首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of stream erosion control structures on aquatic macroinvertebrates were studied (2000–2009) in a wastewater dominated drainage (Wash) in Las Vegas, Nevada. Mainstem sites with and without structures, wastewater treatment plant outfalls, a reference site above treatment plant inputs, and tributary sites were sampled. Ordination suggested hydrology and channel characteristics (current velocity, stream depth, and width), and water quality (conductivity) were primary factors in organizing macroinvertebrate communities, with some variables altered at structures. Treatment plant inputs changed hydrology (increased flows), water chemistry (conductivity decreased below treatment plants), and temperature. Assemblages differed between site types, with midges and damselflies important at tributary sites and Fallceon mayflies and Smicridea caddisflies common at erosion control structures. Locally unique communities developed at structures which also may have facilitated exotic species invasions. Analyses showed that taxa richness increased over time at these sites and differed significantly from richness at sites without structures. Structures appeared important in retaining organic matter and, among mainstem sites, coarse particulate organic matter was highest, but variable, at structures and at wetlands above the structures. Erosion control structures, coupled with warm effluent, high baseflows, and altered water quality resulted in development of a macroinvertebrate community that did not trend towards reference or tributary sites. In this case, ecological communities at structures used for river restoration were not on a continuum between disturbed and reference sites. Goal setting of community responses at these structures would have required insight beyond the simple use of reference site attributes.  相似文献   

2.
Groundwater influence on alpine stream ecosystems   总被引:1,自引:0,他引:1  
1. Spatial and temporal variability of relative snow‐melt, glacier‐melt and groundwater contributions to streams play important roles in shaping alpine freshwater ecosystems. Although meltwater (particularly glacier‐fed) streams have received much attention in recent years, the influence of groundwater on alpine freshwater ecosystems remains poorly understood. 2. This study tested the hypotheses that increased groundwater contributions to meltwater‐dominated alpine streams would yield increases in water temperature, channel stability, electrical conductivity and particulate organic matter (POM) and decreases in suspended sediment concentration (SSC). These more favourable habitat conditions were hypothesised to result in increased macroinvertebrate abundance and diversity. 3. Groundwater contributions, physicochemical habitat variables and benthic macroinvertebrates were sampled throughout the 2002 and 2003 summer‐melt seasons in three streams in the French Pyrénées. 4. Increased groundwater contributions were significantly correlated with higher discharge, water temperature, electrical conductivity, POM and channel stability, but lower SSC. 5. Macroinvertebrate total abundance, taxonomic richness, number of Ephemeroptera, Plecoptera and Trichoptera genera, and per cent Plecoptera all increased significantly with greater groundwater contributions to streamflow. However, beta diversity and Trichoptera relative abundance decreased. 6. Abundance of most macroinvertebrate taxa was highest under groundwater‐dominated conditions but a gradient of optimum groundwater preferences was evident across all taxa. Some taxa were found only where groundwater contributions were low (i.e. in predominantly meltwater‐fed streams). 7. This study provides evidence that water source, physicochemical habitat and stream biota are strongly linked. Therefore, an interdisciplinary approach is necessary for future studies aiming to develop conservation strategies or predict the response of alpine river ecosystems to global climate change.  相似文献   

