首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human granulocyte catalase (hydrogen peroxide:hydrogen peroxide oxidoreductase, EC 1.11.1.6) was purified from chronic myeloid leukemia cells. The purification procedure included heat precipitation, ammonium sulphate fractionation, DEAE-Sephadex chromatography, gel chromatography on Sephadex G-200 and isoelectric focusing with an approximate yield of 30% and a 1000-fold purification. The molecular weight of the subunit obtained by sodium dodecyl sulphate electrophoresis was 65 800. So20,w was 11.6 +/- 0.24. The pH-optimum was 6.6-6.7 and the spectrum showed a major peak at 405 nm and shoulders at 500, 540 and 625 nm typical for catalase. The electrophoretic mobility was towards the anode at pH 8.6 and identical to normal granulocyte and erythrocyte catalase. These three species of catalase gave the reaction of identity on immunodiffusion and crossed immunoelectrophoresis. The content of catalase and its activity of isolated granulocytes were approximately identical in normal and chronic myeloid leukemia granulocytes while the specific activity of leukemic catalase was higher than normal. No difference in catalase content was found between mature and immature leukemic granulocytes.  相似文献   

2.
Starch gel electrophoresis of kidney catalase in inbred strains C3H and C57BL/6, their F1 hybrid, and first and second backcross generations demonstrated that single-component (type A) v. multiple-component (type B) electrophoretic patterns are controlled by a single locus. The type A electrophoretic pattern is dominant. Twenty-five inbred strains of mice were classified according to their kidney catalase electrophoretic pattern. The data indicate that the segregating genetic factor determines a specific substance in the type A kidney which affects the electrophoretic mobility of catalase. A comparison of the F1 hybrid enzyme with a 1:1 mixture of C3H and C57BL/6 enzyme showed that the alteration of electrophoretic mobility is the result of posttranslational modification of the catalase molecule. An association of kidney catalase electrophoretic pattern and the H-2 k haplotype indicates that the locus controlling the electrophoretic pattern is most likely located on chromosome 17 in close proximity to the H-2 complex.  相似文献   

3.
1. Superoxide dismutase isolated from erythrocytes of several species of salmon and the rainbow trout exhibited single electrophoretic bands of activity which migrated anodally similar to the human erythrocyte enzyme; two discrete bands were observed for the coho salmon. 2. No polymorphism was observed for 30 samples from sockeye salmon and six samples from king salmon. Only one sample of rainbow trout (one of 12) exhibited an electrophoretic mobility difference. 3. Catalase migration on starch-gel resembled the human enzyme's electrophoretic mobility for all salmon species and rainbow trout. Catalase activity of the sockeye salmon (2929 +/- 895 mumol min-1 gHb-1) was determined to be lower than human catalase activity. 4. All samples differed from the human enzymes in that they required the presence of a detergent, Triton X-100, for solubilization.  相似文献   

4.
Helicobacter pylori catalase   总被引:15,自引:0,他引:15  
Helicobacter pylori is the major aetiological agent of gastroduodenitis in humans. Due to the potential importance of catalase in the growth and survival of Helicobacter pylori on the surface of inflamed mucosae, we have characterized catalase from H. pylori as a prelude to further studies on the function of the enzyme in vivo. The catalase activity of H. pylori was significantly affected by the presence of blood, serum or erythrocytes in the growth medium: the greatest activity was expressed when the bacterium was grown on medium containing serum. H. pylori catalase is a tetramer with a subunit Mr of 50,000. The enzyme had a pI of 9.0-9.3, was active over a broad pH range and was stable at 56 degrees C. It was non-competitively inhibited by sodium azide, and had no detectable peroxidase activity. The Km for the purified catalase was measured as 43 +/- 3 mM-H2O2 and the V as 60 +/- 3 mmol H2O2 min-1 (mg protein)-1. The native catalase has absorption maxima at 280 nm and 405 nm with further minor shoulders or peaks at 510 nm, 535 nm and 625 nm, consistent with the presence of an iron-porphyrin prosthetic group.  相似文献   

