首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ionizing radiation produces DNA double strand breaks (DSBs) in chromosomes. For densely ionizing radiation, the DSBs are not spaced randomly along a chromosome: recent data for size distributions of DNA fragments indicate break clustering on kbp-Mbp scales. Different DSB clusters on a chromosome are typically made by different, statistically independent, stochastically structured radiation tracks, and the average number of tracks involved can be small. We therefore model DSB positions along a chromosome as a stationary Poisson cluster process, i.e. a stochastic process consisting of secondary point processes whose locations are determined by a primary point process that is Poisson. Each secondary process represents a break cluster, typically consisting of 1-10 DSBs in a comparatively localized stochastic pattern determined by chromatin geometry and radiation track structure. Using this Poisson cluster process model, which we call the randomly located clusters (RLC) formalism, theorems are derived for how the DNA fragment-size distribution depends on radiation dose. The RLC dose-response relations become non-linear when the dose becomes so high that DSB clusters from different tracks overlap or adjoin closely. The RLC formalism generalizes previous models, fits current data adequately and facilitates mechanistically based extrapolations from high-dose experiments to the much lower doses of interest for most applications.  相似文献   

2.
A methodology for predicting the expected combined stochastic radiobiological effects of sequential exposure to different ionizing radiations is used to arrive at a methodology for predicting the radiobiological effects of simultaneous exposure. Both methodologies require developing additive-damage dose-effect models. Additive-damage dose-effect models are derived assuming (a) each radiation comprised by the combined exposure produces initial damage called critical damage that could lead to the radiobiological effect of interest; (b) doses of different radiations that lead to the same level of radiobiological effect (or risk) can be viewed as producing the same amount of critical damage and being indistinguishable as far as the effects of subsequently administered radiation. Derived dose-effect functions that describe the risk per individual, conditional on radiation dose, are called risk functions. The methodologies allow the use of known radiation-specific risk functions to derive risk functions for combined effects of different radiations. The risk functions for combined exposure to different radiations are called global risk functions. For sequential exposures to different ionizing radiations, the global risk functions derived depend on how individual radiation doses are ordered. Global risk functions can also differ for sequential and simultaneous exposure. The methodologies are used to account for some previously unexplained radiobiological effects of combined exposure to high and low linear-energy-transfer radiations.  相似文献   

3.
Bystander effects, whereby cells that are not directly exposed to ionizing radiation exhibit adverse biological effects, have been observed in a number of experimental systems. A novel stochastic model of the radiation-induced bystander effect is developed that takes account of spatial location, cell killing and repopulation. The ionizing radiation dose- and time-responses of this model are explored, and it is shown to exhibit pronounced downward curvature in the high dose-rate region, similar to that observed in many experimental systems, reviewed in the paper. It is also shown to predict the augmentation of effect after fractionated delivery of dose that has been observed in certain experimental systems. It is shown that the generally intractable solution of the full stochastic system can be considerably simplified by assumption of pairwise conditional dependence that varies exponentially over time.  相似文献   

4.
We consider hazard (mortality) rates in heterogeneous populations consisting of ordered (in the defined stochastic sense) subpopulations. This setting can be interpreted via the fixed frailty models with one or more frailty parameters. The shape of the hazard rate is of main interest in this paper. Specifically, the deceleration and leveling off in the hazard rates (mortality plateaus) are discussed and some examples of lifetime distributions that can result in asymptotically flat hazard rates are considered. These examples are based on vitality models when an organism’s initial vitality (resource) is ‘consumed’ in the course of life in accordance with a simple stochastic process (e.g., the Wiener process with drift or the gamma process).  相似文献   

5.
Cell survival is a stochastic process with the stochastic component being strongly dependent on the irradiation conditions. This process is described by a stochastic model which allows differentiation between the deterministic and stochastic components of survival. The proposed model is tested for four irradiation experiments (2 with ionizing radiation and 2 with ultrasound) and very good agreement with experimental results is demonstrated. It identifies the higher stochasticity of the cell survival for the temporally varying radiation fields and provides the possibility to compare the stochasticity of survival in different radiation fields.  相似文献   

