首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine early events in connexin oligomerization, we made connexin constructs containing a C-terminal di-lysine based endoplasmic reticulum (ER) retention/retrieval signal (HKKSL). Previously, we found that both Cx32-HKKSL and Cx43-HKKSL were retained in the ER. However, Cx32-HKKSL oligomerized into hexameric hemichannels, but Cx43-HKKSL was retained as an apparent monomer. To define elements that prevent Cx43-HKKSL oligomerization in the ER, we made a series of HKKSL-tagged Cx43/Cx32 chimeras. When expressed by HeLa cells, some chimeras were retained in the ER as apparent monomers, whereas others oligomerized in the ER. To date, the second and third transmembrane domains and the cytoplasmic loop domain provide the minimal sufficient Cx43 element to inhibit ER oligomerization.  相似文献   

2.
To examine early events in connexin oligomerization, we made connexin constructs containing a C-terminal di-lysine based endoplasmic reticulum (ER) retention/retrieval signal (HKKSL). Previously, we found that both Cx32-HKKSL and Cx43-HKKSL were retained in the ER. However, Cx32-HKKSL oligomerized into hexameric hemichannels, but Cx43-HKKSL was retained as an apparent monomer. To define elements that prevent Cx43-HKKSL oligomerization in the ER, we made a series of HKKSL-tagged Cx43/Cx32 chimeras. When expressed by HeLa cells, some chimeras were retained in the ER as apparent monomers, whereas others oligomerized in the ER. To date, the second and third transmembrane domains and the cytoplasmic loop domain provide the minimal sufficient Cx43 element to inhibit ER oligomerization.  相似文献   

3.
Gap junction channels composed of connexins connect cells, allowing intercellular communication. Their cellular assembly involves a unique quality-control pathway. Some connexins [including connexin43 (Cx43) and Cx46] oligomerize in the trans-Golgi network following export of stabilized monomers from the endoplasmic reticulum (ER). In contrast, other connexins (e.g., Cx32) oligomerize early in the secretory pathway. Amino acids near the cytoplasmic aspect of the third transmembrane domain have previously been shown to determine this difference in assembly sites. Here, we characterized the oligomerization of two connexins expressed prominently in the vasculature, Cx37 and Cx40, using constructs containing a C-terminal dilysine-based ER retention/retrieval signal (HKKSL) or treatment with brefeldin A to block ER vesicle trafficking. Both methods led to intracellular retention of connexins, since the cells lacked gap junction plaques. Retention of Cx40 in the ER prevented it from oligomerizing, comparable to Cx43. By contrast, ER-retained Cx37 was partially oligomerized. Replacement of two amino acids near the third transmembrane domain of Cx43 (L152 and R153) with the corresponding amino acids from Cx37 (M152 and G153) resulted in early oligomerization in the ER. Thus, residues that allow Cx37 to oligomerize early in the secretory pathway could restrict its interactions with coexpressed Cx40 or Cx43 by favoring homomeric oligomerization, providing a structural basis for cells to produce gap junction channels with different connexin composition.  相似文献   

4.
To define further the mechanisms of gap junction protein (connexin (Cx)) oligomerization without pharmacologic disruption, we have examined the transport and assembly of connexin constructs containing C-terminal di-lysine-based endoplasmic reticulum (ER) (HKKSL) or ER-Golgi intermediate compartment (AKKFF) targeting sequences. By immunofluorescence microscopy, Cx43-HKKSL transiently transfected into HeLa cells showed a predominantly ER localization, although Cx43-AKKFF was localized to the perinuclear region of the cell. Sucrose gradient analysis of Triton X-100-solubilized connexins showed that either Cx43-HKKSL or Cx43-AKKFF expressed alone by HeLa cells was maintained as an apparent monomer. In contrast to Cx43-HKKSL, Cx32-HKKSL was maintained in the ER as stable hexamers, consistent with the notion that Cx32 and Cx43 oligomerization occur in distinct intracellular compartments. Furthermore, Cx43-HKKSL and Cx43-AKKFF inhibited trafficking of Cx43 and Cx46 to the plasma membrane. The inhibitory effect was because of the formation of mixed oligomers between Cx43-HKKSL or Cx43-AKKF and wild type Cx43 or Cx46. Taken together, these results suggest that Cx43-HKKSL and Cx43-AKKFF recirculate through compartments where oligomerization occurs and may be maintained as apparent monomers by a putative Cx43-specific quality control mechanism.  相似文献   

