首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haemopoietic stem cells   总被引:4,自引:0,他引:4  
  相似文献   

2.
Formation of secretion granules in regulated secretory cells involves packaging a subject of proteins undergoing intracellular transport into specific vesicular carriers that function in stimulus-dependent exocytosis. Recent findings suggest that immature granules are a site of passive sorting, involving condensation of regulated secretory proteins. Proteins that are not condensed are stored to a lesser degree and are enriched in unstimulated, constitutive-like secretion. While these observations have helped to distinguish possible mechanisms of secretory protein sorting, there are only recent hints about the sorting processes that may be required to create the regulated secretory carrier membranes.  相似文献   

3.
The development of cell lineages: A sequential model   总被引:2,自引:0,他引:2  
Abstract. The concept of cell lineage and the empirical characterization of specific lineages provide valuable insight into the problems of developmental biology. Of central interest is the decision-making process that results in the diversification of cell lines. Studies of the haemopoietic system, in which stem cells can be committed to one of at least six pathways of differentiation, have suggested that the restriction of differentiation potentials is a progressive and stochastic process. We have recently proposed an alternative model which hypothesizes that lineage potentials during haemopoiesis are expressed individually and in a predetermined sequence as progenitor cells mature. The model first arises from experimental studies which show that both normal myeloid progenitor cells and a human promyeloid cell line, which are able to differentiate towards either neutrophils or monocytes, express these potentials sequentially in culture. The close linear relationship between other haemopoietic progenitor cells is inferred from collective data from studies of bipotent progenitor cells and of haemopoietic proliferative disorders. If the development of haemopoietic cell lineages shows a tendency to follow a particular program, such a mechanism is likely to operate throughout development. In this paper we consider the evidence in favour of programmed events within progenitor cells implementing diversification, and the implications of predetermined and restricted pathways of embryonic development.  相似文献   

4.
En route through the secretory pathway of neuroendocrine cells, prohormones pass a series of membrane-bounded compartments. During this transport, the prohormones are sorted to secretory granules and proteolytically cleaved to bioactive peptides. Recently, progress has been made in a number of aspects concerning secretory protein transport and sorting, particularly with respect to transport events in the early regions of the secretory pathway. In this review we will deal with some of these aspects, including: i) selective exit from the endoplasmic reticulum via COPII-coated vesicles and the potential role of p24 putative cargo receptors in this process, ii) cisternal maturation as an alternative model for protein transport through the Golgi complex, and iii) the mechanisms that may be involved in the sorting of regulated secretory proteins to secretory granules. Although much remains to be learned, interesting new insights into the functioning of the secretory pathway have been obtained.  相似文献   

5.
Biogenesis of secretory granules   总被引:1,自引:0,他引:1  
Secretory granules of neuroendocrine cells store and release peptide hormones and neuropeptides in response to various stimuli. Generation of granules from the Golgi complex involves the aggregation of cargo proteins and their sorting from non-regulated secretory molecules. Recent findings on knockout mice lacking individual granule constituents have challenged the hypothesis that an 'essential' protein for the assembly of these organelles exists, while studies on polypyrimidine tract-binding protein and ICA512/IA-2 have provided insight into the mechanisms for adjusting granule production in relation to stimulation and secretory activity.  相似文献   

6.
As a rule, only proteins that have reached a native, folded and assembled structure are transported to their target organelles and compartments within the cell. In the secretory pathway of eukaryotic cells, this type of sorting is particularly important. A variety of molecular mechanisms are involved that distinguish between folded and unfolded proteins, modulate their intracellular transport, and induce degradation if they fail to fold. This phenomenon, called quality control, occurs at several levels and involves different types of folding sensors. The quality control system provides a stringent and versatile molecular sorting system that guaranties fidelity of protein expression in the secretory pathway.  相似文献   

