首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In the central nervous system (CNS) complex endothelial tight junctions (TJs) form a restrictive paracellular diffusion barrier, the blood-brain barrier (BBB). Pathogenic changes within the CNS are frequently accompanied by the loss of BBB properties, resulting in brain edema. In order to investigate whether BBB leakiness can be monitored by a loss of TJ proteins from cellular borders, we used an in vitro BBB model where brain endothelial cells in co-culture with astrocytes form a tight permeability barrier for 3H-inulin and 14C-sucrose. Removal of astrocytes from the co-culture resulted in an increased permeability to small tracers across the brain endothelial cell monolayer and an opening of the TJs to horseradish peroxidase as detected by electron microscopy. Strikingly, opening of the endothelial TJs was not accompanied by any visible change in the molecular composition of endothelial TJs as junctional localization of the TJ-associated proteins claudin-3, claudin-5, occludin, ZO-1 or ZO-2 or the adherens junction-associated proteins -catenin or p120cas did not change. Thus, opening of BBB TJs is not readily accompanied by the complete loss of the junctional localization of TJ proteins.This work is dedicated to the memory of Werner Risau (died 13.12.1998), who initiated this collaboration  相似文献   

2.
Tight junctions (TJs) are major components of the blood–brain barrier (BBB) that physically obstruct the interendothelial space and restrict paracellular diffusion of blood-borne substances from the peripheral circulation to the CNS. TJs are dynamic structures whose intricate arrangement of oligomeric transmembrane and accessory proteins rapidly alters in response to external stressors to produce changes in BBB permeability. In this study, we investigate the constitutive trafficking of the TJ transmembrane proteins occludin and claudin-5 that are essential for forming the TJ seal between microvascular endothelial cells that inhibits paracellular diffusion. Using a novel, detergent-free OptiPrep density-gradient method to fractionate rat cerebral microvessels, we identify a plasma membrane lipid raft domain that contains oligomeric occludin and claudin-5. Our data suggest that oligomerization of occludin involves disulfide bond formation within transmembrane regions, and that assembly of the TJ oligomeric protein complex is facilitated by an oligomeric caveolin scaffold. This is the first time that distribution of oligomeric TJ transmembrane proteins within plasma membrane lipid rafts at the BBB has been examined in vivo. The findings reported in this study are critical to understand the mechanism of assembly of the TJ multiprotein complex that is essential for maintaining BBB integrity.  相似文献   

3.
The distribution of molecular components of interendothelial tight junctions (TJs) was studied in rat blood-brain barrier (BBB) microvessels, using immunogold cytochemistry applied to electron microscopy. Samples of rat brains, both normal (unaffected) and osmotically-affected (1, 5, and 30 min after intracarotid infusion of 1.8 M L(+)arabinose), were processed for immunocytochemical localization of TJ-specific integral membrane (occludin, JAM-1, claudin-5) and peripheral (ZO-1) protein molecules. In unaffected interendothelial junctions of control rats the immunosignals (represented by gold particles) for occludin and ZO-1 were of highest, whereas for claudin-5 and JAM-1 were of lower density. At 1 min after infusion, no discernible changes in distribution of junction-associated molecules were noted. At 5 min, however, changes were most conspicuous, and they consisted of segmental attenuation of the endothelial lining and dilatation (opening) of some junctional clefts accompanied by the diminution of the density of immunosignals for TJ-specific transmembrane and peripheral proteins. It was paralleled by disorganization of the spatial relation of these molecules to the junctional complexes. After 30 min, many interendothelial junctions appeared to be still open, whereas other junctions were partially or totally closed. In the opened interendothelial junctions the expression of TJ-associated molecules was weaker than in closed junctions. Our observations indicate that the localization and expression of TJ-specific proteins, especially occludin, and in lower degree claudin-5 and JAM-1, together with the peripheral ZO-1 molecules, are affected by osmotic shock. Presumably, some of these proteins (e.g., occludin, claudin-5 and ZO-1) could be considered sensitive indicators of normal and also of disturbed functional state of the BBB.  相似文献   