3.
1. Longitudinal changes in physicochemical factors and the composition of the invertebrate community were examined in the hyporheic zone of a glacial river (Val Roseg, Switzerland) over a distance of 11 km from the glacier terminus. Multivariate analysis was used to determine the habitat preferences of taxa along an upstream‐downstream gradient of increasing temperature and groundwater contribution to river flow. 2. The hyporheos conformed to the longitudinal distribution model described for zoobenthic communities of glacial rivers in that taxonomic richness increased with distance from the glacier terminus. Spatial variation in taxonomic richness was best explained by temperature, the influence of groundwater, and the amount of organic matter. The overriding importance of these variables on the distribution of taxa was confirmed by the multivariate analysis. 3. The hyporheic zone contributed significantly to the overall biodiversity of the Roseg River. Whereas insect larvae were predominant in the benthos, hyporheic invertebrates were dominated by taxa belonging to the true groundwater fauna and the permanent hyporheos. Several permanently aquatic taxa (e.g. Nematoda, Ostracoda, Cyclopoida, Harpacticoida, Oligochaeta) appeared exclusively in the hyporheic zone or they extended farther upstream in the hyporheic layer than in the benthic layer. Leuctridae, Nemouridae, and Heptageniidae colonised hyporheic sediments where maximum water temperature was only 4 °C. 4. Despite strong seasonal changes in river discharge and physicochemistry in hyporheic water, the density and distribution of the hyporheos varied little over time. 5. Taxonomic richness increased markedly in the downstream part of a floodplain reach with an extensive upwelling zone. Upwelling groundwater not only maintained a permanent flow of water but also created several species‐rich habitats that added many species to the community of the main channel.  相似文献   

4.
1. Water abstraction from glacial rivers is an important characteristic of hydroelectric power schemes in Alpine regions. Streams in the Valais region of Switzerland have been particularly affected. 2. Invertebrate distributions are described in La Borgne d'Arolla, a glacial stream with icemelt-, snowmelt- and groundwater-dominated tributaries. The icemelt-dominated streams have been affected by abstractions for more than 30 years. 3. The glacial streams contain only Chironomidae (Diamesa), and are devoid of fauna for between 200 and 500 m below the glacier snouts. 4. Immediately below the water intakes the streams are intermittent, flowing only during system purges and high floods, and are devoid of fauna for short distances (<1.5km). 5. Further downstream, abstraction of glacial meltwater increases the importance of snowmelt and groundwater, increasing water temperatures, improving water clarity and increasing the length of krenal/rhithral streams at the expense of kryal streams. 6. A community including Chironomidae, Simuliidae, Baetidae, Nemouridae, Limnephilidae and Chloroperlidae occurs as soon as a permanent flow is maintained by tributary runoff, and the channel becomes stable. 7. A wide range of taxa inhabit snowmelt- and groundwater-dominated tributary streams with stable channels, often at much higher altitudes than the main river. The tributaries provide sources for rapid colonization of the main channel following ice retreat or physical disturbance. 8. Purges and high floods are important disturbances within the main channel. Recovery may be rapid because of drift from tributaries, but sites influenced by frequent disturbances have reduced faunas in comparison to stable channel sites. 9. This study supports the model proposed by Milner & Petts (1994) and shows that deterministic responses of macroinvertebrate communities may be observed to changes of temperature, turbidity, flow regime and channel stability.  相似文献   