5.
Oligomerization of connexins is a critical step in gap junction channel formation. Some members of the connexin family can oligomerize with other members and form functional heteromeric hemichannels [e.g. Cx43 (connexin 43) and Cx45], but others are incompatible (e.g. Cx43 and Cx26). To find connexin domains important for oligomerization, we constructed chimaeras between Cx43 and Cx26 and studied their ability to oligomerize with wild-type Cx43, Cx45 or Cx26. HeLa cells co-expressing Cx43, Cx45 or Cx26 and individual chimaeric constructs were analysed for interactions between the chimaeras and the wild-type connexins using cell biological (subcellular localization by immunofluorescence), functional (intercellular diffusion of microinjected Lucifer yellow) and biochemical (sedimentation velocity through sucrose gradients) assays. All of the chimaeras containing the third transmembrane domain of Cx43 interacted with wild-type Cx43 on the basis of co-localization, dominant-negative inhibition of intercellular communication, and altered sedimentation velocity. The same chimaeras also interacted with co-expressed Cx45. In contrast, immunofluorescence and intracellular diffusion of tracer suggested that other domains influenced oligomerization compatibility when chimaeras were co-expressed with Cx26. Taken together, these results suggest that amino acids in the third transmembrane domain are critical for oligomerization with Cx43 and Cx45. However, motifs in different domains may determine oligomerization compatibility in members of different connexin subfamilies.  相似文献   

6.
We have used connexin constructs containing a C-terminal di-lysine-based endoplasmic reticulum (ER) retention/retrieval signal (HKKSL) transfected into HeLa cells to study early events in connexin oligomerization. Using this approach, we found that Cx43-HKKSL stably expressed at moderate levels by HeLa cells was retained in the ER and prevented from oligomerization. However, Cx43-HKKSL stably overexpressed by HeLa cells escaped from the ER and localized to a perinuclear region of the cell that included the Golgi apparatus. Overexpressed Cx43-HKKSL oligomerized into hexamers and also formed Triton X-100 insoluble, intracellular complexes that resembled gap junctions. Thus, the ability of HeLa cells to inhibit Cx43 oligomerization was saturable. HeLa cells stably overexpressing Cx43-HKKSL may provide a useful model system to evaluate pharmacologic agents and/or cDNAs encoding chaperones with the potential to regulate initial steps in Cx43 oligomerization.  相似文献   

7.
We have used connexin constructs containing a C-terminal di-lysine-based endoplasmic reticulum (ER) retention/retrieval signal (HKKSL) transfected into HeLa cells to study early events in connexin oligomerization. Using this approach, we found that Cx43-HKKSL stably expressed at moderate levels by HeLa cells was retained in the ER and prevented from oligomerization. However, Cx43-HKKSL stably overexpressed by HeLa cells escaped from the ER and localized to a perinuclear region of the cell that included the Golgi apparatus. Overexpressed Cx43-HKKSL oligomerized into hexamers and also formed Triton X-100 insoluble, intracellular complexes that resembled gap junctions. Thus, the ability of HeLa cells to inhibit Cx43 oligomerization was saturable. HeLa cells stably overexpressing Cx43-HKKSL may provide a useful model system to evaluate pharmacologic agents and/or cDNAs encoding chaperones with the potential to regulate initial steps in Cx43 oligomerization.  相似文献   