4.
A readily obtainable in vitro paradigm of the blood-brain barrier (BBB) would offer considerable benefits. Toward this end, in this study, we describe a novel method for purifying murine brain microvascular endothelial cells (BMEC) for culture. The method uses limited collagenase-dispase digestion of enriched brain microvessels, followed by immunoisolation of digested, microvascular fragments by magnetic beads coated with antibody to platelet-endothelial cell adhesion molecule-1. When plated onto collagen IV-coated surfaces, these fragments elaborated confluent monolayers of BMEC that expressed, as judged by immunocytochemistry, the adherens junction-associated proteins, VE-cadherin and beta-catenin, as well as the tight junction (TJ)-associated proteins, claudin-5, occludin, and zonula occludin-1 (ZO-1), in concentrated fashion along intercellular borders. In contrast, cultures of an immortalized and transformed line of murine brain capillary-derived endothelial cells, bEND.3, displayed diffuse cytoplasmic localization of occludin and ZO-1. This difference in occludin and ZO-1 staining between the two endothelial cell types was also reflected in the extent of association of these proteins with the detergent-resistant cytoskeletal framework (CSK). Although both occludin and ZO-1 largely partitioned with the CSK fraction in BMEC, they were found predominantly in the soluble fraction of bEND.3 cells, and claudin-5 was found associated equally with both fractions in BMEC and bEND.3 cells. Moreover, detergent-extracted cultures of the BMEC retained pronounced immunostaining of occludin and ZO-1, but not claudin-5, along intercellular borders. Because both occludin and ZO-1 are thought to be functionally coupled to the detergent-resistant CSK and high expression of TJs is considered a seminal characteristic of the BBB, these results impart that this method of purifying murine BMEC provides a suitable platform to investigate BBB properties in vitro.  相似文献   

5.
6.
Brain development occurs in a specialized environment maintained by a blood–brain barrier (BBB). An important structural element of the BBB is the endothelial tight junction (TJ). TJs are present during the embryonic period, but BBB impermeability accrues over an extended gestational interval. In studies of human premature infants, we used immunomicroscopy to determine if amounts of the TJ proteins ZO-1, claudin and occludin increase with gestational age in vessels of germinal matrix (GM) and cortex. By 24 weeks postconception (PC), TJ proteins were present in both GM and cortical vessels, but immunoreactivity in the GM of the youngest subjects was less than in older subjects. At 24 weeks PC, TJ protein immunoreactivity in GM vessels was less than in cortical vessels suggesting that TJ maturation progresses along a superficial to deep brain axis. This concept correlates with conclusions from previous analyses of the expression of brain endothelial cell alkaline phosphatase (AP) activity. AP appears in cortical vessels before appearing in deep white matter and GM vessels. Together, these data indicate that differentiation of some functional specializations is still in progress in GM vessels during the third trimester. This maturation could relate to the pathogenesis of germinal matrix hemorrhage–intraventricular hemorrhage.  相似文献   

7.
The blood-brain barrier (BBB) maintains brain homeostasis by limiting entry of substances to the central nervous system through interaction of transmembrane and intracellular proteins that make up endothelial cell tight junctions (TJs). Recently it was shown that the BBB can be modulated by disease pathologies including inflammatory pain. This study examined the effects of chronic inflammatory pain on the functional and molecular integrity of the BBB. Inflammatory pain was induced by injection of complete Freund's adjuvant (CFA) into the right plantar hindpaw in female Sprague-Dawley rats under halothane anesthesia; control animals were injected with saline. Edema and hyperalgesia were assessed by plethysmography and infrared paw-withdrawal latency. At 72 h postinjection, significant edema formation and hyperalgesia were noted in the CFA-treated rats. Examination of permeability of the BBB by in situ perfusion of [14C]sucrose while rats were under pentobarbital anesthesia demonstrated that CFA treatment significantly increased brain sucrose uptake. Western blot analysis of BBB TJ proteins showed no change in expression of zonula occludens-1 (an accessory protein) or actin (a cytoskeletal protein) with CFA treatment. Expression of the transmembrane TJ proteins occludin and claudin-3 and -5 significantly changed with CFA treatment with a 60% decrease in occludin, a 450% increase in claudin-3, and a 615% increase in claudin-5 expression. This study demonstrates that during chronic inflammatory pain, alterations in BBB function are associated with changes in specific transmembrane TJ proteins.  相似文献   