5.
1. The longitudinal distribution of macroinvertebrates was investigated in June, August and September 1996 and 1997 in the Conca glacial stream and its tributary (Italian Alps; 46°N, 10°E). The principal aim was to test the 22 model that predicts the succession of faunal groups downstream of the glacial snout in relation to water temperature and channel stability. The effect of a non‐glacial tributary on the taxonomic richness and density patterns occurring in the glacial stream was also considered. 2. Channel stability showed an atypical longitudinal trend in the Conca glacial stream, being high in the upper part with Pfankuch Index values between 30 and 33. Water temperature exceeded 6 °C at all stations, with average values below 2 °C occurring only within 700 m from the glacial snout. 3. Taxonomic richness and diversity increased downstream. Taxonomic richness in the glacial stream (at about 1.5 km from the glacier) was comparable with the tributary and the reach after the confluence. Abundance also increased downstream in the glacial stream, but not as greatly as the number of taxa. 4. At higher taxonomic levels, the community structure in the tributary stations appeared to be similar to the two stations in the glacial stream just upstream of the confluence. The effect of the tributary was evident mainly at the genus or species level of the Chironomidae community. Some taxa found in the non‐glacial stream (e.g. Cricotopus fuscus, Eukiefferiella coerulescens, Metriocnemus sp., Paratrichocladius rufiventris, P. skirwitensis, Rheocricotopus effusus and Smittia sp.) were found also in the Conca stream but only after the confluence. 5. The upper glacial reach (within 700 m from the glacier snout) was dominated by the chironomid Diamesa spp. Less than 400 m from the glacier other Diamesinae (Pseudokiefferiella parva) and a few Orthocladiinae, especially Orthocladius (Euorthocladius) rivicola gr., colonized the stream. Some Diamesinae maintained relatively dense populations at mean water temperature around 5 °C, while some Orthocladiinae colonized reaches with mean water temperature <3 °C. 6. Contrary to the 22 model, Dipteran families such as Empididae and Limoniidae were more abundant in the upper stations than Simuliidae; non‐insects such as Nematoda and Oligochaeta were also numerous at some sites. Leuctridae, Taeniopterygidae and Nemouridae were the first Plecoptera to appear upstream, while Chloroperlidae were restricted to the lower reaches. Among Ephemeroptera, Heptageniidae were more abundant than Baetidae in the glacial sites. 7. In this glacial system channel stability and maximum temperature did not show the expected longitudinal trend and thus a typical kryal community was confined within 700 m from the glacier snout where summer mean water temperature was below 4 °C.  相似文献   

6.
Invertebrate drift in a large, braided New Zealand river   总被引:1,自引:0,他引:1  
1. The spatio-temporal patterns of drifting macroinvertebrates in a large, braided New Zealand river were determined by sampling with drift nets, seasonally, for 1 year. 2. Drift densities were greatest in autumn, and at night in all seasons except winter. A greater proportion of larger animals drifted at night than during the day in all seasons. Mean annual drift densities were ninety-six animals 100m?3 and 47 mg dry weight 100 m?3. 3. There were relatively few taxa in the drift, and the mayfly Deleatidium spp. comprised more than 85% of the drifting aquatic invertebrates in all seasons except autumn. Chironomidae and terrestrial forms were the only other groups to occur at densities of more than one animal 100 m?3 in all seasons. 4. Drift density was positively correlated with benthic density, which in turn was adversely affected by floods, particularly during spring and summer.  相似文献   

7.
  1. Glacial retreat, accompanied by shifts in riparian vegetation and glacier meltwater inputs, alters the energy supply and trophic structure of alpine stream food webs. Our goal in this study was to enhance understanding of dietary niches of macroinvertebrates inhabiting different alpine streams with contrasting glacial and non‐glacial (groundwater, precipitation, snowmelt) water inputs in conjunction with seasonal and habitat‐specific variation in basal resource availability.
  2. We measured a range of stream physico‐chemical attributes as well as carbon and nitrogen isotopes (δ13C, δ15N) of macroinvertebrates and primary food sources at seven sites across seasons within a Swiss glaciated catchment (Val Roseg) undergoing rapid glacial retreat (1–2 km between 1997 and 2014). Sampling sites corresponded to streams used in a previous (1997/1998) study within the same alpine catchment.
  3. Physico‐chemical attributes showed wide variation in environmental conditions across streams and seasons. Significant correlation among physico‐chemical proxies of glacier meltwater (phosphate‐P, total inorganic carbon, conductivity, turbidity) and macroinvertebrate δ13C, δ15N, and size‐corrected standard ellipse area (a proxy for feeding niche width) values showed that the extent of glacial water input shapes the energy base among alpine streams. Feeding niche differences among common alpine stream insect taxa (Chironomidae, Baetidae, Heptageniidae) were not significant, indicating that these organisms probably are plastic in feeding behaviour, opportunistically relying on food resources available in a particular stream and season.
  4. Seasonal trends in macroinvertebrate δ13C largely followed patterns in periphyton δ13C values, indicating that autochthonous resources were the main consumer energy source within the stream network, as shown previously. The overall range in macroinvertebrate δ13C (?33.5 to ?18.4‰) and δ15N (?6.9 to 6.7‰) values also corresponded to values measured in the previous study, suggesting that macroinvertebrates altered diets in line with changes in environmental conditions and food resources during a period of rapid glacial retreat. Our results suggest that environmental changes brought on by rapid glacial retreat have not yet caused a profound change in the trophic structure within these fluvial networks.
  相似文献   