6.
Understanding the risks deriving from protracted exposure to low doses of ionizing radiation has remarkable societal importance in view of the large number of work settings in which sources of IR are encountered. To address this question, we studied the frequency of micronuclei (MN), which is an indicator of DNA damage, in a population exposed to low levels of ionizing radiation and in matched controls. In both exposed population and controls, the possible influence of single nucleotide polymorphisms in XRCC1, XRCC3 and XPD genes on the frequency of micronuclei was also evaluated. We also considered the effects of confounding factors, like smoking status, age and gender. The results indicated that MN frequency was significantly higher in the exposed workers than in the controls [8.62+/-2.80 versus 6.86+/-2.65; P=0.019]. Radiological workers with variant alleles for XRCC1 or XRCC3 polymorphisms or wild-type alleles for XPD exon 23 or 10 polymorphisms showed a significantly higher MN frequency than controls with the same genotypes. Smoking status did not affect micronuclei frequency either in exposed workers or controls, while age was associated with increased MN frequency in the exposed only. In the combined population, gender but not age exerted an influence on the yield of MN, being higher in females than in males. Even though there is a limitation in this study due to the small number of subjects, these results suggest that even exposures to low level of ionizing radiation could have genotoxic effects and that XRCC3, XRCC1 and XPD polymorphisms might contribute to the increased genetic damage in susceptible individuals occupationally exposed to chronic low levels of ionizing radiation. For a clear conclusion on the induction of DNA damage caused by protracted exposure to low doses of ionizing radiation and the possible influence of genetic polymorphism in DNA repair genes larger studies are needed.  相似文献   

7.
Efforts to model the health effects of low-dose ionizing radiation (IR) have often focused on cancer. Meanwhile, significant evidence links IR and age-associated non-cancer diseases. Modeling of such complex processes, which are not currently well understood, is a challenging problem. In this paper we briefly overview recent successful attempts to model cancer on a population level and propose how those models may be adapted to include the impact of IR and to describe complex non-cancer diseases. We propose three classes of models which we believe are well suited for the analysis of the health effects in human populations exposed to low-dose IR. These models use biostatistical/epidemiological techniques and mathematical formulas describing the biological mechanisms of the impact of IR on human health. They can combine data from multiple sources and from distinct levels of biological/population organization. The proposed models are intrinsically multivariate and non-linear and capture the dynamic aspects of health change.  相似文献   

8.
Organisms exposed to ionizing radiation are mainly damaged by free radicals, which are generated by the radiolysis of water contained in the cells. Recently a significant reduction of tissue injury from irradiation damage was demonstrated by using MnSOD-plasmid/liposome treatments in the protection of murine lung. In this study we show that a new active recombinant human MnSOD (rMnSOD), easily administered in vivo, not only exerts the same radioprotective effect on normal cells and organisms as any MnSOD, but it is also radiosensitizing for tumor cells. In addition, we show how healthy animals, exposed to lethal doses of ionizing radiation and daily injections with rMnSOD, were protected from radiodamage and were still alive 30 days after the irradiation, while animals treated with only PBS solution, in the absence of rMnSOD, died after 7-8 days from the radiotreatments. The molecular analysis of all irradiated tissues revealed that the antiapoptotic AVEN gene appeared activated only in the animals treated in the presence of rMnSOD. The data suggest that rMnSOD deserves to be considered as a pharmaceutical tool for making radiotherapy more selective on cancer cells and to prevent and/or cure the accidental damage derived from exposure to ionizing radiation.  相似文献   

9.
DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development.  相似文献   

10.
One of the main purposes leading botanists to investigate the effects of ionizing radiations is to understand plant behaviour in space, where vegetal systems play an important role for nourishment, psychological support and functioning of life support systems. Ground-based experiments have been performed with particles of different charge and energy. Samples exposed to X- or γ-rays are often used as reference to derive the biological efficiency of different radiation qualities. Studies where biological samples are exposed directly to the space radiation environment have also been performed. The comparison of different studies has clarified how the effects observed after exposure are deeply influenced by several factors, some related to plant characteristics (e.g. species, cultivar, stage of development, tissue architecture and genome organization) and some related to radiation features (e.g. quality, dose, duration of exposure). In this review, we report main results from studies on the effect of ionizing radiations, including cosmic rays, on plants, focusing on genetic alterations, modifications of growth and reproduction and changes in biochemical pathways especially photosynthetic behaviour. Most of the data confirm what is known from animal studies: densely ionizing radiations are more efficient in inducing damages at several different levels, in comparison with sparsely ionizing radiation.  相似文献   

11.
The current concept of radiobiology posits that damage to the DNA in the cell nucleus is the primary cause for the detrimental effects of radiation. However, emerging experimental evidence suggests that this theoretical framework is insufficient for describing extranuclear radiation effects, particularly the response of the mitochondria, an important site of extranuclear, coding DNA. Here, we discuss experimental observations of the effects of ionizing radiation on the mitochondria at (1) the DNA and (2) functional levels. The roles of mitochondria in (3) oxidative stress and (4) late radiation effects are discussed. In this review, we summarize the current understanding of targets for ionizing radiation outside the cell nucleus. Available experimental data suggest that an increase in the tumoricidal efficacy of radiation therapy might be achievable by targeting mitochondria. Likewise, more specific protection of mitochondria and its coding DNA should reduce damage to healthy cells exposed to ionizing radiation.  相似文献   

