-acetylglucosamine leads to the formation of glucosylated lipid intermediates characterized as dolichyl phosphate glucose and dolichyl diphosphate oligosaccharides. This latter can be either transferred onto endogenous protein acceptors or cleaved into phosphooligosaccharides. The striking fact is that phosphooligosaccharide populations contain far less glucosylated products than the dolichyl diphosphate oligosaccharide ones from which they are derived. Two hypotheses have been investigated: either a rapid action of glucosidases on the liberated phosphooligosaccharides or a preferential splitting of the non-glucosylated population of dolichyl diphosphate oligosaccharides. Addition of p-nitrophenyl-alpha-D-glucoside inhibits glucosidase activities and allows the production of a major population of dolichyl diphosphate oligosaccharides containing three glucose residues. Using these conditions, it is shown that the amount of phosphooligosaccharides generated from the splitting of dolichyl diphosphate oligosaccharides is greatly decreased and that the major part of these remaining phosphooligosaccharides do not contain glucose. These results show that the presence of glucosyl units prevent dolichyl diphosphate oligosaccharides from further degradation into phosphooligosaccharides.  相似文献   

9.
Levansucrase from Microbacterium laevaniformans ATCC 15953 produced in a 3% sucrose medium was purified to homogeneity from cell-free extracts by ammonium sulfate precipitation, DEAE-Sepharose Fast Flow and Sephacryl S-100 HR chromatographies. The molecular mass of the purified enzyme was 64 kDa as measured by SDS–PAGE. The optimum pH and temperature for the levan formation were 6.0 and 30 °C, respectively. The levan-forming activity was strongly inhibited by CuSO4 and HgCl2, and moderately inhibited by ZnSO4. The enzyme synthesized a variety of fructosyl oligosaccharides from various saccharides as fructosyl acceptors. Disaccharides were more favorable fructosyl acceptors than monosaccharides. The structure of the transfer product when melibiose was used as an acceptor was determined by enzyme hydrolysis and 13C NMR spectroscopy. The chemical structure of the resulting fructosyl melibiose was identified as O-- -galactopyranosyl-(1→6)-- -glucopyranosyl-(1→2)-β- -fructofranoside. This result suggests that levansucrase from M. laevaniformans specifically transferred the fructose moiety of sucrose to the C1---OH position of the glucose residue of melibiose.  相似文献   

10.
Summary An -glucosidase fromAspergillus carbonarious CCRC 30414 was employed for investigating the enzymatic synthesis of isomaltooligosaccharides from maltose. The enzyme transferred a glucose unit from the nonreducing end of maltose and other -linked glucosyl oligosaccharides to glucose and other glucosyl oligosaccharides which function as accepting co-substrates. The transfer of a glucose unit occurs most frequently to the 6-OH position of the nonreducing end of acceptor, but transfer to 4-OH position also occurs. Treatment of 30 % (w/v) maltose with the enzyme under optimum conditions afforded more than 50% isomaltooligosaccharides.  相似文献   

11.
Nigerose and nigerooligosaccharides served as acceptors for a glucosyltransferase GTF-I from cariogenic Streptococcus sobrinus to give a series of homologous acceptor products. The soluble oligosaccharides (dp 5-9) strongly activated the acceptor reaction, resulting in the accumulation of water-insoluble (1-->3)-alpha-D-glucan. The enzyme transferred the labeled glucosyl residue from D-[U-13C]sucrose to the 3-hydroxyl group at the non-reducing end of the (1-->3)-alpha-D-oligosaccharides, as unequivocally shown by NMR 13C-13C coupling patterns. The values of the 13C-13C one-bond coupling constant (1J) are also presented for the C-1-C-6 of the 13C-labeled alpha-(1-->3)-linked glucosyl residue and of the non-reducing-end residue.  相似文献   

12.
Mutants of Leuconostoc mesenteroides sucrose phosphorylase having active-site Phe(52) replaced by Ala (F52A) or Asn (F52N) were characterized by free energy profile analysis for catalytic glucosyl transfer from sucrose to phosphate. Despite large destabilization (≥3.5kcal/mol) of the transition states for enzyme glucosylation and deglucosylation in both mutants as compared to wild-type, the relative stability of the glucosyl enzyme intermediate was weakly affected by substitution of Phe(52). In reverse reaction where fructose becomes glucocylated, "error hydrolysis" was the preponderant path of breakdown of the covalent intermediate of F52A and F52N. It is proposed, therefore, that Phe(52) facilitates reaction of the phosphorylase through (1) positioning of the transferred glucosyl moiety at the catalytic subsite and (2) strong cation-π stabilization of the oxocarbenium ion-like transition states flanking the covalent enzyme intermediate.  相似文献   

