首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Although spinose teeth of holly leaves have been widely cited as an example of a physical defense against herbivores, this assumption is based largely on circumstantial evidence and on general misinterpretation of a single, earlier experiment. We studied the response of third and fifth instar larvae of the fall webworm, Hyphantria cunea Drury, a generalist, edge-feeding caterpillar, to intact American holly leaves and to leaves that had been modified by blunting the spines, by removing sections of leaf margin between the spines, or by removing the entire leaf margin. The results suggest that the thick glabrous cuticle and tough leaf margin of Ilex opaca are more important than the spinose teeth in deterring edge-feeding caterpillars. Microscopic examination of mature leaves revealed that the epidermis is thickened at the leaf margin, and that the leaf is cirucumscribed by a pair of fibrous veins. In simple choice tests neither domesticated rabbits nor captive whitetailed deer discriminated between spinescent holly foliage and foliage from which spines were removed. Nevertheless, we found little evidence of herbivory by mammals in the field, either on small experimental trees or in the forest understory. While it is possible that spinose teeth contribute to defense by reducing acceptibility of holly relative to other palatable plant species, we suggest that the high concentrations of saponins and poor nutritional quality of holly foliage may be more important than spines in deterring vertebrate herbivores. The degree of leaf spinescence and herbivory was compared at different heights with the tree canopy to test the prediction that lower leaves should be more spinescent as a deterrent to browsers. Leaves on lower branches of mature forest trees were slightly more spinescent than were upper leaves, and juvenile trees were slightly more spinescent than were mature trees. However, there was no relationship between degree of spinescence and feeding damage. The greater spinescence of holly leaves low in the canopy is probably an ontogenetic phenomenon rather than a facultative defense against browsers.The investigation reported in this paper (No. 87-7-8-77) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Dirctor  相似文献   

2.
Summary Phytomyza ilicicola (Diptera: Agromyzidae), a univoltine specialist leafminer, is one of the few insect herbivores of American holly. Adult emergence is closely synchronized with leaf flush in spring, and females make numerous feeding punctures on and oviposit in new leaves. Larvae hatch in late May and June, but their feeding period and development are prolonged so that more than 80% of the mine enlargement occurs from January until March of the following year. We propose that this unusual life cycle reflects adaptation to constraints imposed by seasonal and age-related changes in chemical and structural defenses, and in nutritional quality of holly foliage. As holly leaves age, there is a shift in allocation of defense investment away from allelochemicals, including phenolic compounds and saponins, toward leaf sclerophylly, spinose teeth, and low foliar nitrogen and water. Rapid increases in leaf toughness and decreases in nutritional quality limit availability of leaf tissues for adult feeding and oviposition to a two-to threeweek phenological window during leaf flush. Mature holly foliage is a nutritionally poor resource by nearly all criteria known to affect food quality for herbivores. This may be the main reason for the prolonged larval development of P. ilicicola. Alternatively, winter feeding and pupation in spring may be adaptations which help to ensure synchrony of adult emergence with leaf flush. Repeated puncturing by female P. ilicicola does not render leaves more suitable for larvae, nor is it a means by which females sample leaf exudate to assess leaf quality prior to oviposition. Rather, leaf puncturing occurs mostly on leaves that are relatively high in soluble nitrogen, and is apparently a means by which females obtain protein and sugars prior to and during oviposition.The investigation reported in this paper (No. 85-7-8-208) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Director  相似文献   

3.
Summary Adults of Phytomyza ilicicola (Diptera: Agromyzidae), a univoltine specialist leafminer, emerge in close synchrony with leaf flush of American holly and feed on and oviposit in soft, partially expanded leaves. Early spring defoliation, such as commonly results from freezing injury to young shoots, is followed several weeks later by a second flush of young leaves from lateral buds. We simulated this phenomenon by manually defoliating whole small trees and individual shoots of large trees to test the hypothesis that freezing injury can encourage leafminer outbreaks by inducing an abundance of soft, protein rich young leaves late in the adult activity period, when availability of vulnerable leaves becomes limited. Defoliation of small trees one or two weeks after bud break resulted in six- to 13-fold increases in the incidence of feeding punctures and larval mines on second flush leaves as compared with densities on original young leaves of control trees. Similarly, we induced significant increases in feeding punctures and larval mines on second flush leaves of individual defoliated shoots, although leaves that did not open until after the flight period escaped this injury. These observations underscore the capability of adult female P. ilicicola to locate and exploit a small number of phenologically available leaves among many hundreds of older leaves on the same tree. By altering the phenology of leaf flush, certain kinds of environmental stress may predispose perennial plants to outbreaks of early season folivores that restrict their feeding or oviposition to very young leaves.  相似文献   