8.
Claudins are thought to be major components of tight junctions (TJs), and claudin-5 and -12 are localized at TJs of the blood-brain barrier (BBB). Claudin-5-deficient mice exhibit size-selective (<800 Da) opening of the BBB. The purpose of this study was to clarify the expression levels of claudin-5 and -12 in rat brain capillary endothelial cells, and to examine the ability of claudin-5 to form TJs in cultured rat brain capillary endothelial cells (TR-BBB). Expression of claudin-5 mRNA in rat brain capillary fraction was 751-fold greater than that of claudin-12. The level of claudin-5 mRNA in the rat brain capillary fraction (per total mRNA) was 35.6-fold greater than that in whole brain, while the level of claudin-12 mRNA was only 13.9% of that in whole brain, suggesting that expression of claudin-12 mRNA is not restricted to brain capillaries. Transfection of TR-BBB cells with the claudin-5 gene afforded TR-BBB/CLD5 cells, which showed no change in expression of claudin-12 or ZO-1, while the expressed claudin-5 was detected at the cell-cell boundaries. The permeability surface product of [(14)C]inulin at a TR-BBB/CLD5 cell monolayer was significantly smaller (P < 0.01) than that for the parental TR-BBB cells, and the values of the permeability coefficient (Pe) were 1.14 x 10(-3) and 11.6 x 10(-3) cm/min, respectively. These results indicate that claudin-5, but not claudin-12, is predominantly expressed in brain capillaries, and plays a key role in the appearance of barrier properties of brain capillary endothelial cells.  相似文献   

9.
The epidermis has developed physical and immunological barriers that prevent infiltration of deleterious chemicals and pathogens. As a first step to understanding the relationship between these barriers, we investigated whether TLR2 activation functionally alters tight junctions (TJs) in cultured human keratinocytes. Stimulation with peptidoglycan, a ligand for TLR2, elevated the TJ-associated barrier in the space of 3 h. The increase in TJ-associated barrier function due to peptidoglycan stimulation was suppressed by the knockdown of TLR adaptor MyD88 or the pretreatment with TLR2-neutralizing Ab, indicating that TLR2 activation enhanced TJ-associated barrier. One and 3 h after peptidoglycan stimulation, expression levels of the TJ proteins occludin, claudin-1, claudin-4, and ZO-1 were unchanged. However, immunoprecipitation studies demonstrated that the association of phospho-atypical protein kinase Cζ/ι, crucial for TJ biogenesis, with occludin was increased. Significantly, inhibition of atypical protein kinase Cζ/ι activity completely blocked the immediate elevation of the TJ-associated barrier. Finally, peptidoglycan was applied to the stratum corneum surface of a human skin equivalent, and the TJ barrier was evaluated. In the space of 3 h after the stimulation, the amount of intercellular tracer in the stratum corneum incubated from the dermal side was reduced, indicating that the TJ barrier is strengthened via TLR2 activation. Taken together, our findings indicated that infiltration of pathogens into the epidermis immediately enhanced TJ function via TLR2 signaling. Furthermore, the dynamically controlled TJs in skin are considered fundamental in preventing further invasion of pathogens and maintaining cutaneous barrier homeostasis.  相似文献   