5.
Detection of catalase in rat heart mitochondria.   总被引:1,自引:0,他引:1  
The presence of heme-containing catalase in rat heart mitochondria (20 +/- 5 units/mg) was demonstrated by biochemical and immunocytochemical analysis. Intact rat heart mitochondria efficiently consumed exogenously added H2O2. The rate of H2O2 consumption was not influenced by succinate, glutamate/malate, or N-ethylmaleimide but was significantly inhibited by cyanide. Hydrogen peroxide decomposition by mitochondria yielded molecular oxygen in a 2:1 stoichiometry, consistent with a catalytic mechanism. Mitochondrial fractionation studies and quantitative electron microscopic immunocytochemistry revealed that most catalase was matrix-associated. Electrophoretic analysis and Western blotting of the mitochondrial matrix fraction indicated the presence of a protein with similar electrophoretic mobility to bovine and rat liver catalase and immunoreactive to anti-catalase antibody. Myocardial tissue has a lower catalase-specific activity and a greater mitochondrial H2O2 production/g of tissue than most organs. Thus catalase, representing 0.025% of heart mitochondrial protein, is important for detoxifying mitochondrial derived H2O2 and represents a key antioxidant defense mechanism for myocardial tissue.  相似文献   

6.
A bovine oviductal fluid catalase (OFC) which preferentially binds to the acrosome surface of some mammalian spermatozoa has recently been purified. The objectives of this study were to clone the OFC, obtain the full-length cDNA and protein sequence and determine which characteristics of the proteins are associated with the binding of the enzyme to sperm surface. Northern blot analysis revealed low levels of catalase mRNA in bovine oviducts and uterus compared to the liver and kidney. Screening of a cDNA library from the cow oviduct permit to obtain a full-length cDNA of 2282 bp, with an open reading frame of 1581 bp coding for a deduced protein of 526 amino acids (59 789 Da). The deduced protein contained four potential N-glycosylation sites and many potential O-glycosylation sites. The OFC protein exhibited high identity with catalase from other bovine tissues, likewise with catalases from human fibroblast and kidney, and with rat liver catalase. The homology of amino acid sequence of OFC with bovine liver catalase was about 99%. However the OFC posses an extended carboxyl terminus of 20 amino acids not present on the liver catalase. This result is supported by a lower mobility of the OFC compared to the liver catalase when both proteins are submitted on SDS-PAGE. Mol. Reprod. Dev. 51:265–273, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
As a step to study the mechanism of the microbody transition (glyoxysomes to leaf peroxisomes) in pumpkin (Cucurbita sp. Amakuri Nankin) cotyledons, catalase was purified from glyoxysomes. The molecular weight of the purified catalase was determined to be 230,000 to 250,000 daltons. The enzyme was judged to consist of four identical pieces of the monomeric subunit with molecular weight of 55,000 daltons. Absorption spectrum of the catalase molecule gave two major peaks at 280 and 405 nanometers, showing that the pumpkin enzyme contains heme. The ratio of absorption at 405 and 280 nanometers was 1.0, the value being lower than that obtained for catalase from other plant sources. These results indicate that the pumpkin glyoxysomal catalase contains the higher content of heme in comparison with other plant catalase.

The immunochemical resemblance between glyoxysomal and leaf peroxisomal catalase was examined by using the antiserum specific against the purified enzyme preparation from pumpkin glyoxysomes. Ouchterlony double diffusion and immunoelectrophoretic analysis demonstrated that catalase from both types of microbodies cross-reacted completely whereas the immunotitration analysis showed that the specific activity of the glyoxysomal catalase was 2.5-fold higher than that of leaf peroxisomal catalase. Single radial immunodiffusion analysis showed that the specific activity of catalase decreased during the greening of pumpkin cotyledons.

  相似文献   

8.
More than 95% of the sequence of human erythrocyte catalase (HEC) has been determined. There are at least 41 differences in sequence between it and that of bovine liver and erythrocyte catalases (BLC and BEC). Although the normal subunit length of BLC is 506 residues, BEC has at least 517 and HEC 520 residues. Most differences between HEC and BLC or BEC are conservative substitutions. If the heme-protein contacts as determined by X-ray crystallography are examined, only one of 39 residues in contact with the heme group differs between HEC and BLC or BEC.  相似文献   