4.
Laboratory rearing of spruce budworm, Choristoneura fumiferana, in conjunction with field rearing, gravimetric analyses, a transfer experiment, and foliage chemical analyses at six dates during the period of budworm feeding activity indicated that the age of balsam fir, Abies balsamea, trees (70-year-old mature trees or 30-year-old juvenile trees) affected tree suitability for the spruce budworm via the chemical profile of the foliage. Insects reared on old trees had greater survival and pupal weight, shorter development times, and caused more defoliation than those reared on young trees. Young trees were more suitable for the development of young larvae (instars 2–5), while old trees were more suitable for the development of older, sixth-instar larvae. These results were confirmed by the laboratory transfer experiment. Young larvae fed foliage from young trees had higher relative growth rates (RGR), digestibility (AD), and efficiency of conversion of ingested foliage (ECI) than those fed foliage from old trees. These differences appeared to be related to the high N:tannins ratio, and the high contents of P present in young trees during the development of the young larvae. Old larvae fed foliage from old trees had higher relative growth rates, relative consumption rates (RCR), and digestibility of the foliage than those fed foliage from young trees. The high digestibility of the foliage of old trees was compensated for by a lower efficiency of conversion of digested food (ECD), which in turn resulted in no significant effect of tree age on the efficiency of conversion of ingested foliage by old larvae. The low relative consumption rate of old larvae fed foliage from young trees appeared to be related to the low N:tannins ratio, and the high contents of bornyl acetate, terpinolene, and °-3-carene present in young trees during the budworm sixth instar. Variations in these compounds in relation to tree age may serve as mechanisms of balsam fir resistance to spruce budworm by reducing the feeding rate of sixth instar larvae.  相似文献   

5.
Extensive sampling of strawberry plants in everbearing and June-bearing strawberry plantations and on potted plants showed that different species of mites were spatially separated. Of the two phytophagous species recorded, Tetranychus urticae was most abundant on old leaves and Phytonemus pallidus on folded leaves and flower/fruit clusters. Predatory phytoseiid mites were found on all plant parts but different species were spatially separated; Neoseiulus cucumeris and N. aurescens were found mostly on folded leaves and clusters, and N. californicus and Phytoseiulus persimilis on old and medium aged leaves. No Typhlodromus pyri were found in the field plantations. These patterns of distribution did not change over sampling dates in summer and early autumn. An understanding of this within-plant zonation of mite species is important when studying predator–prey interactions and when designing sampling strategies for strawberry. A programme to sample the entire mite system on strawberry should be stratified to include all the above mentioned parts of the plant. Different sampling protocols, as appropriate, are required for sampling different pest species and their associated predators.  相似文献   

6.
Seasonal dynamics in nitrogen and phosphorus content were examined for each component organ ofAucuba japonica, an evergreen understory shrub in the warmtemperate region of Japan. Evergreen foliage was the largest pool for each nutrient; nitrogen and phosphorus were accumulated and stored in autumn and then redistributed in the spring. For individual leaves, such seasonal accumulations and redistributions were repeated through two or three years and then at leaf fall, an additional amount was withdrawn. Rapid growth of new shoots and flowers during spring was supported by the massive redistribution of the nutrients from the old foliage. The redistribution accounted for 85% and 65% of the total nitrogen and phosphorus input to the new shoots, respectively. Such a high ratio of redistribution resulted in a conservative nutrient economy, and must be positively related to the photosynthetic production in the ligh-limited environment.  相似文献   