7.
8.
Many secretory proteins are thought to rely upon transmembrane cargo receptors for efficient endoplasmic reticulum (ER)-to-Golgi transport. These receptors recognize specific cargo-encoded sorting signals. Only a few such cargo receptors have been characterized in detail, most of them in yeast. The only well-defined cargo receptor from mammalian cells, the LMAN1-MCFD2 complex, is required for the efficient secretion of coagulation factors V and VIII. Studies of this complex, coupled with recent advances in elucidating the basic machinery that mediates ER-to-Golgi transport, have provided a more-detailed picture of the mechanisms underlying receptor-mediated transport in the early secretory pathway. In addition to yeast studies, insights have also come from investigations into several inherited disorders that have recently been attributed to defects in the secretory pathway.  相似文献   

9.
Proteoglycans in haemopoietic cells   总被引:10,自引:0,他引:10  
Proteoglycans are produced by all types of haemopoietic cells including mature cells and the undifferentiated stem cells. The proteinase-resistant secretory granule proteoglycan (serglycin; Ref. 14), is the most prevalent and best characterised of these proteoglycans. Although its complete pattern of distribution in the haemopoietic system is unknown, serglycin has been identified in the mast cells, basophils and NK cells, in which secretion is regulated, and in HL-60 cells and a monocytoid cell line (Kolset, S.O., unpublished data) in which secretion is constitutive. Proteinase-resistant proteoglycans have been detected in human T-lymphocytes and murine stem cells (FDCP-mix) and the core proteins may be closely related to serglycin. A variety of glycosaminoglycan chains are assembled on the serglycin protein and it is likely that this class of proteoglycan can carry out a wide variety of functions in haemopoietic cells including the regulation of immune responses, inflammatory reactions and blood coagulation. There is strong evidence that in mast cells, NK cells and platelets, the proteoglycans are complexed to basic proteins (including enzymes and cytolytic agents) and amines in secretory granules and such complexes may dissociate following secretion from the cell. The stability of the complexes may be regulated by the ambient pH which may be acidic in the granules and neutral or above in the external medium. However, proteinase-proteoglycan complexes in mast cell granules seem to remain stable after secretion and it has been proposed that the proteoglycan regulates activity of proteinases released into the pericellular domain. The functions of proteoglycans which are constitutively secreted from cells are less clear. If cells have no requirement for storage of basic proteins why do they utilise the same design of proteoglycan as cells which accumulate secretory material prior to regulated release? We should stress that the so-called constitutive secretory pathway has been identified in haemopoietic cells in culture, which are usually maintained and grown in the presence of mitogenic factors (e.g., IL-2, IL-3). the cells are therefore activated and it has not been established that continuous proteoglycan secretion occurs in quiescent cells circulating in the peripheral blood. It is possible that lymphocytes, monocytes and macrophages, in which the constitutive secretion pathway operates in vitro, may store proteoglycan in vivo unless stimulated by mitogens or other activating agents.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Glombik MM  Gerdes HH 《Biochimie》2000,82(4):315-326
Neuropeptides and hormones, in contrast to constitutive secretory proteins, are sorted to and stored in secretory granules and released upon a stimulus. During the last two decades, signals and mechanisms involved in their sorting to the regulated pathway of protein secretion have been addressed in numerous studies. Taken together these studies revealed three important features of regulated secretory proteins: aggregation, sorting signal motifs and membrane binding. Here we try to dissect the sorting process with regard to these features and discuss their relevance in the context of current sorting models. We especially address the question where in the secretory pathway sorting takes place and discuss a possible role of sorting receptors.  相似文献   

11.
The clonal analysis in the ultrastructure of tumor-lymphocyte interaction was carried out in order to investigate the precise mechanism responsible for CTL-mediated cytolysis of tumor cells. A glioma-derived cell line (GI-1) and autologous tumor-specific cytotoxic T lymphocyte (CTL) clones were established. The CTL lines were composed of the morphologically homogeneous lymphocytes with intracytoplasmic electron-dense secretory granules. After the stimulation by GI-1, the size of the CTLs increased, and the intracytoplasmic organellas were developed. It was noted that the intracytoplasmic secretory granules markedly increased in number and size, and many of them exhibited an "immature" appearance. On the other hand, the tumor cells underwent a progressive degeneration. In contrast, the stimulation by other antigens caused only small morphological changes in the CTLs. It is suggested, therefore, that the secretory function of tumor-specific CTLs is activated by the stimulation of the specific antigen, and that soluble factors in the secretory granules in the CTLs may be closely associated with the mechanism of target cell lysis.  相似文献   