12.
Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.  相似文献   

13.
Almost all of the data on the biological effects of ionizing radiation come from studies of high doses. However, the human population is unlikely to be exposed to such doses. Regulatory limits for radiation exposure are based on the linear no-threshold model, which predicts that the relationship between biological effects and radiation dose is linear, and that any dose has some effect. Chromosomal changes are an important effect of ionizing radiation because of their role in carcinogenesis. Here we exposed pKZ1 mice to single whole-body X-radiation doses as low as 1 microGy. We observed three different phases of response: (1) an induction of inversions at ultra-low doses, (2) a reduction below endogenous inversion frequency at low doses, and (3) an induction of inversions again at higher doses. These results do not fit a linear no-threshold model, and they may have implications for the way in which regulatory standards are presently set and for understanding radiation effects.  相似文献   

14.
Exposure to ionizing radiation or a variety of chemical agents is known to increase the risk of developing malignancy and many tumors have been linked to inflammatory processes. In most studies, the potentially harmful effects of ionizing radiation or other agents are considered in isolation, mainly due to the large number of experiments required to assess the effects of mixed exposures with different doses and different schedules, and the length of time and expense of studies using disease as the measure of outcome. Here, we have used short-term DNA damage responses to identify interactive effects of mixed exposures. The data demonstrate that exposure to ionizing radiation on two separate occasions ten days apart leads to an increase in the percentage of cells with a sub-G(0) DNA content compared to cells exposed only once, and this is a greater than additive effect. Short-term measurements of p53 stabilization, induction of p21/Cdkn1a and of apoptosis also identify these interactive effects. We also demonstrate similar interactive effects of radiation with the mutagenic chemical methyl-nitrosourea and with a nonspecific pro-inflammatory agent, lipopolysaccharide. The magnitude of the interactive effects is greater in cells taken from mice first exposed as juveniles compared to adults. These data indicate that short-term measurements of DNA damage and response to damage are useful for the identification of interactions between ionizing radiation and other agents.  相似文献   

15.
Habitable planets will be subject to intense sources of ionizing radiation and fast particles from a variety of sources--from the host star to distant explosions--on a variety of timescales. Monte Carlo calculations of high-energy irradiation suggest that the surfaces of terrestrial-like planets with thick atmospheres (column densities greater than about 100 g cm(-2)) are well protected from directly incident X-rays and gamma-rays, but we find that sizeable fractions of incident ionizing radiation from astrophysical sources can be redistributed to biologically and chemically important ultraviolet wavelengths, a significant fraction of which can reach the surface. This redistribution is mediated by secondary electrons, resulting from Compton scattering and X-ray photoabsorption, the energies of which are low enough to excite and ionize atmospheric molecules and atoms, resulting in a rich aurora-like spectrum. We calculate the fraction of energy redistributed into biologically and chemically important wavelength regions for spectra characteristic of stellar flares and supernovae using a Monte-Carlo transport code and then estimate the fraction of this energy that is transmitted from the atmospheric altitudes of redistribution to the surface for a few illustrative cases. For atmospheric models corresponding to the Archean Earth, we assume no significant ultraviolet absorbers, only Rayleigh scattering, and find that the fraction of incident ionizing radiation that is received at the surface in the form of redistributed ultraviolet in the biologically relevant 200-320 nm region (UV-C and UV-B bands) can be up to 4%. On the present-day Earth with its ultraviolet ozone shield, this fraction is found to be 0.2%. Both values are many orders of magnitude higher than the fraction of direct ionizing radiation reaching the surface. This result implies that planetary organisms will be subject to mutationally significant, if intermittent, fluences of UV-B and harder radiation even in the presence of a narrow-band ultraviolet shield like ozone. We also calculate the surficial transmitted fraction of ionizing radiation and redistributed ultraviolet radiation for two illustrative evolving Mars atmospheres whose initial surface pressures were 1 bar. We discuss the frequency with which redistributed ultraviolet flux from parent star flares exceeds the parent star ultraviolet flux at the planetary surface. We find that the redistributed ultraviolet from parent star flares is probably a fairly rare intermittent event for habitable zone planets orbiting solar-type stars except when they are young, but should completely dominate the direct steady ultraviolet radiation from the parent star for planets orbiting all stars less massive than about 0.5 solar masses. Our results suggest that coding organisms on such planets (and on the early Earth) may evolve very differently than on contemporary Earth, with diversity and evolutionary rate controlled by a stochastically varying mutation rate and frequent hypermutation episodes.  相似文献   