7.
Anatomical injury of the leaves of the invasive species, Cirsium arvense (L.) Scop., caused by the eriophyid mite Aceria anthocoptes (Nal.), which is the only eriophyid mite that has been recorded on C. arvense worldwide, is described. The injury induced by the mite feeding on the leaves of C. arvense results in visible russeting and bronzing of the leaves. Other conspicuous deformations are folding and distortion of the leaf blade and curling of leaf edge, as well as gradual drying of leaves. The anatomical injury of the mature leaves of field-collected plants was limited to the epidermis of the lower leaf surface. However, on young leaves of experimentally infested plants, rust mite injuries extend to epidermal cells on both leaf surfaces and to those of deeper mesophyll layers. On these leaves, lesions on the lower leaf surface even affected the phloem of the vascular bundles. Leaf damage induced by A. anthocoptes is discussed with regard to the mite’s potential as a biological control agent of C. arvense.  相似文献   

8.
Summary The perennial foliage of the California coast live oak (Quercus agrifolia Nee) permits herbivores to feed on this oak species throughout the year. Patterns of herbivory for a two-year period on Q. agrifolia were observed in relation to seasonal and age-related changes in the nutritional and defensive characteristics of leaves. Nitrogen and phosphorus contents were higher in new leaves compared to mature foliage. Structural compounds (e.g., cellulose) in leaves rapidly increased with age. Concentrations of tatal phenolics (Folin-Denis) and astringency were higher in new foliage, and concentrations of condensed tannins gradually increased as the leaves matured. Peaks of herbivore damage were observed in June and in September–October, and were caused by outbreaks of the California oak moth (Phryganidia californica). P. californica, a bivoltine oak specialist, exhibited feeding preferences in June for old leaves over emerging leaves, and showed no preferences for leaf classes in September. These results suggest that P. californica is adapted to survive on nutritionally poor foliage and to circumvent quantitative defenses such as condensed tannins.  相似文献   

9.
This study examined the host-selection ability of the broad mite Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae). To make long-distance-shifts from one host plant patch to another, broad mites largely depend on phoretic association with whiteflies. However, the host plants of whiteflies and broad mites are not necessarily the same. We determined the host-preference and acceptance of free-moving and phoretic broad mites using two behavioral bioassays. We used a choice test to monitor host selection by free-moving mites. In the case of phoretic mites, we compared their rate of detachment from the phoretic vector Bemisia tabaci placed on leaves taken from various host plants. The suitability of the plant was further determined by monitoring mite’s fecundity and its offspring development. We compared the mites’ responses to young and old cucumber (Cucumis sativus cv. ‘Kfir’) leaves (3rd and 8–9th leaf from the apex, respectively), and two tomato (Solanum lycopersicum cvs. ‘M82’ and ‘Moneymaker). Free-moving mites of all stages and both sexes preferred young cucumber leaves to old cucumber leaves and preferred young cucumber rather than young tomato leaves, demonstrating for the first time that broad mites are able to choose their host actively. As for phoretic mated females, although eventually most of the mites abandoned the phoretic vector, the rate of detachment from the whitefly vector was host dependent and correlated with the mites’ fitness on the particular host. In general, host preference of phoretic female mites resembled that of the free-moving female. Cues used by mites for host selection remain to be explored.  相似文献   