8.
Aquatic macroinvertebrates in drainage ditches may alter rates of nutrient cycling and decomposition of organic matter but have not been accounted for in studies of ditch biogeochemistry. We collected sediment cores from four pairs of field (intermittent) and collection (perennial) ditches on Maryland’s Eastern Shore monthly from March 2011 to February 2012 to determine how taxonomic and functional group composition varies among different ditch types. We identified 138 taxa and assigned them to functional groups according to trophic position and modes of burrowing. There was no difference in mean abundance of invertebrates (5821 ind./m2) between seasons or types of ditches, and species richness peaked in winter (20 taxa/site) compared to other seasons (15 taxa/site), but did not vary between ditch types. Assemblage composition differed between field and collection ditches, but functional group composition did not. Field ditches flow intermittently which may limit the assemblage to early colonists and taxa adapted to survive desiccation. The benthic macroinvertebrate assemblage was dominated by the collector–gatherer functional feeding group (83.6%) and burrowing taxa (97.1%). Bioturbation by burrowing macroinvertebrates is likely an important process contributing to ecosystem-scale functions of drainage ditches, including regulation of biogeochemical processes occurring at the sediment–water interface.  相似文献   

9.
In the last 150 years, the Lower Mississippi River (LMR) floodplain was extensively reduced in area with conversion of once regularly inundated floodplain wetlands to dry land. Yet, between the present levees, there remain substantial remnants of the historical floodplain, including various types of permanent backwater habitats. We hypothesized that degree and timing of hydrologic connection with the river main channel drives variation in physical and chemical properties, and phytoplankton community dynamics, in backwaters. Over 23 months, measurements were made in several sites varying in connection with the main channel. At high stages, the channel and backwaters converged in having elevated turbidity, suspended solids and dissolved nutrient concentrations, reduced algal biomass and production, a seston C:N ratio indicating predominantly allochthonous organic matter sources, and a diatom-dominated community. When connection was reduced, backwaters declined in suspended sediments and nutrients, surged in production and biomass, had a seston C:N ratio reflecting autochthonous production, and switched to a community dominated by cryptomonad algae. With prolonged isolation, biomass-specific production became nitrogen limited and declined. By a conceptual model, we illustrate the seasonally variable role of permanent floodplain backwaters as major sources of algal organic matter, and potentially for nutrient sequestration, within the Lower Mississippi system.  相似文献   