8.
The assembly of connexins (Cxs) into gap junction intercellular communication channels was studied. An in vitro cell-free synthesis system showed that formation of the hexameric connexon hemichannels involved dimeric and tetrameric connexin intermediates. Cx32 contains two putative cytoplasmic calmodulin-binding sites, and their role in gap junction channel assembly was investigated. The oligomerization of Cx32 into connexons was reversibly inhibited by a calmodulin-binding synthetic peptide, and by W7, a naphthalene sulfonamide calmodulin antagonist. Removing the calmodulin-binding site located at the carboxyl tail of Cx32 limited connexon formation and resulted in an accumulation of intermediate connexin oligomers. This truncation mutant, Cx32Delta215, when transiently expressed in COS-7 cells, accumulated intracellularly and had failed to target to gap junctions. Immunoprecipitation studies suggested that a C-terminal sequence of Cx32 incorporating the calmodulin-binding site was required for the formation of hetero-oligomers of Cx26 and Cx32 but not for Cx32 homomeric association. A chimera, Cx32TM3CFTR, in which the third transmembrane and proposed channel lining sequence of Cx32 was substituted by a transmembrane sequence of the cystic fibrosis transmembrane conductance regulator, did not oligomerize in vitro and it accumulated intracellularly when expressed in COS-7 cells. The results indicate that amino-acid sequences in the third transmembrane domain and a calmodulin-binding domain in the cytoplasmic tail of Cx32 are likely candidates for regulating connexin oligomerization.  相似文献   

9.
Connexin oligomerization and trafficking are regulated processes. To identify proteins that control connexin 43 (Cx43), a screen was designed using HeLa cells expressing a Cx43 construct with di-lysine endoplasmic reticulum (ER)-retention/retrieval motif, Cx43-HKKSL. At moderate levels of expression, Cx43-HKKSL is retained in the ER as monomers; however, Cx43-HKKSL stably overexpressed by HeLa cells localizes to the perinuclear region and oligomerizes. HeLa/Cx43-HKKSL overexpressors were transiently transfected with pooled clones from a human kidney cDNA library and used immunofluorescence microscopy to identify cDNAs that enabled overexpressed Cx43-HKKSL to convert from a perinuclear to ER localization pattern. Using this approach, a small molecular weight GTPase, rab20, was identified as a candidate protein with the ability to regulate Cx43 trafficking. Enhanced green fluorescent protein (EGFP)-tagged rab20 showed a predominantly perinuclear and ER localization pattern and caused wild-type Cx43 to be retained inside the cell. By contrast, mutant EGFP-rab20T19N, which lacks the ability to bind GTP, had no effect on Cx43. These results suggest Cx43 is transported through an intracellular compartment regulated by rab20 along the secretory pathway.  相似文献   

10.
One consequence of the diversity in gap junction structural proteins is that cells expressing different connexins may come into contact and form intercellular channels that are mixed in connexin content. We have systematically examined the ability of adjacent cells expressing different connexins to communicate, and found that all connexins exhibit specificity in their interactions. Two extreme examples of selectivity were observed. Connexin40 (Cx40) was highly restricted in its ability to make heterotypic channels, functionally interacting with Cx37, but failing to do so when paired with Cx26, Cx32, Cx43, Cx46, and Cx50. In contrast, Cx46 interacted well with all connexins tested except Cx40. To explore the molecular basis of connexin compatibility and voltage gating, we utilized a chimera consisting of Cx32 from the N-terminus to the second transmembrane domain, fused to Cx43 from the middle cytoplasmic loop to the C-terminus. The chimeric connexin behaved like Cx43 with regard to selectivity and like Cx32 with regard to voltage dependence. Taken together, these results demonstrate that the second but not the first extracellular domain affects compatibility, whereas voltage gating is strongly influenced by sequences between the N-terminus and the second transmembrane domain.  相似文献   