10.
The resistance of accession PI 134417 of the wild tomato Lycopersicon hirsutum f. glabratum C. H. Mull to Manduca sexta (L.) (Lepidoptera: Spingidae) and Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) is conditioned by the high densities of 2-tridecanone-containing, glandular trichomes associated with the foliage. In laboratory experiments, rates of parasitism of M. sexta eggs by Telenomus sphingis (Ashmead) (Hymenoptera: Scelionidae) were lower among eggs on PI 134417 foliage than among eggs on foliage of the cultivated tomato L. esculentum Mill. (cv. Better Boy). The latter is characterized by a significantly lower density of type VI glandular trichomes than PI 134417 and an absence of 2-tridecanone. Parasitism by T. sphingis was also reduced among eggs on foliage of the F1 hybrid between PI 134417 and L. esculentum. The hybrid foliage lacks 2-tridecanone but has a density of type VI glandular trichomes that is intermediate between those of PI 134417 and L. esculentum, indicating that elevated densities of type VI glandular trichomes adversely affect T. sphingis. This conclusion was further substantiated by the finding that there were no differences among plant lines in the levels of parasitism of M. sexta eggs when the eggs were on foliage that had been divested of glandular trichomes.In bioassays in which T. sphingis adults or immatures in host eggs were exposed to filter paper treated with 2-tridecanone at rates comparable to those associated with PI 134417 foliage, 2-tridecanone was acutely toxic and caused high levels of mortality. In addition, at high concentrations, 2-tridecanone vapors were repellent to T. sphingis adults. However, when exposed to PI 134417 foliage, few T. sphingis adults were killed.Parasitism of M. sexta eggs was unaffected when the eggs were deposited by moths reared as fifth instar larvae on diet containing 2-tridecanone and/or 2-undecanone at levels comparable to those associated with PI 134417 foliage.  相似文献   

11.
The predatory mite Neoseiulus cucumeris (Oudemans) (Acarina: Phytoseiidae) successfully controlled the broad mite Polyphagotarsonemus latus (Banks) (Acarina: Tarsonemidae) on two varieties of greenhouse-grown sweet peppers (Capsicum annuum L.). A survey of pre-plant seedlings showed that nurseries were a source of infestation for the broad mite. The predatory mites were released twice (on day 1 and 5, or 15 days later) on each plant, every second plant or every fourth plant. Broad mite populations were evaluated by sampling young leaves from the top of the plant. The effect of the broad mite on plant height, dry mass and yield was evaluated. Additionally, since N. cucumeris is known to control thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), blue sticky traps and flower sampling were used to evaluate changes in thrips populations. All three release rates of N. cucumeris significantly (P<0.05) controlled broad mite populations, but when the predatory mites were released only on every fourth plant, the overall height and yield of the plants were adversely affected by broad mites. Releasing N. cucumeris on each or every second plant was as efficacious in controlling broad mites as sulfur treatments in terms of plant height, dry mass and yield. Plants treated with sulfur, however, had significantly higher thrips populations and fruit damage.  相似文献   

12.
A group of Colobus polykomosat Tiwai, Sierra Leone, demonstrated seasonal flexibility in its diet, with seeds, young leaves, and mature leaves each dominating the diet at different times. Comparison of food consumption with phenological data indicates that seeds are eaten whenever available and are preferred to other foods, while young leaves are preferred to mature leaves. Colobus polykomosalso prefer liane to tree leaves, despite the relatively high quality of mature tree foliage at the Tiwai site. Analysis of protein, fiber, and energy values of foods selected and items available, but not eaten, suggests that preference is related to protein and energy maximization. Leguminous plants, especially Papilionaceae and Mimosaceae, are highlighted as important food sources for C. polykomos;seeds and leaves from these families have a high nitrogen content, and the protein content of leguminous seeds often equals or exceeds that found in leaves. It is predicted, therefore, that colobines living in habitats with a high density of legumes will feed heavily on seeds, subject to constraints such as seasonal availability. Where suitable leguminous species are less common, a mixture of fruits, seeds, and young or mature leaves or both is likely to be selected. The results of this and other recent studies of colobines do not support the notion that colobines are specialist folivores.  相似文献   

13.
Aerial dispersal of European red mite, Panonychus ulmi (Koch), in commercial apple orchards was estimated by trapping windborne mites. Studies were conducted at four orchards in eastern New York during 1989 and 1990 and at three orchards in western New York during 1989. In each orchard mites were trapped in three locations; the interior of the orchard, at the border of the orchard and in a field or woodlot beyond the orchard. Large numbers of mites were captured, even when the numbers of mites on apple foliage were well below levels where mite injury to leaves was visible (less than five per leaf). The log numbers of mites trapped were linearly related to the log density of mites on leaves and this relationship was consistent for each year and region the study was conducted. The trap captures among the three locations in and outside an orchard were highly correlated. The implications these findings may have on metapopulation dynamics and resistance to acaricide dynamics are discussed.  相似文献   