10.
Tight junctions (TJs) are an important component of the blood-brain barrier, and claudin-1, -3, -5 and -12 have been reported to be localized at the TJs of brain capillary endothelial cells (BCECs). To understand the contribution of each claudin subtype to TJ formation, we have measured the mRNA expression levels of claudin subtypes (claudin-1 to -23) and other relevant proteins in highly purified mouse BCECs. Mouse BCECs were labeled with anti-platelet endothelial cellular adhesion molecule-1 antibody and 2.3 × 106 cells were isolated from 15 mice by magnetic cell sorting. Expression of Tie-2, Mdr1a and GLUT1 mRNAs was concentrated in the isolated fraction, and contamination with neurons and astrocytes was substantially less than in the brain capillary fraction prepared by the standard glass-beads column method. Expression of occludin, junctional adhesion molecule and endothelial-specific adhesion molecule mRNAs was concentrated in the isolated fraction, suggesting that the corresponding proteins are selectively expressed in mouse BCECs. Among claudin subtypes, claudin-5 was most highly expressed, at a level which was at least 593-fold greater that that of claudin-1, -3 or -12. Expression of mRNAs of claudin-8, -10, -15, -17, -19, -20, -22 or -23 was also concentrated in the isolated fraction, suggesting these subtypes are expressed in mouse BCECs. The levels of claudin-10 and -22 mRNAs were comparable with that of occludin mRNA. These results indicate that claudin-5 is the most abundant claudin subtype in mouse BCECs, and are consistent with the idea that claudin-10 and -22 are involved in TJ formation at the blood-brain barrier in cooperation with claudin-5.  相似文献   

11.
The tight junctions (TJs) are key players in the control of blood-brain barrier (BBB) properties, the most complex TJs in the vascular system being found in the endothelial cells of brain capillaries. One of the main TJs proteins is occludin, which anchors plasma membranes of neighbour cells and is present in large amounts in the brain endothelia. Previous studies demonstrated that disruption of BBB in various pathological situations associates with changes in occludin expression, and this change could be responsible for malfunction of BBB. Therefore in this study, applying an immunohistochemical approach, we decided to explore the occludin expression in frontal cortex (FC) and basal ganglia in ageing control, Alzheimer's disease (AD), and vascular dementia (VD) brains, as far as all these pathologies associate microangiopathy and disruption of BBB. Strikingly, we found selected neurons, astrocytes and oligodendrocytes expressing occludin, in all cases studied. To estimate the number of occludin-expressing neurons, we applied a stereological approach with random systematic sampling and the unbiased optical fractionator method. We report here a significant increase in ratio of occludin-expressing neurons in FC and basal ganglia regions in both AD and VD as compared to ageing controls. Within the cerebral cortex, occludin was selectively expressed by pyramidal neurons, which are the ones responsible for cognitive processes and affected by AD pathology. Our findings could be important in unravelling new pathogenic pathways in dementia disorders and new functions of occludin and TJs.  相似文献   

12.
In peripheral nerves, groups of Schwann cell-axon units are isolated from the adjacent tissues by the perineurium, which creates a diffusion barrier responsible for the maintenance of endoneurial homeostasis. The perineurium is formed by concentric layers of overlapping, polygonal perineurial cells that form tight junctions at their interdigitating cell borders. In this study, employing indirect immunofluorescence and immunoelectron microscopy, we demonstrate that claudin-1 and -3, ZO-1, and occludin, but not claudin-2, -4, and -5, are expressed in the perineurium of adult human peripheral nerve. We also describe the expression of occludin, ZO-1, claudin-1, -3, and -5 in the developing human perineurium, showing that the expressions of claudin-1 and -3, ZO-1, and occludin follow similar spatial developmental expression patterns but follow different timetables in achieving their respective adult distributions. Specifically, claudin-1 is already largely restricted to perineurium-derived structures at 11 fetal weeks, whereas claudin-3 and occludin are weakly expressed in the perineurial structures at this age and acquire a well-defined perineurial distribution only between 22 and 35 fetal weeks. ZO-1 appears to acquire its mature profile even later during the third trimester. The results of the present and previous studies show that the perineurial diffusion barrier matures relatively late during human peripheral nerve development.  相似文献   