10.
1. During the past two decades, understanding of the structure and function of glacier‐fed stream ecosystems at temperate latitudes has increased substantially. In contrast, information on their tropical counterparts is very limited. We studied three neighbouring glacier‐fed streams in the tropical Andes of Ecuador. Our main goals were (i) to determine overall longitudinal patterns in density, taxon richness and the composition of macroinvertebrate assemblages and driving factors in equatorial glacial streams and (ii) to examine variability among replicate streams in faunal metrics and assemblages, and stream‐specific effects of supposed environmental key factors. 2. We measured four geographical and 17 environmental factors and collected five Surber samples (500 cm2) of macroinvertebrates at each of nine sites, three sites along three streams. The streams were located 1–5 km apart. In each stream, the three sites were placed at comparable distances from the glacier and were grouped as ‘upper’ (50–200 m), ‘middle’ (1.5 km) and ‘lower’ sites (3.5–5.6 km). 3. In total, 2200 individuals (64% chironomids) were collected and 47 taxa (30 dipterans, 18 of these Chironomidae) identified. Density ranged from 176 to 372 ind. m?2, and the number of taxa ranged from 2 to 6 at the upper sites and 868–3044 ind. m?2 and 21–27 taxa at the lower sites. Density, number of taxa, rarefied richness and axis‐1 coordinates from a MDS ordination increased logarithmically with distance from the glacier. These faunal metrics were equally related to altitude and glacier per cent of catchment and correlated with maximum conductivity, mean temperature, mean daily maximum temperature and a channel stability index. As expected, the mean difference in distance decay in similarity was higher at the upper (47% km?1) than at the lower reaches (20% km?1) of the streams. 4. The number of taxa varied among sites within the upper and middle groups, but not among the lower sites. In contrast, but in accordance with our expectation, assemblage composition did not differ among upper sites but did so at middle and lower sites, following a supposed decrease in environmental harshness along the streams. Relationships between faunal metrics and the four environmental variables mean temperature, the stability index, chlorophyll a and coarse particulate organic matter also varied among the three streams. Generalised linear model analyses revealed that temperature interacted with stream on macroinvertebrate density, while chlorophyll a had a significant effect on the number of taxa in interaction with stream and stability. 5. The basic predictions of the Milner et al. (2001a) , model regarding longitudinal faunal patterns and temperature and stability as main driving factors were met by our three replicate equatorial glacial streams. Qualitative departures from the model were mainly because of zoogeographical differences. We demonstrated that variability in assemblages between comparable sites in closely situated streams was considerable, and the effect of key environmental factors varied among streams and interacted with other factors. Quantifying spatial variation in benthic assemblages may help us foresee possible consequences for biodiversity as a result of glacial retreat.  相似文献   

11.
The effect of electroshocking and walking on the substrate on macroinvertebrate drift was evaluated in three streams located in southwestern Oregon, USA. A randomized block experimental design was used to determine treatment (electroshocking and walking, electroshocking-only, walking-only) and drift distance effects on the number, biomass, and length of macroinvertebrates drifting up to 30 m downstream. In all streams, electroshocking caused significantly (p < 0.05) greater number of macroinvertebrates to drift compared to merely walking on the substrate. The differences among treatments decreased the farther downstream the macroinvertebrates drifted. No significant difference (p > 0.05) was observed in mean biomass between electroshocking and walking on the substrate among the drift distances. The longest macroinvertebrates were collected from the electroshocking treatment at the shortest drift distance (2.5 m) in all of the streams. The length of macroinvertebrates collected between electroshocking and walking on the substrate were similar at drift distances of 10 m and greater and represented predominately the smaller, poor swimming taxa.  相似文献   

12.
1. In their natural state, river floodplains are composed of a complex mosaic of contrasting aquatic and terrestrial habitats. These habitats are expected to differ widely in their properties and corresponding ecological processes, although empirical data on their capacity to produce, store and transform organic matter and nutrients are limited. 2. The objectives of this study were (i) to quantify the spatiotemporal variation of respiration, a dominant carbon flux in ecosystems, in a complex river floodplain, (ii) to identify the environmental drivers of respiration within and among floodplain habitat types and (iii) to calculate whole‐floodplain respiration and to put these values into a global ecosystem context. 3. We measured soil and sediment respiration (sum of root and heterotrophic respiration; SR) throughout an annual cycle in two aquatic (pond and channel) and four terrestrial (gravel, large wood, vegetated island and riparian forest) floodplain habitat types in the island‐braided section of the near‐natural Tagliamento River (NE Italy). 4. Floodplain habitat types differed greatly in substratum composition (soil to coarse gravel), organic matter content (0.63 to 4.1% ash‐free dry mass) and temperature (seasonal range per habitat type: 8.6 to 33.1 °C). Average annual SR ranged from 0.54 ± 1.56 (exposed gravel) to 3.94 ± 3.72 μmol CO2 m?2 s?1 (vegetated islands) indicating distinct variation in respiration within and among habitat types. Temperature was the most important predictor of SR. However, the Q10 value ranged from 1.62 (channel habitat) to 4.57 (riparian forest), demonstrating major differences in habitat‐specific temperature sensitivity in SR. 5. Total annual SR in individual floodplain habitats ranged from 160 (ponds) to 1205 g C m?2 (vegetated islands) and spanned almost the entire range of global ecosystem respiration, from deserts to tropical forests.  相似文献   