13.
Sucrose:sucrose 6-fructosyltransferase, an enzyme activity recently identified in fructan-accumulating barley (Hordeum vulgare) leaves, was further characterized. The purified enzyme catalyzed the transfer of a fructosyl group from sucrose to various acceptors. It displayed some [beta]-fructosidase (invertase) activity, indicating that water could act as fructosyl acceptor. Moreover, it transferred the fructosyl residue of unlabeled sucrose to [U-14C]Glc, producing [U-14C]sucrose and unlabeled glucose. Most significantly for fructan synthesis, the enzyme used as acceptors but not as donors a variety of oligofructans containing [beta](2->1)- and [beta](2->6)-linked fructosyl moieties. Thus, it acted as a general sucrose:fructan fructosyltransferase. The products formed by the enzyme from sucrose and various purified, structurally characterized oligofructans were analyzed by liquid chromatography and identified by comparison with structurally characterized standards. The results showed that the enzyme formed exclusively [beta](2->6) fructosyl-fructose linkages, either initiating or elongating a fructan chain of the phlein type. We propose, therefore, to rename the purified enzyme sucrose:fructan 6-fructosyltransferase.  相似文献   

14.
The activity of the high-molecular-weight beta-glucosidase (beta-D-glucoside glucohydrolase, EC 3.2.1.21) obtained from culture filtrates of Botryodiplodia theobromae Pat. was affected by added NaCl in such a way that an initial phase of stimulation was followed by a phase of rapid non-linear decrease in velocity and finally by a phase of slow linear decrease in velocity as the concentration of NaCl was increased. In the presence of 0.014 M-sodium acetate/acetic acid buffer (pH 5.0) there was a slight increase in enzymic activity in the presence of low concentrations of dioxan (up to about 10% dioxan) and a rapid decrease in enzymic activity at higher dioxan concentrations, but both effects were mitigated in the presence of 0.1 M buffer. The order of efficiency of added glucosyl acceptors in beta-glucosidase-catalysed reactions was found to be fructose greater than sucrose greater than glycerol greater than methanol. The enzyme was inactivated by the active-site-directed compound conduritol-B-epoxide; but this inactivation was concentration-dependent, was prevented by 10 mM-glucose, and involved an acidic group with pKa 4.3. A rate equation has been derived on the assumption of a mechanism of action involving a solvent-separated and an intimate glucosyl cation-carboxylate ion-pair intermediate and an alpha-glucosyl enzyme intermediate [Umezurike, G. M. (1981) Biochem. J. 199, 203-209]. Calculations based on the application of the derived rate equation and the calculated kinetic parameters show that the rate equation explains the peculiar properties of beta-glucosidase in the presence of added glucosyl acceptors or of NaCl.  相似文献   

15.
Oligosaccharide synthesis by dextransucrase: new unconventional acceptors   总被引:5,自引:0,他引:5  
The acceptor reactions of dextransucrase offer the potential for a targeted synthesis of a wide range of di-, tri- and higher oligosaccharides by the transfer of a glucosyl group from sucrose to the acceptor. We here report on results which show that the synthetic potential of this enzyme is not restricted to 'normal' saccharides. Additionally functionalized saccharides, such as alditols, aldosuloses, sugar acids, alkyl saccharides, and glycals, and rather unconventional saccharides, such as fructose dianhydride, may also act as acceptors. Some of these acceptors even turned out to be relatively efficient: alpha-D-glucopyranosyl-(1-->5)-D-arabinonic acid, alpha-D-glucopyranosyl-(1-->4)-D-glucitol, alpha-D-glucopyranosyl-(1-->6)-D-glucitol, alpha-D-glucopyranosyl-(1-->6)-D-mannitol, alpha-D-fructofuranosyl-beta-D-fructofuranosyl-(1,2':2,3')-dianhydride, 1,5-anhydro-2-deoxy-D-arabino-hex-1-enitol ('D-glucal'), and may therefore be of interest for future applications of the dextransucrase acceptor reaction.  相似文献   

16.
The glycoprotein nature and antigenicity of a fungal D-glucosyltransferase   总被引:1,自引:0,他引:1  
D-Glucosyltransferase (EC 2.4.1.24) from Aspergillus niger has been prepared in pure form by chromatography on DEAE-cellulose. The enzyme transfers D-glucosyl units from maltose and other alpha-linked D-glucosyl oligosaccharides to glucosyl co-substrates resulting in the synthesis of new types of oligosaccharides. The glucosyltransferase has been found to be a glycoprotein containing 20% of carbohydrate consisting of mannose, glucose, and galactose. The carbohydrate residues are attached as either single units or as short oligosaccharide chains by O-glycosyl linkages to the serine and threonine residues of the protein. Antibodies directed against glucosyltransferase have been induced in animals by appropriate immunization regimes. These antibodies combine with the carbohydrate components of the enzyme and, therefore, the carbohydrate residues are the immunodeterminant groups of the glucosyltransferase.  相似文献   