9.
3,3'-Diaminobenzidine strongly inhibits bovine liver catalase in two distinct ways. One of these was competitive with respect to H2O2, approached a limit of 100% inhibition and was rapidly reversed by dilution or by dialysis. The other was dependent upon H2O2, approached a limit of 60% and was not reversed by dilution or dialysis. Exposure to diaminobenzidine followed by dialysis did not modify the electrophoretic mobility of the enzyme, its Km for H2O2 or its optical spectrum, although Vmax. was halved. Diaminobenzidine protects catalase against the irreversible inactivation imposed by 3-amino-1,2,4-triazole plus H2O2. CN-protected catalase against the apparently irreversible inhibition by diaminobenzidine, and dialysis against CN- reversed this inhibition. Ethanol was similarly protective, and ethanol plus H2O2 reversed the inhibition by diaminobenzidine. Several other aromatic diamines inhibited in a fashion similar to that of diaminobenzidine, but were less effective. A scheme of reactions that accounts for these observations is proposed.  相似文献   

10.
Photoinactivation of catalase in vitro and in leaves   总被引:7,自引:0,他引:7  
Purified catalase from bovine liver and catalase of isolated intact peroxisomes from rye leaves were inactivated in vitro by irradiation with visible light. During photoinactivation the protein moiety of pure catalase was not cleaved; however, the electrophoretic mobility of the native enzyme was decreased, and a major portion of enzyme-bound heme was dissociated. In a suspension of isolated chloroplasts photoinactivation of pure or peroxisomal catalase was mediated by light absorption in the chloroplasts. Both the direct and the chloroplast-mediated photoinactivation of catalase were affected little by the presence of D2O or superoxide dismutase but were greatly retarded by formate. In isolated peroxisomes substantial photoinactivation of catalase occurred only in the presence of nonphotosynthesizing but not in the presence of photosynthesizing isolated chloroplasts. Substantial and selective photoinactivation of catalase was also observed in vivo when leaf sections from various plant species (rye, pea, sunflower, cucumber, maize) were irradiated with light of high intensity in the presence of the translation inhibitors cycloheximide or 2-(4-methyl-2,6-dinitroanilino)-N-methylpropionamide, while catalase activity was much less or not affected in 3-(3,4-dichlorophenyl)-1,1-dimethylurea-treated or untreated control sections. The extent of photoinactivation of catalase in leaves depended on light intensity and also occurred in red light. The results suggest that photoinactivation of catalase generally occurs in leaves under high light intensity, though it is not apparent under normal physiological conditions because it is compensated for by new synthesis. Apparent photoinactivation of catalase has to be regarded as an early indication of photodamage in leaves and conceivably enhances its progress.  相似文献   

11.
A single catalase enzyme was produced by the anaerobic bacterium Bacteroides fragilis when cultures at late log phase were shifted to aerobic conditions. In anaerobic conditions, catalase activity was detected in stationary-phase cultures, indicating that not only oxygen exposure but also starvation may affect the production of this antioxidant enzyme. The purified enzyme showed a peroxidatic activity when pyrogallol was used as an electron donor. It is a hemoprotein containing one heme molecule per holomer and has an estimated molecular weight of 124,000 to 130,000. The catalase gene was cloned by screening a B. fragilis library for complementation of catalase activity in an Escherichia coli catalase mutant (katE katG) strain. The cloned gene, designated katB, encoded a catalase enzyme with electrophoretic mobility identical to that of the purified protein from the B. fragilis parental strain. The nucleotide sequence of katB revealed a 1,461-bp open reading frame for a protein with 486 amino acids and a predicted molecular weight of 55,905. This result was very close to the 60,000 Da determined by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified catalase and indicates that the native enzyme is composed of two identical subunits. The N-terminal amino acid sequence of the purified catalase obtained by Edman degradation confirmed that it is a product of katB. The amino acid sequence of KatB showed high similarity to Haemophilus influenzae HktE (71.6% identity, 66% nucleotide identity), as well as to gram-positive bacterial and mammalian catalases. No similarities to bacterial catalase-peroxidase-type enzymes were found. The active-site residues, proximal and distal hemebinding ligands, and NADPH-binding residues of the bovine liver catalase-type enzyme were highly conserved in B. fragilis KatB.  相似文献   