13.
Cerebral microvessel endothelial cells that form the blood-brain barrier (BBB) have tight junctions (TJs) that are critical for maintaining brain homeostasis. The effects of initial reoxygenation after a hypoxic insult (H/R) on functional and molecular properties of the BBB and TJs remain unclear. In situ brain perfusion and Western blot analyses were performed to assess in vivo BBB integrity on reoxygenation after a hypoxic insult of 6% O2 for 1 h. Model conditions [blood pressure, blood gas chemistries, cerebral blood flow (CBF), and brain ATP concentration] were also assessed to ensure consistent levels and criteria for insult. In situ brain perfusion revealed that initial reoxygenation (10 min) significantly increased the uptake of [14C]sucrose into brain parenchyma. Capillary depletion and CBF analyses indicated the perturbations were due to increased paracellular permeability rather than vascular volume changes. Hypoxia with reoxygenation (10 min) produced an increase in BBB permeability with associated alterations in tight junctional protein expression. These results suggest that H/R leads to reorganization of TJs and increased paracellular diffusion at the BBB, which is not a result of increased CBF, vascular volume change, or endothelial uptake of marker. Additionally, the tight junctional protein occludin had a shift in bands that correlated with functional changes (i.e., increased permeability) without significant change in expression of claudin-3, zonula occludens-1, or actin. H/R-induced changes in the BBB may result in edema and/or associated pathological outcomes.  相似文献   

14.
Retinoids are critical for differentiation of columnar epithelial cells and for preventing metaplasia of these cells into stratified squamous epithelial cells, in which tight junctions (TJs) are essentially absent. This implies that retinoids might play important roles in regulating the structures and functions of TJs of columnar epithelium. F9 murine embryonal carcinoma cells differentiate into epithelial cells resembling visceral endoderm bearing TJs, when grown in suspension as aggregates in the presence of retinoic acid (RA). We show that RA induces the TJ structure and expression of several TJ-associated molecules, such as ZO-1, occludin, claudin-6, and claudin-7, as well as a barrier function in the genetically engineered cell line F9:rtTA:Cre-ER(T) L32T2, which allows sophisticated genetic manipulations simply by addition of ligands (H. Chiba et al., 2000, Exp. Cell Res. 260, 334-339). Interestingly, our data indicate that a barrier for small substances is generated after that for large ones during de novo formation of TJs. We also compared the RA-induced expression of TJ components and barrier function in RXRalpha(-/-)-RARgamma(-/-) F9 cells with those in wild-type cells and show that the retinoid signals for transduction of these events are mediated by specific RXR-RAR pairs.  相似文献   

15.
Bile duct ligation (BDL)-treated rats exhibit cholestasis and increased systemic and brain oxidative stress. Activation of NADPH (nicotinamide adenine dinucleotide phosphate) oxidase and disruption of the blood-brain barrier (BBB) are implicated as the pathogenetic mechanisms of brain dysfunction in BDL-treated adult rats. Young rats underwent sham ligation or BDL at day 17 for 2 or 4weeks. Treatment group rats were administered melatonin between day 17 and 45. We found a progressive increase in prefrontal cortex NADPH-dependent superoxide anion (O(2)(-)) production and increased expression of NADPH oxidase subunits in either the prefrontal cortex or the hippocampus in BDL-treated young rats. In addition, expression of intercellular adhesion molecule-1 (ICAM) and tissue plasminogen activator (t-PA) genes were increased in either the prefrontal cortex or the hippocampus. Prefrontal cortex capillary junctional complex proteins expressions including occludin, claudin-5, platelet endothelial cell adhesion molecule-1 and vascular endothelial cadherin were not altered. Melatonin lowered the prefrontal cortex NADPH-dependent O(2)(-) production and t-PA gene expression. We conclude that alterations in NADPH oxidase expression and BBB are involved in brain dysfunction in BDL-treated young rats. In addition, melatonin regulates NADPH oxidase activity and t-PA gene expression.  相似文献   