12.
The mechanisms by which prohormone precursors are sorted to the regulated secretory pathway in neuroendocrine cells remain poorly understood. Here, we investigated the presence of sorting signal(s) in proneurotensin/neuromedin N. The precursor sequence starts with a long N-terminal domain followed by a Lys-Arg-(neuromedin N)-Lys-Arg-(neurotensin)-Lys-Arg- sequence and a short C-terminal tail. An additional Arg-Arg dibasic is contained within the neurotensin sequence. Mutated precursors were expressed in endocrine insulinoma cells and analyzed for their regulated secretion. Deletion mutants revealed that the N-terminal domain and the Lys-Arg-(C-terminal tail) sequence were not critical for precursor sorting to secretory granules. In contrast, the Lys-Arg-(neuromedin N)-Lys-Arg-(neurotensin) sequence contained essential sorting information. Point mutation of all three dibasic sites within this sequence abolished regulated secretion. However, keeping intact any one of the three dibasic sequences was sufficient to maintain regulated secretion. Finally, fusing the dibasic-containing C-terminal domain of the precursor to the C terminus of beta-lactamase, a bacterial enzyme that is constitutively secreted when expressed in neuroendocrine cells, resulted in efficient sorting of the fusion protein to secretory granules in insulinoma cells. We conclude that dibasic motifs within the neuropeptide domain of proneurotensin/neuromedin N constitute a necessary and sufficient signal for sorting proteins to the regulated secretory pathway.  相似文献   

13.
Secretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells. Three-dimensional deconvolution fluorescence microscopy and secretagogue-stimulated release studies demonstrate that SgII chimeras are correctly targeted to DCGs and released by exocytosis in PC12 and primary chromaffin cells. Results from a Golgi-retained mutant form of SgII suggest that sorting of SgII into DCGs depends on a saturable sorting machinery at the trans-Golgi/trans-Golgi network. Truncation analyses reveal the presence of DCG-targeting signals within both the N- and C-terminal regions of SgII, with the putative alpha-helix-containing SgII-(25-41) and SgII-(334-348) acting as sufficient, independent sorting domains. This study defines sequence features of SgII mediating vesicular targeting in sympathoadrenal cells and suggests a mechanism by which discrete domains of the molecule function in sorting, perhaps by virtue of a particular arrangement in tertiary structure and/or interaction with a specific component of the DCG membrane.  相似文献   

14.
Polarized epithelial cells secrete proteins at either the apical or basolateral cell surface. A number of non-epithelial secretory proteins also exhibit polarized secretion when they are expressed in polarized epithelial cells but it is difficult to predict where foreign proteins will be secreted in epithelial cells. The question is of interest since secretory epithelia are considered as target tissues for gene therapy protocols that aim to express therapeutic secretory proteins. In the parathyroid gland, parathyroid hormone is processed by furin and co-stored with chromogranin A in secretory granules. To test the secretion of these proteins in epithelial cells, they were expressed in MDCK cells. Chromogranin A and a secreted form of furin were secreted apically while parathyroid hormone was secreted 60% basolaterally. However, in the presence of chromogranin A, the secretion of parathyroid hormone was 65% apical, suggesting that chromogranin can act as a “sorting escort” (sorting chaperone) for parathyroid hormone. Conversely, apically secreted furin did not affect the sorting of parathyroid hormone. The apical secretion of chromogranin A was dependent on cholesterol, suggesting that this protein uses an established cellular sorting mechanism for apical secretion. However, this sorting does not involve the N-terminal membrane-binding domain of chromogranin A. These results suggest that foreign secretory proteins can be used as “sorting escorts” to direct secretory proteins to the apical secretory pathway without altering the primary structure of the secreted protein. Such a system may be of use in the targeted expression of secretory proteins from epithelial cells. David V. Cohn—Deceased.  相似文献   