12.
Analysis of the protein structure of bovine liver catalase suggested that the N-terminal region containing two alpha-helices may function as a linker binding to another subunit. The number of amino-acid residues in catalase from the n-alkane-assimilating yeast Candida tropicalis (CTC) is the lowest of any eukaryotic catalase molecule hitherto investigated, and only one helix, corresponding to the helix alpha2 in bovine liver catalase, is estimated to be present in the same region. In the present study, N-terminal-deleted mutants of CTC were characterized to evaluate the role of the alpha-helix structure in the N-terminal region. CTCDelta1-4 and CTCDelta1-24, whose N-terminal regions were shortened by four and 24 amino-acid residues, respectively, showed an 80% decrease in specific activity compared to wild-type CTC in spite of containing the same amount of heme as in the wild-type. Polyacrylamide gel electrophoresis under nondenaturing conditions revealed that the mutants contained large amounts of oligomeric forms with molecular masses less than 220 kDa (tetramer assembly). Although the smaller oligomers were found to be bound with heme, only the tetramer exhibited catalase activity in activity staining on nondenaturing gel. CTCDelta1-49, a mutant with deletion of the N-terminal 49 amino-acid residues which contain the conserved helix alpha2, showed no catalase activity and no heme binding. However, the CD spectrum profiles of CTCDelta1-49, CTCDelta1-4, and CTCDelta1-24 indicated that these mutant subunits could attain secondary conformations similar to that of wild-type CTC, regardless of their binding with heme. From these results, it was concluded that the N-terminal stretch of catalase is significant for complete assembly into active tetramer and that the conserved helix alpha2, although it has little effect on the formation of the subunit secondary structure, is indispensable not only in assembling tetramer but also in binding heme.  相似文献   

13.
The data upon which the sequence of the 506 residues in the subunit of bovine liver catalase (BLC) is based are presented in detail. A partial sequence of bovine erythrocyte catalase (BEC) which accounts for 493 residues shows complete concordance with the BLC data. On the other hand, BEC has at least 517 residues, that is, an extension beyond the C terminus of the BLC data. Although normally BLC has only 506 residues, there is evidence that, at some point in its history, it also had the C-terminal extension. It is speculated that this extension is lost in BLC either through a different processing of the molecule in liver than in erythrocytes or by partial degradation in the first stages of catabolism.  相似文献   

14.
H Trindade  A Karmali  M S Pais 《Biochimie》1988,70(12):1759-1764
Catalase (E.C 1.11.1.6) was purified from leaves of Zandedeschia aethiopica to apparent homogeneity by a one-step hydrophobic interaction chromatography on a phenyl Sepharose CL-4B column. The purified enzyme preparation was obtained with a final recovery of enzyme activity of about 61% and a specific activity of 146 U/mg protein. The purified enzyme ran as a single protein band when analyzed both by native PAGE and SDS-PAGE corresponding to an Mr of 220,000 Da, which consists of 4 subunits with identical Mr of 54,000 Da. The pI of purified enzyme was found to be 5.2 by isoelectric focusing on ultrathin polyacrylamide gels. The purified catalase has an optimum temperature of activity at 40 degrees C, whereas it is stable between 0 degrees and 50 degrees C. As regards pH, the enzyme has an optimum activity at pH 7.0 and it is stable in the range pH 6-8. The absorption spectrum of the purified enzyme exhibited 2 peaks at 280 nm and 405 nm.  相似文献   

15.
1) Catalase from green leaves of Lens culinaris (lentils) was investigated with respect to isoenzyme patterns. In contrast to other plants, which have been reported to contain multiple forms of catalase, only one form of this enzyme was revealed when crude extracts were subjected to starch gel electrophoresis or to polyacrylamide disc-gel electrophoresis. Furthermore, catalases from leaves, stems and cotyledons were electrophoretically identical. 2) The leaf enzyme has been purified by conventional methods to apparent homogeneity. It has a molecular weight of 225 000 (ultracentrifuge) and is composed of four identical subunits of molecular weight 54 000 (sodium dodecylsulphate gel electrophoresis). The ratio A280/A405 of the pure enzyme was found to be 1.5. The isoelectric point is at pH 5.5. The enzyme, very labile at pH-values below 7.0, is stable in Tris chloride and potassium phosphate buffers between pH 7.5 and 9.5. It is slowly inactivated by 1mM dithiothreitol and is rapidly inactivated by 1mM mercaptoethanol. 3) The catalase was shown to be the major protein component of the peroxisomal matrix. It could not be detected at the membranes of the leaf peroxisomes.  相似文献   