16.
In September of 1987, a radiotherapy unit containing 50.9 TBq of Cs(137)Cl was removed from an abandoned radiotherapy clinic. This unit was subsequently disassembled leading to the most serious radiological accident yet to occur in the Western hemisphere. This event provides an opportunity to assess the genetic effects of ionizing radiation. We surveyed genetic variation of 12 microsatellite loci in 10 families of exposed individuals and their offspring and also in non-exposed families from the same area of Goias state. We found an increase in the number of new alleles in the offspring of the exposed individuals. The mutation rate was found to be higher in the exposed families compared to the control group. These results indicated that exposure to ionizing radiation can be detected in offspring of exposed individuals and also suggest that the elevated microsatellite mutation rate can be attributed to radioactive exposure.  相似文献   

17.
In September of 1987, a radiotherapy unit containing 50.9 TBq of Cs137Cl was removed from an abandoned radiotherapy clinic. This unit was subsequently disassembled leading to the most serious radiological accident yet to occur in the Western hemisphere. This event provides an opportunity to assess the genetic effects of ionizing radiation. We surveyed genetic variation of 12 microsatellite loci in 10 families of exposed individuals and their offspring and also in non-exposed families from the same area of Goias state. We found an increase in the number of new alleles in the offspring of the exposed individuals. The mutation rate was found to be higher in the exposed families compared to the control group. These results indicated that exposure to ionizing radiation can be detected in offspring of exposed individuals and also suggest that the elevated microsatellite mutation rate can be attributed to radioactive exposure.  相似文献   

18.
The Deinococcus radiodurans bacterium exhibits an extreme resistance to ionizing radiation. Here, we investigated the in vivo role of DdrB, a radiation-induced Deinococcus specific protein that was previously shown to exhibit some in vitro properties akin to those of SSB protein from Escherichia coli but also to promote annealing of single stranded DNA. First we report that the deletion of the C-terminal motif of the DdrB protein, which is similar to the SSB C-terminal motif involved in recruitment to DNA of repair proteins, did neither affect cell radioresistance nor DNA binding properties of purified DdrB protein. We show that, in spite of their different quaternary structure, DdrB and SSB occlude the same amount of ssDNA in vitro. We also show that DdrB is recruited early and transiently after irradiation into the nucleoid to form discrete foci. Absence of DdrB increased the lag phase of the extended synthesis-dependent strand annealing (ESDSA) process, affecting neither the rate of DNA synthesis nor the efficiency of fragment reassembly, as indicated by monitoring DNA synthesis and genome reconstitution in cells exposed to a sub-lethal ionizing radiation dose. Moreover, cells devoid of DdrB were affected in the establishment of plasmid DNA during natural transformation, a process that requires pairing of internalized plasmid single stranded DNA fragments, whereas they were proficient in transformation by a chromosomal DNA marker that integrates into the host chromosome through homologous recombination. Our data are consistent with a model in which DdrB participates in an early step of DNA double strand break repair in cells exposed to very high radiation doses. DdrB might facilitate the accurate assembly of the myriad of small fragments generated by extreme radiation exposure through a single strand annealing (SSA) process to generate suitable substrates for subsequent ESDSA-promoted genome reconstitution.  相似文献   

19.
In this paper we discuss the problem of evolution when individual organisms are subjected to heterogeneous environments within their own lifetimes. We first develop a model of environmental heterogeneity in which there are two discrete environmental states. Transitions between states are governed by a stochastic matrix. Next, we examine how an organism responds to this heterogeneity. We assume that L consecutive time units of the environmental process are sampled during the normal life span of the organism, and that the individual's fitness is determined in part by a component unrelated to this heterogeneity and by other components that describe the fitness response to the heterogeneity. The fitness responses are functions of the environmental state and of how long the organism has been previously exposed to that state; i.e., fitness response is dependent upon the environmental context. We then discuss how this individually experienced heterogeneity is translated to the populational level. Finally, genetic constraints are overlaid so that the tools of population genetics may be used to make evolutionary predictions.  相似文献   

20.
Frailty, a clinical syndrome that typically occurs in older adults, implies a reduced ability to tolerate biological stressors. Frailty accompanies many age‐related diseases but can also occur without overt evidence of end‐organ disease. The condition is associated with circulating inflammatory cytokines and sarcopenia, features that are shared with heart failure (HF). However, the biological underpinnings of frailty remain unclear and the interaction with HF is complex. Here, we describe the inflammatory pathophysiology that is associated with frailty and speculate that the inflammation that occurs with frailty shares common origins with HF. We discuss the limitations in investigating the pathophysiology of frailty due to few relevant experimental models. Leveraging current therapies for advanced HF and current known therapies to address frailty in humans may enable translational studies to better understand the inflammatory interactions between frailty and HF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号