13.
The flow of groundwater through the sediment layer (underflow or hyporheic zone) of streams and at the origin of streams can influence organic matter uptake dynamics of floodplain. The River Rhône floodplain has limestone foothills. Here we studied 2 karstic and 2 interstitial springs differing by aquifer geology. Organic matter, physico-chemical conditions were compared between these springs during two seasons (from March to September 1989) and at different depths (0, –20 cm, –40 cm).Temperatures indicated large differences in underflow between springs, in their relation to the surrounding environment, and between seasons. Springs are well oxygenated, with differences between layers. Cultivated fields supply interstitial springs with nitrates, and pools are nutrient traps. DOC was heterogeneous in space and time and correlates with VFPOC. Particulate nutrients were correlated with available surface area of sediment grains. Physical conditions of each spring were prominent in determining storage and turnover of organic matter. Each spring, by its own characteristics and dynamics regulating stability and turnover, had an effect or control on storage, transport and retention of organic matter (quality, quantity). These springs offer an example of the heterogeneity, and give a view of the diversity of patches within a floodplain. The data suggest that groundwater flow of springs may be a major factor in the functioning of floodplain tributaries.  相似文献   

14.
雅鲁藏布江流域底栖动物多样性及生态评价   总被引:4,自引:0,他引:4  
雅鲁藏布江起源于喜马拉雅山,是世界上海拔最高的河流之一,是流经我国西藏境内重要的国际河流,其河流生态系统具有特殊地貌及生态条件。研究该流域底栖动物多样性分布特征及其影响因子,是科学评价该区域河流生态系统健康状况,实现资源可持续开发利用的基础。2009年10月—2010年6月期间,以底栖动物作为指示物种,对雅江流域干支流及堰塞湖的14个采样断面进行河流生态评价。采用Alpha及Beta生物多样性指数分别指示局部采样河段及全区域的底栖动物多样性。对采样断面底栖动物组成分析发现:14个采样断面共采集到底栖动物110种,隶属57科102属。雅江干流底栖动物种类数最高为29,平均为19。支流年楚河种类数为17。支流拉萨河,尼洋河,帕龙藏布的最高种类数分别为25,33,36;平均种类数分别为21,21,22,生物多样性普遍高于干流。整个流域中底栖动物平均种类数相差不大,但种类组成和密度相差较大。调查区域的Beta多样性指数β高于低海拔地区的相似的山区河流,说明雅江流域内底栖动物群落差异性高于正常海拔地区。对14个采样断面的物种组成进行除趋势对应分析表明:影响雅江流域底栖动物多样性的主要因素为河型,河床阻力结构,堤岸结构,水流流速。保持稳定的阶梯-深潭结构和自然堤岸结构,以及适宜的流速有利于保护雅江河流生态。  相似文献   

15.
Alpine streams are typically fed from a range of water sources including glacial meltwater, snowmelt, groundwater flow, and surface rainfall runoff. These contributions are projected to shift with climate change, particularly in the Japanese Alps where snow is expected to decrease, but rainfall events increase. The overarching aim of the study was to understand the key variables driving macroinvertebrate community composition in groundwater and snowmelt‐fed streams (n = 6) in the Kamikochi region of the northern Japanese Alps (April–December 2017). Macroinvertebrate abundance, species richness, and diversity were not significantly different between the two stream types. Community structure, however, was different between groundwater and snowmelt‐fed streams with macroinvertebrate taxa specialized for the environmental conditions present in each system. Temporal variation in the abundance, species richness, and diversity of macroinvertebrate communities was also significantly different between groundwater and snowmelt streams over the study period, with snowmelt streams exhibiting far higher levels of variation. Two snowmelt streams considered perennial proved to be intermittent with periodic drying of the streambed, but the macroinvertebrates in these systems rebounded rapidly after flows resumed with no reduction in taxonomic diversity. These same streams, nevertheless, showed a major reduction in diversity and abundance following periods of high flow, indicating floods rather than periodic drying was a major driver of community structure. This conclusion was also supported from functional analyses, which showed that the more variable snowmelt streams were characterized by taxa with resistant, rather than resilient, life‐history traits. The findings demonstrate the potential for significant turnover in species composition with changing environmental conditions in Japanese alpine stream systems, with groundwater‐fed streams potentially more resilient to future changes in comparison to snowmelt‐fed streams.  相似文献   