16.
Bovine liver catalase with molecular weight of 248,000, which consists of four subunits, was modified with 2,4-bis(o-methoxypolyethylene glycol)-6-chloro-s-triazine(activated PEG2). The modified catalase became soluble in organic solvents such as benzene by increasing the degree of modification of amino groups in the enzyme with activated PEG2. The enzymic activity of the modified catalase in benzene, in which 42% of the total amino groups were coupled with the modifier, was unexpectedly high in comparison with the activity of non-modified catalase in aqueous system. The absorption spectrum of the modified catalase in benzene showed the characteristic pattern of a haem protein with Soret band at 405 nm. The temperature-activity profile of the modified catalase in benzene was clarified and its activation energy was estimated to be 1900 cal/mol.  相似文献   

17.
Hybridoma cell lines secreting antibodies directed against Saccharomyces cerevisiae catalase T were constructed by fusing spleen cells of mice immunized with catalase T with P3×63Ag8 mouse myeloma cells. Culture supernatants were assayed for specific antibodies by incubation with 35S-labelled yeast extracts, adsorption of the immune complexes to Protein A — carrying Staphylococus aureus cells and analysis of the adsorbed yeast proteins by sodium dodecylsulfate gel electrophoresis. Two hybrid clones were isolated mediating adsorption of a protein with electrophoretic mobility of catalase T; one of them, showing considerably higher activity, was characterized further. Anti-bodies produced by this clone belong to the IgG class of immuniglobulins; they can be used for immunoadsorption, but not for direct immunoprecipitation and recognize authentic catalase T as well as catalase T apoprotein.  相似文献   

18.
The major urinary trypsin inhibitor (UTI) was found to inhibit bovine chymotrypsin and human leucocyte elastase strongly, cathepsin G weakly. No inhibition of porcine pancreatic elastase was observed. The stoichiometry of the inhibition of bovine trypsin by UTI was determined spectrophotometrically to be 1:2 (I/E molar ratio). After incubation of UTI with this enzyme in various molar ratios, two complexes (C1 and C2) could be visualized in alkaline polyacrylamide gel electrophoresis. C1 was isolated by affinity chromatography on Con-A Sepharose. In dodecyl sulfate polyacrylamide gel electrophoresis, C1 was dissociated to give an inhibitory band with the same electrophoretic mobility as native UTI. C2 released an active inhibitory fragment with Mr near 20000. A time-course study demonstrated that at a molar ratio I/E of 1.5:1, the C2 complex appears after two hours of incubation.  相似文献   

19.
We have examined the hypothesis that the human erythrocyte isozyme of pyruvate kinase (EC 2.7.1.40) is a hybrid of the two isozymes present in liver. Rabbit antiserum against purified human erythrocyte pyruvate kinase inactivates the erythrocyte isozyme and the major liver isozyme from human tissue but does not inactivate the minor liver isozyme. The electrophoretic mobilities of the erythrocyte and major liver isozymes are altered by anti-erythrocyte enzyme antibody while the mobility of the minor liver isozyme is unaffected. Gel diffusion analysis indicates cross-reactivity between the erythrocyte and major liver isozyme but no cross-reactivity with the minor liver isozyme. The hybrid hypothesis would predict cross-reactivity including changes in activity and mobility of all isozymes and we conclude, therefore that the hypothesis is incorrect.  相似文献   

20.
A Haas  K Brehm  J Kreft    W Goebel 《Journal of bacteriology》1991,173(16):5159-5167
A gene coding for catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase; EC 1.11.1.6) of the gram-positive bacterium Listeria seeligeri was cloned from a plasmid library of EcoRI-digested chromosomal DNA, with Escherichia coli DH5 alpha as a host. The recombinant catalase was expressed in E. coli to an enzymatic activity approximately 50 times that of the combined E. coli catalases. The nucleotide sequence was determined, and the deduced amino acid sequence revealed 43.2% amino acid sequence identity between bovine liver catalase and L. seeligeri catalase. Most of the amino acid residues which are involved in catalytic activity, the formation of the active center accession channel, and heme binding in bovine liver catalase were also present in L. seeligeri catalase at the corresponding positions. The recombinant protein contained 488 amino acid residues and had a calculated molecular weight of 55,869. The predicted isoelectric point was 5.0. Enzymatic and genetic analyses showed that there is most probably a single catalase of this type in L. seeligeri. A perfect 21-bp inverted repeat, which was highly homologous to previously reported binding sequences of the Fur (ferric uptake regulon) protein of E. coli, was detected next to the putative promoter region of the L. seeligeri catalase gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号