14.
On the young leaves, shoots, and buds of Cayratia japonica (Thunb.) Gagnep. (Vitaceae), we observed nutritious bodies called pearl bodies and hypothesized that they are utilized by generalist predators as alternative foods. Some ambulate organisms consume pearl bodies in the wild and the predatory mite Euseius sojaensis (Ehara) (Acari: Phytoseiidae) was considered as a primary candidate. Pearl bodies promoted E. sojaensis settlement on C. japonica leaves and E. sojaensis could prey on the phytophagous mite Tetranychus kanzawai Kishida (Acari: Tetranychidae) when the predators settle on a leaf before the prey. In addition, the presence of pearl bodies did not reduce predation of E. sojaensis on T. kanzawai. This was seemingly because food quality of T. kanzawai was higher than pearl bodies. These results implied that pearl bodies on C. japonica leaves are utilized by E. sojaensis as alternative foods.  相似文献   

15.
Facilitative interactions between two lepidopteran herbivores of Asimina   总被引:2,自引:0,他引:2  
Hans Damman 《Oecologia》1989,78(2):214-219
Summary Insect herbivores that require young foliage for successful larval development are often restricted to a single generation during a year by the scarcity of suitable food over most of the growing season. The major specialist herbivore attacking shrubs in the genus Asimina in Florida, Eurytides marcellus, requires young foliage for successful larval development. Field manipulations were used to investigate the role of the young foliage produced by Asimina in response to defoliation by the late-season feeder Omphalocera munroei, a second specialist herbivore of Asimina in Florida, in maintaining Eurytides populations during the summer months when young foliage is otherwise scarce. Defoliation by Omphalocera proved to be the major inducer of young growth during the summer because Omphalocera defoliated Asimina shrubs so frequently and severely. When compared to young leaves produced in the absence of damage, the teaves produced by Asimina in response to defoliation were equally as suitable as food for Eurytides larvae and as acceptable as oviposition sites by Eurytides females. The availability of young foliage in an Asimina population was correlated with the size of the associated Eurytides population. The combination of regular, severe defoliation by Omphalocera and lack of a defensive response to damage by Asimina lead to a positive affect of Omphalocera on Eurytides population size, and may be central to other facilitative interactions between herbivores as well.  相似文献   

16.
The diet of a group of six brown howlers was studied weekly during 12 months in a reserve of 250 ha of secondary, mesophytic, semi-deciduous forest. The phenology of 186 trees of 72 species and 29 families was monitored simultaneously. Scan sampling was used to record the diet from dawn until dusk on a total of 60 days of observation, yielding 718 hr of animal-observer contact and 2,943 feeding scans. The diet was composed of leaves (73%), flowers (12%), and fruits (5%), from 68 identified plant species.Celtis iguanae, Cassia ferruginea, andInga spp. were the main food sources, accounting for approximately 50% of the diet. Young leaves (59%) were preferred to mature leaves (31%), trees contributing 56% and lianas 41% of the leaf diet. The ingestion of young leaves was correlated to the availability of these items, however, the correlations were not significant for flowers and fruits. The diet was poorer in fruits and richer in young leaves of lianas in comparison to other howler monkey species studies, probably as a consequence of the liana abundance in this forest fragment.  相似文献   

17.
A. Wilcox  M. J. Crawley 《Oecologia》1988,76(2):283-287
Summary Defoliated ragwort plants produced regrowth foliage that was higher in alkaloid, but lower in amino acid concentrations than primary foliage. Total N was not affected. 2) Plants fertilized with nitrogen (as ammonium sulphate) had lower amino acid concentrations than unfertilized control plants, slightly increased alkaloid levels but similar total N concentrations. 3) Ovipositing females laid eggs upon plants with equal probability for controls, regrowth and fertilized foliage (one rosette in 5 received an egg batch). However, the probability of receiving eggs was significantly lower on the primary leaves of cut-back plants that had had their lower leaves removed a few days before egg laying (only one rosette in 13 was selected). 4) Egg batch size was higher on fertilized control foliage than on other treatments. 5) Larvae attained greater final weights when fed a diet of regrowth foliage, despite the higher levels of alkaloid they contained. Larval development rate was not affected by experimental treatment of the foliage. 6) Larval growth was lowest on the leaves of fertilized plants. This was associated with significant reductions in the concentrations of three amino acids (methionine down 29%, tyrosine 33% and lysine 25%).  相似文献   