16.
Macroinvertebrate assemblages and its association with environmental factors at the 11 artificial subtropical ponds of Taiwan were examined using the multivariate analysis software STATICO. The aims of the study were to determine whether spatial and seasonal variation of macroinvertebrate assemblages changed seasonally, to examine which environmental factors determined the spatial and temporal structure of maroinvertebrate assemblages, and to compare between-pond variations in the taxon composition of macroinvertebrates. Macroinvertebrates were collected seasonally by a corer and a sweep net in 2007, and 13 physical and chemical factors were measured at the same time. A total of 31 macroinvertebrate taxa were collected during the sampling period, and the most dominant taxa were Chironomidae (31.7% of total animal abundance) and Tubificidae (22.4%). STATICO identified pond size, pond depth, sediment depth, and altitude as the major abiotic factors and Bufo melanostictus (Amphibia) as the major biotic factor to influence macroinvertebrate assemblages at these ponds. These factors changed with seasonality. For example, the abundance of B. melanostictus was the most important factor during the spring but became much less important in other seasons. According to the spatial distribution patterns of macroinvertebrate assemblages, macroinvertebrates could be split into two groups based on their dispersal. The active dispersers, such as insect taxa, were strongly associated with pond size and the passive dispersers, such as non-insect taxa, were strongly associated with the pond depth and/or sediment depth. The results of this study suggested that pond size might influence macroinvertebrate assemblages through their dispersal mechanisms and that the environmental factors which influenced the macroinvertebrate assemblages most changed with seasons in this study area.  相似文献   

17.
The effects of the lampricide, TFM, on the abundance of macroinvertebrates in the benthos of Wilmot Creek, a hardwater tributary to Lake Ontario, was examined over 1 year. Drifting macroinvertebrates were also collected before, during and after TFM treatment. Significant decreases in benthic abundance were exhibited by Dolophilodes sp., Tubificoidea, Cricotopus sp. and Macrotendipes sp. throughout the 350 days following treatment. Only the decrease in abundance of Dolophilodes sp. and Tubificoidea could be attributed to TFM treatment. Increases in drift abundance observed during treatment were generally an accurate indicator of TFM-sensitive macroinvertebrates. The most sentive taxa (Dolophilodes sp., Dugesia sp. and Tubificoidea) responded immediately following the introduction of TFM. Branchiobdellida, Diamesa sp., Dicranota sp., Lumbricidae and Nemouridae exhibited increases in drift abundance 8–10 h after the introduction of TFM, however, were considered less sensitive than the former taxa because a decline in their abundance in the benthos was not detected.The response of the benthic invertebrates found in this hardwater creek was similar to those observed during studies of softwater streams. Only the most severely affected taxa were not present in the benthos 350 days after treatment.  相似文献   