16.
Tight junctions (TJs) form physical barriers in various tissues and regulate paracellular transport of ions, water, and molecules. Myelinating Schwann cells form highly organized structures, including compact myelin, nodes of Ranvier, paranodal regions, Schmidt-Lanterman incisures, periaxonal cytoplasmic collars, and mesaxons. Autotypic TJs are formed in non-compacted myelin compartments between adjacent membrane lamellae of the same Schwann cell. Using indirect immunofluorescence and RT-PCR, we analyzed the expression of adherens junction (E-cadherin) and TJ [claudins, zonula occludens (ZO)-1, occludin] components in human peripheral nerve endoneurium, showing clear differences with published rodent profiles. Adult nerve paranodal regions contained E-cadherin, claudin-1, claudin-2, and ZO-1. Schmidt-Lanterman incisures contained E-cadherin, claudin-1, claudin-2, claudin-3, claudin-5, ZO-1, and occludin. Mesaxons contained E-cadherin, claudin-1, claudin-2, claudin-3, ZO-1, and occludin. None of the proteins studied were associated with nodal inter-Schwann cell junctions. Fetal nerve expression of claudin-1, claudin-3, ZO-1, and occludin was predominantly punctate, with a mesaxonal labeling pattern, but paranodal (ZO-1, claudin-3) and Schmidt-Lanterman incisure (claudins-1 and -3) expression profiles typical of compact myelin were visible by gestational week 37. The clear differences observed between human and published rodent nerve profiles emphasize the importance of human studies when translating the results of animal models to human diseases. (J Histochem Cytochem 57:523–529, 2009)  相似文献   

17.
Feng S  Cen J  Huang Y  Shen H  Yao L  Wang Y  Chen Z 《PloS one》2011,6(8):e20599
Central nervous system (CNS) involvement remains an important cause of morbidity and mortality in acute leukemia, the mechanisms of leukemic cell infiltration into the CNS have not yet been elucidated. The blood-brain barrier (BBB) makes CNS become a refugee to leukemic cells and serves as a resource of cells that seed extraneural sites. How can the leukemic cells disrupt this barrier and invasive the CNS, even if many of the currently available chemotherapies can not cross the BBB? Tight junction in endothelial cells occupies a central role in the function of the BBB. Except the well known role of degrading extracellular matrix in metastasis of cancer cells, here we show matrix metalloproteinase (MMP)-2 and -9, secreted by leukemic cells, mediate the BBB opening by disrupting tight junction proteins in the CNS leukemia. We demonstrated that leukemic cells impaired tight junction proteins ZO-1, claudin-5 and occludin resulting in increased permeability of the BBB. However, these alterations reduced when MMP-2 and -9 activities were inhibited by RNA interference strategy or by MMP inhibitor GM6001 in an in vitro BBB model. We also found that the disruption of the BBB in company with the down-regulation of ZO-1, claudin-5 and occludin and the up-regulation of MMP-2 and -9 in mouse brain tissues with leukemic cell infiltration by confocal imaging and the assay of in situ gelatin zymography. Besides, GM6001 protected all mice against CNS leukemia. Our findings suggest that the degradation of tight junction proteins ZO-1, claudin-5 and occludin by MMP-2 and -9 secreted by leukemic cells constitutes an important mechanism in the BBB breakdown which contributes to the invasion of leukemic cells to the CNS in acute leukemia.  相似文献   