17.
Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particularly, little attention has been paid to the long-term hydrolysis products, including its participation in the final levan molecules distribution. Here, we explored the hydrolytic and transferase activity of the B. subtilis levansucrase (SacB) when levans produced by the same enzyme are used as substrate. We found that levan is hydrolyzed through a first order exo-type mechanism, which is limited to a conversion extent of around 30% when all polymer molecules reach a structure no longer suitable to SacB hydrolysis. To characterize the reaction, Isothermal Titration Calorimetry (ITC) was employed and the evolution of the hydrolysis products profile followed by HPLC, GPC and HPAEC-PAD. The ITC measurements revealed a second step, taking place at the end of the reaction, most probably resulting from disproportionation of accumulated fructo-oligosaccharides. As levanase, levansucrase may use levan as substrate and, through a fructosyl-enzyme complex, behave as a hydrolytic enzyme or as a transferase, as demonstrated when glucose and fructose are added as acceptors. These reactions result in a wide variety of oligosaccharides that are also suitable acceptors for fructo-oligosaccharide synthesis. Moreover, we demonstrate that SacB in the presence of levan and glucose, through blastose and sucrose synthesis, results in the same fructooligosaccharides profile as that observed in sucrose reactions. We conclude that SacB has an intrinsic levanase activity that contributes to the final levan profile in reactions with sucrose as substrate.  相似文献   

18.
Glycosyltransferases in the Golgi membranes of onion stem   总被引:6,自引:0,他引:6       下载免费PDF全文
Cell fractions consisting largely of Golgi membranes were prepared from the meristematic region of the onion. Several enzyme activities were found to be localized in these fractions: inosine diphosphatase, galactosyltransferases and glucosyltransferases. The fractions catalysed the transfer of [(14)C]galactose from UDP-galactose to endogenous and cell-sap acceptors, to N-acetylglucosamine and to ovalbumin. In the presence of bovine alpha-lactalbumin, transfer to glucose (lactose synthesis) was catalysed. [(14)C]Glucose was transferred from UDP-glucose to endogenous and cell-sap acceptors, to cellobiose and to fructose (sucrose synthesis). All these activities were latent, being potentiated by detergents (Triton X-100 or sodium deoxycholate). The characteristics of some of these enzyme activities are described and their biological significance is discussed.  相似文献   

19.
The synthesis of glucooligosaccharides from α-D-glucose-1-phosphate by transglucosylation with sucrose phosphorylase from Leuconostoc mesenteroides was studied using the purified enzyme and high performance liquid chromatography. The enzyme had a rather broad acceptor specificity and transferred glucosyl residues to various acceptors such as sugars and sugar alcohols. Especially, 5-carbon sugar alcohols (pentitols), D- and L-arabitol were acceptors equal to D-fructose, which was known as a good acceptor. The transfer product of xylitol formed by the enzyme was investigated. The structure of the product was found to be 4-O-α-D-glucopyranosyl-xylitol (G-X) by acid hydrolysis and 13C-nuclear magnetic resonance analysis. G-X is a probable candidate for a preventive for dental caries because it reduced the synthesis of water-insoluble glucan by Streptococcus mutans and kept a neutral pH in the cell suspension.  相似文献   

20.
Previous studies have indicated that α-d-1-fluoroglucose is a glycosyl donor for glucosyl transferases (5, 6) including dextransucrases formed by Leuconostoc and Streptococcus mutans. The present report confirms these observations with dextransucrase isolated from S. sanguis and conclusively establishes the details of this reaction as well as proving that mechanism of fluoroglucose transfer is comparable to that glucosyl transfer from sucrose. A new procedure for monitoring the reaction is reported, and is based on the measurement of proton formation using the pH indicator, bromcresol purple. Production of F? was found to be stoichiometric with proton production. Rate studies with the substrate indicate that α-1-fluoroglucose undergoes spontaneous hydrolysis, which is greatly increased in the presence of nucleophilic buffers. When [14C]maltose and α-1-fluoroglucose or [14C]α-1-fluoroglucose and maltose were incubated with dextransucrase, a series of oligosaccharide products was observed. The results indicate that the glucosyl moiety of α-1-fluoroglucose transferred to the acceptor. The nature of formation of the products are consistent with a series of precursor-product reactions. Product analysis of the saccharides by borohydride reduction analysis demonstrated that the glucosyl unit was added to the nonreducing end of maltose. When either [14C]fructose or [14C]-α-1-fluoroglucose were incubated with enzyme, a reaction was observed which was analogous to the isotopic-exchange reaction catalyzed by the enzyme in the presence of [14C]fructose and sucrose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号