11.
We have initiated a series of experiments to analyze the biosynthesis and oligomerization of Cx43 in cells containing other connexins through the expression of site-directed mutants and chimeric connexin polypeptides. Here we report studies concerning a mutant of Cx43 (Cx43tr) that has been truncated after amino acid 251 to remove most of the Cx43 carboxy-terminal region. In stably transfected HeLa cells, full length Cx43 localized primarily to appositional membranes while much more Cx43tr was observed in the cytoplasm. Both Cx43 and Cx43tr showed similar oligomerization profiles based on centrifugation through sucrose gradients. HeLaCx43tr cells showed limited transfer of microinjected Lucifer Yellow but did show electrical coupling. Co-expression of Cx43tr with Cx43 or Cx45 led to Cx43tr localization at appositional membranes and co-localization with the other connexins. Moreover, cells co-expressing Cx43tr with Cx43 or Cx45 showed extensive intercellular dye coupling. Thus, Cx43tr was able to oligomerize and form functional channels when expressed alone or with a compatible connexin, but it only formed plaques when co-expressed. These results suggest that the carboxyl tail of Cx43 is not important for oligomerization, but they implicate critical residues in the formation of gap junction plaques.  相似文献   

12.
We have initiated a series of experiments to analyze the biosynthesis and oligomerization of Cx43 in cells containing other connexins through the expression of site-directed mutants and chimeric connexin polypeptides. Here we report studies concerning a mutant of Cx43 (Cx43tr) that has been truncated after amino acid 251 to remove most of the Cx43 carboxy-terminal region. In stably transfected HeLa cells, full length Cx43 localized primarily to appositional membranes while much more Cx43tr was observed in the cytoplasm. Both Cx43 and Cx43tr showed similar oligomerization profiles based on centrifugation through sucrose gradients. HeLaCx43tr cells showed limited transfer of microinjected Lucifer Yellow but did show electrical coupling. Co-expression of Cx43tr with Cx43 or Cx45 led to Cx43tr localization at appositional membranes and co-localization with the other connexins. Moreover, cells co-expressing Cx43tr with Cx43 or Cx45 showed extensive intercellular dye coupling. Thus, Cx43tr was able to oligomerize and form functional channels when expressed alone or with a compatible connexin, but it only formed plaques when co-expressed. These results suggest that the carboxyl tail of Cx43 is not important for oligomerization, but they implicate critical residues in the formation of gap junction plaques.  相似文献   

13.
Lipid rafts are cholesterol-sphingolipid-rich microdomains that function as platforms for membrane trafficking and signal transduction. Caveolae are specialized lipid raft domains that contain the structural proteins known as the caveolins. Connexins are a family of transmembrane proteins that self-associate to form cell-cell connections known as gap junctions and that are linked to cytosolic proteins, forming a protein complex or Nexus. To determine the extent to which these intracellular compartments intersect, we have systematically evaluated whether connexins are associated with lipid rafts and caveolin-1. We show that connexin 43 (Cx43) colocalizes, cofractionates, and coimmunoprecipitates with caveolin-1. A mutational analysis of Cx43 reveals that the hypothesized PDZ- and presumptive SH2/SH3-binding domains within the Cx43 carboxyl terminus are not required for this targeting event or for its stable interaction with caveolin-1. Furthermore, Cx43 appears to interact with two distinct caveolin-1 domains, i.e., the caveolin-scaffolding domain (residues 82-101) and the C-terminal domain (135-178). We also show that other connexins (Cx32, Cx36, and Cx46) are targeted to lipid rafts, while Cx26 and Cx50 are specifically excluded from these membrane microdomains. Interestingly, recombinant coexpression of Cx26 with caveolin-1 recruits Cx26 to lipid rafts, where it colocalizes with caveolin-1. This trafficking event appears to be unique to Cx26, since the other connexins investigated in this study do not require caveolin-1 for targeting to lipid rafts. Our results provide the first evidence that connexins interact with caveolins and partition into lipid raft domains and indicate that these interactions are connexin specific.  相似文献   