18.
Cyclic AMP (cAMP) promotes functions of tight junctions in endothelial cells, although its target remains unknown. We showed here that cAMP increased gene expression of claudin-5 and decreased that of claudin-1 in porcine blood-brain-barrier endothelial cells via protein kinase A (PKA)-independent and -dependent pathways, respectively. cAMP also enhanced immunoreactivity of claudin-5 along cell borders and in the cytoplasm, reorganized actin filaments, and altered signals of claudin-5, occludin, ZO-1, and ZO-2 along cell boundaries from zipperlike to linear patterns. In contrast, claudin-1 was detected only in the cytoplasm in a dotlike pattern, and its immunolabeling was reduced by cAMP. Interestingly, 31- and 62-kDa claudin-5 immunoprecipitates in the NP-40-soluble and -insoluble fractions, respectively, were highly phosphorylated on threonine residue(s) upon cAMP treatment. All these changes induced by cAMP, except for claudin-5 expression and its signals in the cytoplasm, were reversed by an inhibitor of PKA, H-89. We also demonstrated that cAMP elevated the barrier function of tight junctions in porcine blood-brain-barrier endothelial cells in PKA-dependent and -independent manners. These findings indicate that both PKA-induced phosphorylation of claudin-5 immunoprecipitates and cAMP-dependent but PKA-independent induction of claudin-5 expression could be involved in promotion of tight-junction function in endothelial cells.  相似文献   

19.
Gap-junction plaques are often observed with tight-junction strands of vascular endothelial cells but the molecular interaction and functional relationships between these two junctions remain obscure. We herein show that gap-junction proteins connexin40 (Cx40) and Cx43 are colocalized and coprecipitated with tight-junction molecules occludin, claudin-5, and ZO-1 in porcine blood-brain barrier (BBB) endothelial cells. Gap junction blockers 18beta-glycyrrhetinic acid (18beta-GA) and oleamide (OA) did not influence expression of Cx40, Cx43, occludin, claudin-5, junctional adhesion molecule (JAM)-A, JAM-B, JAM-C, or ZO-1, or their subcellular localization in the porcine BBB endothelial cells. In contrast, these gap-junction blocking agents inhibited the barrier function of tight junctions in cells, determined by measurement of transendothelial electrical resistance and paracellular flux of mannitol and inulin. 18beta-GA also significantly reduced the barrier property in rat lung endothelial (RLE) cells expressing doxycycline-induced claudin-1, but did not change the interaction between Cx43 and either claudin-1 or ZO-1, nor their expression levels or subcellular distribution. These findings suggest that Cx40- and/or Cx43-based gap junctions might be required to maintain the endothelial barrier function without altering the expression and localization of the tight-junction components analyzed.  相似文献   

20.
The term blood-brain barrier (BBB) relates to the ability of cerebral vessels to hold back hydrophilic and large molecules from entering the brain, thereby crucially contributing to brain homeostasis. In fact, experimental opening of endothelial tight junctions causes a breakdown of the BBB evidenced as for instance by albumin leakage. This and similar observations led to the conclusion that BBB breakdown is predominantly mediated by damage to tight junction complexes, but evidentiary ultrastructural data are rare. Since functional deficits of the BBB contribute to an increased risk of hemorrhagic transformation and brain edema after stroke, which both critically impact on the clinical outcome, we studied the mechanism of BBB breakdown using an embolic model of focal cerebral ischemia in Wistar rats to closely mimic the essential human pathophysiology. Ischemia-induced BBB breakdown was detected using intravenous injection of FITC-albumin and tight junctions in areas of FITC-albumin extravasation were subsequently studied using fluorescence and electron microscopy. Against our expectation, 25 hours after ischemia induction the morphology of tight junction complexes (identified ultrastructurally and using antibodies against the transcellular proteins occludin and claudin-5) appeared to be regularly maintained in regions where FITC-albumin massively leaked into the neuropil. Furthermore, occludin signals along pan-laminin-labeled vessels in the affected hemisphere equaled the non-affected contralateral side (ratio: 0.966 vs. 0.963; P = 0.500). Additional ultrastructural analyses at 5 and 25 h after ischemia induction clearly indicated FITC-albumin extravasation around vessels with intact tight junctions, while the endothelium exhibited enhanced transendothelial vesicle trafficking and signs of degeneration. Thus, BBB breakdown and leakage of FITC-albumin cannot be correlated with staining patterns for common tight junction proteins alone. Understanding the mechanisms causing functional endothelial alterations and endothelial damage is likely to provide novel protective targets in stroke.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号