18.
Panonychus osmanthi is a non-diapausing species of spider mite that superficially resembles P. citri. It infests Osmanthus species, which are evergreen roadside and garden trees. The population dynamics of P. osmanthi were studied on Osmanthus aurantiacus and O.×fortunei during a three-year period. Seasonal changes in P. osmanthi populations were fundamentally the same in each year, although their density differed greatly from year to year. TheP. osmanthi population was bimodal, with one peak in spring (May–June) and another in winter (November–January). Populations abruptly declined after the spring peak. Predators showed a delayed density-dependent response to changes in spider mites from spring to summer, whereas in autumn and winter, predators were few because they had entered diapause. To determine the effect of predators on the rapid decline of spider mites just after the spring peak, the predators were removed by treating the trees with a synthetic pyrethroid. As a result, spider mite density did not decline after the spring peak and remained at a high level during the June-August period when spider mite density is usually very low. This suggests that predators play an important role in the drastic decline of P. osmanthi density just after the spring peak. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Summary Restricted (non-systemic) inoculation of cucurbits, green bean, tobacco, and other plants with certain viruses, bacteria, or fungi has been shown to induce persistent, systemic resistance to a wide range of diseases caused by diverse pathogens. The non-specificity of this response has fueled speculation that it may also affect plant suitability for arthropod herbivores, and there is limited evidence, mainly from work with tobacco, which suggests that this may indeed occur. Young cucumber plants were immunized by restricted infection of a lower leaf with tobacco necrosis virus (TNV), and upper leaves were later challenged with anthracnose fungus, Colletotrichum lagenarium, to confirm induction of systemic resistance to a different pathogen. The response of arthropod herbivores was simultaneously measured on non-infected, systemically protected leaves of the same plants. As has been reported before, immunization with TNV gave a high degree of protection from C. lagenarium, reducing the number of lesions and the area of fungal necrosis by 65–93%. However, there was no systemic effect on population growth of twospotted spider mites, Tetranychus urticae Koch, on upper leaves, nor did restricted TNV infection of leaf tissue on one side of the mid-vein systemically affect mite performance on the opposite, virus-free side of the leaf. Similarly, there were no effects on growth rate, pupal weight, or survival when fall armyworm larvae were reared on systemically protected leaves from induced plants. In free-choice tests, greenhouse whiteflies oviposited indiscriminately on induced and control plants. Feeding preference of fall armyworms was variable, but striped cucumber beetles consistently fed more on induced than on control plants. There was no increase in levels of cucurbitacins, however, in systemically-protected foliage of induced plants. These findings indicate that pathogen-activated induced resistance of cucumber is unlikely to provide significant protection from herbivory. The mechanisms and specificity of induced resistance in cucurbits apparently differ in response to induction by pathogens or herbivores.  相似文献   

20.
The behavioural response of the predatory mite Phytoseiulus persimilis to volatiles from several host plants of its prey, spider mites in the genus Tetranychus, was investigated in a Y-tube olfactometer. A positive response to volatiles from tomato leaves and Lima bean leaves was recorded, whereas no response was observed to volatiles from cucumber leaves, or leaves of Solanum luteum and Solanum dulcamara.Different results were obtained for predators that differed in rearing history. Predators that were reared on spider mites (Tetranychus urticae) on Lima bean leaves did respond to volatiles from Lima bean leaves, while predators that had been reared on the same spider mite species but with cucumber as host plant did not respond to Lima bean leaf volatiles. This effect is compared with the effect of rearing history on the response of P. persimilis to volatile allelochemicals of prey-infested plant leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号