14.
Connexins are the transmembrane proteins that form gap junctions between adjacent cells. The function of the diverse connexin molecules is related to their tissue-specific expression and highly dynamic turnover. Although multiple connexins have been previously reported to compensate for each other's functions, little is known about how connexins influence their own expression or intracellular regulation. Of the three vertebrate lens connexins, two connexins, connexin43 (Cx43) and connexin46 (Cx46), show reciprocal expression and subsequent function in the lens and in lens cell culture. In this study, we investigate the reciprocal relationship between the expression of Cx43 and Cx46. Forced depletion of Cx43, by tumor-promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate, is associated with an up-regulation of Cx46 at both the protein and message level in human lens epithelial cells. An siRNA-mediated down-regulation of Cx43 results in an increase in the level of Cx46 protein, suggesting endogenous Cx43 is involved in the regulation of endogenous Cx46 turnover. Overexpression of Cx46, in turn, induces the depletion of Cx43 in rabbit lens epithelial cells. Cx46-induced Cx43 degradation is likely mediated by the ubiquitin-proteasome pathway, as (i) treatment with proteasome inhibitors restores the Cx43 protein level and (ii) there is an increase in Cx43 ubiquitin conjugation in Cx46-overexpressing cells. We also present data that shows that the C-terminal intracellular tail domain of Cx46 is essential to induce degradation of Cx43. Therefore, our study shows that Cx43 and Cx46 have novel functions in regulating each other's expression and turnover in a reciprocal manner in addition to their conventional roles as gap junction proteins in lens cells.  相似文献   

15.
Gap junctions are composed of a family of structural proteins called connexins, which oligomerize into intercellular channels and function to exchange low molecular weight metabolites and ions between adjacent cells. We have cloned a new member of the connexin family from lens cDNA, with a predicted molecular mass of 46 kD, called rat connexin46 (Cx46). Since a full-length cDNA corresponding to the 2.8-kb mRNA was not obtained, the stop codon and surrounding sequences were confirmed from rat genomic DNA. The RNA coding for this protein is abundant in lens fibers and detectable in both myocardium and kidney. Western analysis of both rat and bovine lens membrane proteins, using the anti-MP70 monoclonal antibody 6-4-B2-C6 and three anti-peptide antibodies against Cx46 demonstrates that Cx46 and MP70 are different proteins. Immunocytochemistry demonstrates that both proteins are localized in the same lens fiber junctional maculae. Synthesis of Cx46 in either reticulocyte lysate or Xenopus oocytes yields a 46-kD polypeptide; all anti-Cx46 antisera recognize a protein in rat lens membranes 5-10 kD larger, suggesting substantive lenticular posttranslational processing of the native translation product. Oocytes that have synthesized Cx46 depolarize and lyse within 24 h, a phenomenon never observed after expression of rat connexins 32 or 43 (Cx32 and Cx43). Lysis is prevented by osmotically buffering the oocytes with 5% Ficoll. Ficoll-buffered oocytes expressing Cx46 are permeable to Lucifer Yellow but not FITC-labeled BSA, indicating the presence of selective membrane permeabilities. Cx43-expressing oocytes are impermeable to Lucifer Yellow. Voltage-gated whole cell currents are measured in oocytes injected with dilute concentrations of Cx46 but not Cx43 mRNA. These currents are activated at potentials positive to -10 mV. Unlike other connexins expressed in Xenopus oocytes, these results suggest that unprocessed Cx46 induces nonselective channels in the oolemma that are voltage dependent and opened by large depolarizations.  相似文献   