15.
Haemopoietic stem cells in vivo proliferate and develop in association with stromal cells of the bone marrow. Proliferation and differentiation of haemopoietic stem cells also occurs in vitro, either in association with stromal cells or in response to soluble growth factors. Many of the growth factors that promote growth and development of haemopoietic cells in vitro have now been molecularly cloned and purified to homogeneity and various techniques have been described that allow enrichment (to near homogeneity) of multipotential stem cells. This in turn, has facilitated studies at the mechanistic level regarding the role of such growth factors in self-renewal and differentiation of stem cells and their relevance in stromal-cell mediated haemopoiesis. Our studies have shown that at least some multipotential cells express receptors for most, if not all, of the haemopoietic cell growth factors already characterized and that to elicit a response, several growth factors often need to be present at the same time. Furthermore, lineage development reflects the stimuli to which the cells are exposed, that is, some stimuli promote differentiation and development of multipotential cells into multiple cell lineages, whereas others promote development of multipotential cell into only one cell lineage. We suggest that, in the bone marrow environment, the stromal cells produce or sequester different types of growth factors, leading to the formation of microenvironments that direct cells along certain lineages. Furthermore, a model system has been used to show the possibility that the self-renewal probability of multipotential cells can also be modulated by the range and concentrations of growth factors present in the environment. This suggests that discrete microenvironments, preferentially promoting self-renewal rather than differentiation of multipotential cells, may also be provided by marrow stromal cells and sequestered growth factors.  相似文献   

16.
《The Journal of cell biology》1989,109(6):3231-3242
The intestinal epithelium is a heterogeneous cell monolayer that undergoes continuous renewal and differentiation along the crypt-villus axis. We have used transgenic mice to examine the compartmentalization of a regulated endocrine secretory protein, human growth hormone (hGH), in the four exocrine cells of the mouse intestinal epithelium (Paneth cells, intermediate cells, typical goblet cells, and granular goblet cells), as well as in its enteroendocrine and absorptive (enterocyte) cell populations. Nucleotides -596 to +21 of the rat liver fatty acid binding protein gene, when linked to the hGH gene (beginning at nucleotide +3) direct efficient synthesis of hGH in the gastrointestinal epithelium of transgenic animals (Sweetser, D. A., D. W. McKeel, E. F. Birkenmeier, P. C. Hoppe, and J. I. Gordon. 1988. Genes & Dev. 2:1318-1332). This provides a powerful in vivo model for analyzing protein sorting in diverse, differentiating, and polarized epithelial cells. Using EM immunocytochemical techniques, we demonstrated that this foreign polypeptide hormone entered the regulated basal granules of enteroendocrine cells as well as the apical secretory granules of exocrine Paneth cells, intermediate cells, and granular goblet cells. This suggests that common signals are recognized by the "sorting mechanisms" in regulated endocrine and exocrine cells. hGH was targeted to the electron-dense cores of secretory granules in granular goblet and intermediate cells, along with endogenous cell products. Thus, this polypeptide hormone contains domains that promote its segregation within certain exocrine granules. No expression of hGH was noted in typical goblet cells, suggesting that differences exist in the regulatory environments of granular and typical goblet cells. In enterocytes, hGH accumulated in dense-core granules located near apical and lateral cell surfaces, raising the possibility that these cells, which are known to conduct constitutive vesicular transport toward both apical and basolateral surfaces, also contain a previously unrecognized regulated pathway. Together our studies indicate that transgenic mice represent a valuable system for analyzing trafficking pathways and sorting mechanisms of secretory proteins in vivo.  相似文献   

17.
P-selectin, a cell adhesion protein participating in the early stages of inflammation, contains multiple sorting signals that regulate its cell surface expression. Targeting to secretory granules regulates delivery of P-selectin to the cell surface. Internalization followed by sorting from early to late endosomes mediates rapid removal of P-selectin from the surface. We show here that the P-selectin cytoplasmic domain bound AP-2 and AP-3 adaptor complexes in vitro . The amino acid substitution L768A, which abolishes endosomal sorting and impairs granule targeting of P-selectin, reduced binding of AP-3 adaptors but not AP-2 adaptors. Turnover of P-selectin was 2.4-fold faster than turnover of transferrin receptor in AP-3-deficient mocha fibroblasts, similar to turnover of these two proteins in AP-3-competent cells, demonstrating that AP-3 function is not required for endosomal sorting. However, sorting P-selectin to secretory granules was defective in endothelial cells from AP-3-deficient pearl mice, demonstrating a role for AP-3 adaptors in granule assembly in endothelial cells. P-selectin sorting to platelet α-granules was normal in pearl mice, consistent with earlier evidence that granule targeting of P-selectin is mechanistically distinct in endothelial cells and platelets. These observations establish that AP-3 adaptor functions in assembly of conventional secretory granules, in addition to lysosomes and the 'lysosome-like' secretory granules of platelets and melanocytes.  相似文献   