18.
Winter diet composition of brown trout Salmo trutta was quantified from November to March in 35 temperate groundwater‐dominated streams in south‐eastern Minnesota, U.S.A., in relation to stream physical characteristics including drainage area, channel slope and influence of groundwater on stream thermal regime. Aquatic invertebrates made up the majority of S. trutta diet in all streams and sampling periods and individual S. trutta typically had consumed 30 or more prey items at each sampling event. Differences in diet composition were greater among streams than between sampling periods within a stream, with Gammarus spp., Brachycentrus spp., Glossosoma spp., Chironomidae and Physella spp. the most common taxa. Landscape‐scale stream characteristics were not significantly associated with S. trutta consumption or diet composition. Winter was period of significant activity in groundwater‐dominated streams, as S. trutta fed on a variety of aquatic prey taxa highlighting the importance of winter base‐flow in moderating S. trutta populations in seasonally cold catchments.  相似文献   

19.
Since the 1930s, dredge material has been removed from the Illinois River and placed along the main channel border in shallow depths to maintain a 2.7 m deep main channel for commercial navigation. Placement of this material changes the sediment composition from primarily silt/clay to primarily sand, and it buries pre-existing benthic invertebrates. During 1997 and 1998, the benthos of an 125 km reach of the middle Illinois River (La Grange Reach) was studied by extracting 1065 Ponar samples from randomly-selected sites which had never received dredge material, received dredge material one year previous, or received dredge material during the current year. Although total numbers of macroinvertebrates collected was lower in 1998 than in 1997, relative abundances of eight targeted taxa were highly similar between years. Chironimidae were most abundant and comprised >66% of all macroinvertebrates collected both years. Differences in densities of Chironomidae, Ephemeroptera, Sphaeriidae, Corbicula fluminea (Muller, 1774), Dreissena polymorpha (Pallas, 1771), Odonata, and Gastropoda among the three classes of dredge material placement were all significant (P< 0.05). For all taxa, densities were highest at sites that had never received dredge material; and, for all taxa except Chironimidae, densities were lowest at sites that received dredge material during the current year. No significant recovery by macroinvertebrates was noticed on dredge areas of this reach after one year (P>0.05). Future operations to maintain a channel for navigation should consider preexisting densities of macroinvertebrate taxa. Because benthic macroinvertebrates are an important component of the food web and shifting sand does not support diverse macroinvertebrate communities, strategic placement of dredge material by avoiding islands or other areas of high macroinvertebrate diversity could improve overall system productivity and biotic integrity of large river-floodplains.  相似文献   

20.
SUMMARY 1. We examined the thermal patterns of the surface waters in the catchment of the Roseg River, which is fed by the meltwaters of two valley glaciers. One of the glaciers has a lake at its terminus. The river corridor comprised a proglacial stream reach below one glacier, the glacier lake outlet stream, a 2.5‐km long complex floodplain and a constrained reach extending to the end of the catchment. 2. Temperatures were continuously measured with temperature loggers at 27 sites between 1997 and 1998. Moreover, from 1997 to 1999, spot measurements were taken at 33–165 floodplain sites (depending on water level) at monthly intervals. 3. The temperature regime of glacial streams, including the glacier lake outlet, was characterised by rapidly increasing temperatures in April and May, a moderate decline from June to September (period of glacial melt) and a subsequent fast decline in autumn. During summer, the lake increased temperatures in the outlet stream by 2–4 °C, compared with the adjacent proglacial stream reach. 4. In the main channel (thalweg) of the Roseg River, annual degree‐days (DD) ranged from 176 DD in the upper proglacial reach to 1227 DD at the end of the catchment. 5. Thermal variation among different channels within the floodplain was higher than the variation along the entire main channel. Floodplain channels lacking surface connection to the main channel accumulated up to 1661 annual DDs. 6. Thermal heterogeneity within the floodplain was linked to the glacial flow pulse. With the onset of ice melt, temperatures in the main channel and in channels surface‐connected to the main channel began to decline, whereas in surface‐disconnected channels temperatures continued to increase; as a consequence, thermal heterogeneity at the floodplain scale rose slightly until September. 7. High thermal heterogeneity was not anticipated in the harsh environment of a largely glacierised alpine catchment. The relatively wide range of thermal environments may contribute to the highly diverse zoobenthic community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号