16.
DNAs coding for seven murine connexins (Cx) (Cx26, Cx31, Cx32, Cx37, Cx40, Cx43, and Cx45) are functionally expressed in human HeLa cells that were deficient in gap junctional communication. We compare the permeabilities of gap junctions comprised of different connexins to iontophoretically injected tracer molecules. Our results show that Lucifer yellow can pass through all connexin channels analyzed. On the other hand, propidium iodide and ethidium bromide penetrate very poorly or not at all through Cx31 and Cx32 channels, respectively, but pass through channels of other connexins. 4,6 Diamidino-2-phenylindole (DAPI) dihydrochloride shows less transfer among Cx31 or Cx43 transfectants. Neurobiotin is weakly transferred among Cx31 transfectants. Total junctional conductance in Cx31 or Cx45 transfected cells is only about half as high as in other connexin transfectants analyzed and does not correlate exactly with any of the tracer permeabilities. Permeability through different connexin channels appears to be dependent on the molecular structure of each tracer, i.e. size, charge and possibly rigidity. This supports the hypothesis that different connexin channels show different permeabilities to second messenger molecules as well as metabolites and may fulfill in this way their specific role in growth control and differentiation of cell types. In addition, we have investigated the function of heterotypic gap junctions after co-cultivation of two different connexin transfectants, one of which had been prelabeled with fluorescent dextran beads. Analysis of Lucifer yellow transfer reveals that HeLa cells expressing Cx31 (beta-type connexin) do not communicate with any other connexin transfectant tested but only with themselves. Two other beta-type connexin transfectants, HeLa-Cx26 and -Cx32, do not transmit Lucifer yellow to any of the alpha-type connexins analyzed. Among alpha- type connexins, Cx40 does not communicate with Cx43. Thus, connexins differ in their ability to form functional heterotypic gap junctions among mammalian cells.  相似文献   

17.
Hu X  Ma M  Dahl G 《Biophysical journal》2006,90(1):140-150
Gap junction channels are intercellular channels that mediate the gated transfer of molecules between adjacent cells. To identify the domain determining channel conductance, the first transmembrane segment (M1) was reciprocally exchanged between Cx46 and Cx32E(1)43. The resulting chimeras exhibited conductances similar to that of the respective M1 donor. Furthermore, a chimera with the carboxy-terminal half of M1 in Cx46 replaced by that of Cx32 exhibited a conductance similar to that of Cx32E(1)43, whereas the chimera with only the amino-terminal half of M1 replaced retained the unitary conductance of wild-type Cx46. Extending the M1 domain swapping to other connexins by replacing the carboxy-terminal half of M1 in Cx46 with that of Cx37 yielded a chimera channel with increased unitary conductance close to that of Cx37. Furthermore, a point mutant of Cx46, with leucine substituted by glycine in position 35, displayed a conductance much larger than that of the wild type. Thus, the M1 segment, especially the second half, contains important determinants of conductance of the connexin channel.  相似文献   

18.
Gap junctions are plasma membrane domains containing arrays of channels that exchange ions and small molecules between neighboring cells. Gap junctional intercellular communication enables cells to directly cooperate both electrically and metabolically. Several lines of evidence indicate that gap junctions are important in regulating cell growth and differentiation and for maintaining tissue homeostasis. Gap junction channels consist of a family of transmembrane proteins called connexins. Gap junctions are dynamic structures, and connexins have a high turnover rate in most tissues. Connexin43 (Cx43), the best-studied connexin isoform, has a half-life of 1.5–5 h; and its degradation involves both the lysosomal and proteasomal systems. Increasing evidence suggests that ubiquitin is important in the regulation of Cx43 endocytosis. Ubiquitination of Cx43 is thought to occur at the plasma membrane and has been shown to be regulated by protein kinase C and the mitogen-activated protein kinase pathway. Cx43 binds to the E3 ubiquitin ligase Nedd4, in a process modulated by Cx43 phosphorylation. The interaction between Nedd4 and Cx43 is mediated by the WW domains of Nedd4 and involves a proline-rich sequence conforming to a PY (XPPXY) consensus motif in the C terminus of Cx43. In addition to the PY motif, an overlapping tyrosine-based sorting signal conforming to the consensus of an YXXϕ motif is involved in Cx43 endocytosis, indicating that endocytosis of gap junctions involves both ubiquitin-dependent and -independent pathways. Here, we discuss current knowledge on the ubiquitination of connexins.  相似文献   