18.
Tissue stem cells produce a constant flux of differentiated cells with distinct proportions. Here, we show that stem cells in colonic crypts differentiate early to form precisely 1:3 ratio of secretory to absorptive cells. This precision is surprising, as there are only eight stem cells making irreversible fate decisions, and so large stochastic effects of this small pool should have yielded much larger noise in cell proportions. We use single molecule FISH, lineage‐tracing mice and simulations to identify the homeostatic mechanisms facilitating robust proportions. We find that Delta‐Notch lateral inhibition operates in a restricted spatial zone to reduce initial noise in cell proportions. Increased dwell time and dispersive migration of secretory cells further averages additional variability added during progenitor divisions and breaks up continuous patches of same‐fate cells. These noise‐reducing mechanisms resolve the trade‐off between early commitment and robust differentiation and ensure spatially uniform spread of secretory cells. Our findings may apply to other cases where small progenitor pools expand to give rise to precise tissue cell proportions.  相似文献   

19.
Exocrine cells have an essential function of sorting secreted proteins into the correct secretory pathway. A clear understanding of sorting in salivary glands would contribute to the correct targeting of therapeutic transgenes. The present work investigated whether there is a change in the relative proportions of basic proline-rich protein (PRP) and acidic PRPs in secretory granules in response to chronic isoproterenol treatment, and whether this alters the sorting of endogenous cargo proteins. Immunoblot analysis of secretory granules from rat parotids found a large increase of basic PRP over acidic PRPs in response to chronic isoproterenol treatment. Pulse chase experiments demonstrated that isoproterenol also decreased regulated secretion of newly synthesized secretory proteins, including PRPs, amylase and parotid secretory protein. This decreased efficiency of the apical regulated pathway may be mediated by alkalization of the secretory granules since it was reversed by treatment with mild acid. We also investigated changes in secretion through the basolateral (endocrine) pathways. A significant increase in parotid secretory protein and salivary amylase was detected in sera of isoproterenol-treated animals, suggesting increased routing of the regulated secretory proteins to the basolateral pathway. These studies demonstrate that shifts of endogenous proteins can modulate regulated secretion and sorting of cargo proteins. amylase; parotid secretory protein; polarized secretion  相似文献   

20.
Chromogranins are a family of regulated secretory proteins that are stored in secretory granules in endocrine and neuroendocrine cells and released in response to extracellular stimulation (regulated secretion). A conserved N-terminal disulfide bond is necessary for sorting of chromogranins in neuroendocrine PC12 cells. Surprisingly, this disulfide bond is not necessary for sorting of chromogranins in endocrine GH4C1 cells. To investigate the sorting mechanism in GH4C1 cells, we made several mutant forms removing highly conserved N- and C-terminal regions of bovine chromogranin A. Removing the conserved N-terminal disulfide bond and the conserved C-terminal dimerization and tetramerization domain did not affect the sorting of chromogranin A to the regulated secretory pathway. In contrast, removing the C-terminal 90 amino acids of chromogranin A caused rerouting to the constitutive secretory pathway and impaired aggregation properties as compared with wild-type chromogranin A. Since this mutant was sorted to the regulated secretory pathway in PC12 cells, these results demonstrate that chromogranins contain independent N- and C-terminal sorting domains that function in a cell type-specific manner. Moreover, this is the first evidence that low pH/calcium-induced aggregation is necessary for sorting of a chromogranin to the regulated secretory pathway of endocrine cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号