19.
Gap junctional intercellular communication (GJIC) is considered to play a key role in the maintenance of tissue independence and homeostasis in multicellular organisms by controlling the growth of GJIC-connected cells. Gap junction channels are composed of connexin molecules and, so far, more than a dozen different connexin genes have been shown to be expressed in mammals. Reflecting the importance of GJIC in various physiological functions, deletion of different connexin genes from mice results in various disorders, including cancers, heart malformation or conduction abnormality, cataract, etc. The possible involvement of aberrant GJIC in abnormal cell growth and carcinogenesis has long been postulated and recent studies in our own and other laboratories have confirmed that expression and function of connexin genes play an important role in cell growth control. Thus, almost all malignant cells show altered homologous and/or heterologous GJIC and are often associated with aberrant expression or localization of connexins. Aberrant localization of connexins in some tumour cells is associated with lack of function of cell adhesion molecules, suggesting the importance of cell-cell recognition for GJIC. Transfection of connexin genes into tumorigenic cells restores normal cell growth, supporting the idea that connexins form a family of tumour-suppressor genes. Some studies also show that specific connexins may be necessary to control growth of specific cell types. We have produced various dominant-negative mutants of Cx26, Cx32 and Cx43 and showed that some of them prevent the growth control exerted by the corresponding wild-type genes. However, we have found that connexins 32, 37 and 43 genes are rarely mutated in tumours. In some of these studies, we noted that connexin expression per se, rather than GJIC level, is more closely related to growth control, suggesting that connexins may have a GJIC-independent function. We have recently created a transgenic mouse strain in which a mutant Cx32 is specifically overexpressed in the liver. Studies with such mice indicate that Cx32 plays a key role in liver regeneration after partial hepatectomy. A decade ago, we proposed a method to enhance killing of cancer cells by diffusion of therapeutic agents through GJIC. Recently, we and others have shown that GJIC is responsible for the bystander effect seen in HSV-tk/ganciclovir gene therapy. Thus, connexin genes can exert dual effects in tumour control: tumour suppression and a bystander effect for cancer therapy.  相似文献   

20.
Gap junction protein connexin-43 interacts directly with microtubules.   总被引:11,自引:0,他引:11  
Gap junctions are specialized cell-cell junctions that mediate intercellular communication. They are composed of connexin proteins, which form transmembrane channels for small molecules [1, 2]. The C-terminal tail of connexin-43 (Cx43), the most widely expressed connexin member, has been implicated in the regulation of Cx43 channel gating by growth factors [3-5]. The Cx43 tail contains various protein interaction sites, but little is known about binding partners. To identify Cx43-interacting proteins, we performed pull-down experiments using the C-terminal tail of Cx43 fused to glutathione-S-transferase. We find that the Cx43 tail binds directly to tubulin and, like full-length Cx43, sediments with microtubules. Tubulin binding to Cx43 is specific in that it is not observed with three other connexins. We established that a 35-amino acid juxtamembrane region in the Cx43 tail, which contains a presumptive tubulin binding motif, is necessary and sufficient for microtubule binding. Immunofluorescence and immunoelectron microscopy studies reveal that microtubules extend to Cx43-based gap junctions in contacted cells. However, intact microtubules are dispensable for the regulation of Cx43 gap-junctional communication. Our findings suggest that, in addition to its well-established role as a channel-forming protein, Cx43 can anchor microtubule distal ends to gap junctions and thereby might influence the properties of microtubules in contacted cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号