首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On incubation of HeLa cells in chilled isotonic medium, intracellular Na+ (Nac+) increased and K+ (Kc+) decreased with time, reaching steady levels after 3 h. The steady levels varied in parallel with the extracellular cation concentrations ([Na+]e, [K+]e). The cell volumes and the protein and water contents, respectively, of cells kept for 3 h in chilled media of various [Na+]e and [K+]e were not significantly different. Ouabain-sensitive Rb+ influx took place at the initial rate for a certain period which depended on [Na+]c at the beginning of the assays. The existence of two external K+ loading sites per Na+/K+-pump was demonstrated. The affinities of the sites for Rb+ as a congener of K+ were almost the same. Nae+ inhibited ouabain-sensitive Rb+ influx competitively, whereas Kc+ was not inhibitory. Kinetic parameters were determined: the K12 for Rbe+ in the absence of Nae+ was 0.16 mM and the Ki for Nae+ was 36.8 mM; the K12 was 19.5 mM and the Ki for Kc+ seemed to be extremely large. The rate equation of the ouabain-sensitive Rb+ influx suggests that Na+ and K+ are exchanged alternately through the pump by a binary mechanism.  相似文献   

2.
K+ and Na+ fluxes and ion content have been studied in roots of Atriplex nummularia Lindl. and Avena sativa L. cv Goodfield grown in 3 millimolar K+ with or without 3 or 50 millimolar NaCl. Compartmental analysis was carried out with entire root systems under steady-state conditions.

Increasing ambient Na+ concentrations from 0 to 50 millimolar altered K+, in Atriplex, as follows: slightly decreased the cytoplasmic content (Qc), the vacuolar content (Qv), and the plasma membrane influx and efflux. Xylem transport for K+ decreased by 63% in Atriplex. For oat roots, similar increases in Na+ altered K+ parameters as follows: plasma membrane influx and efflux decreased by about 80%. Qc decreased by 65%, and xylem transport decreased by 91%. No change, however, was observed in Qv for K+. Increasing ambient Na+ resulted in higher (3 to 5-fold) Na+ fluxes across the plasma membrane and in Qc of both species. In Atriplex, Na+ fluxes across the tonoplast and Qv increased as external Na+ was increased. In oat, however, no significant change was observed in Na+ flux across the tonoplast or in Qv as external Na+ was increased. In oat roots, Na+ reduced K+ uptake markedly; in Atriplex, this was not as pronounced. However, even at high Na+ levels, the influx transport system at the plasma membrane of both species preferred K+ over Na+.

Based upon the Ussing-Teorell equation, it was concluded that active inward transport of K+ occurred across the plasma membrane, and passive movement of K+ occurred across the tonoplast in both species. Na+, in oat roots, was actively pumped out of the cytoplasm to the exterior, whereas, in Atriplex, Na+ was passively distributed between the free space, cytoplasm, and vacuole.

  相似文献   

3.
The neurological disorders familial hemiplegic migraine type 2 (FHM2), alternating hemiplegia of childhood (AHC), and rapid-onset dystonia parkinsonism (RDP) are caused by mutations of Na+,K+-ATPase α2 and α3 isoforms, expressed in glial and neuronal cells, respectively. Although these disorders are distinct, they overlap in phenotypical presentation. Two Na+,K+-ATPase mutations, extending the C terminus by either 28 residues (“+28” mutation) or an extra tyrosine (“+Y”), are associated with FHM2 and RDP, respectively. We describe here functional consequences of these and other neurological disease mutations as well as an extension of the C terminus only by a single alanine. The dependence of the mutational effects on the specific α isoform in which the mutation is introduced was furthermore studied. At the cellular level we have characterized the C-terminal extension mutants and other mutants, addressing the question to what extent they cause a change of the intracellular Na+ and K+ concentrations ([Na+]i and [K+]i) in COS cells. C-terminal extension mutants generally showed dramatically reduced Na+ affinity without disturbance of K+ binding, as did other RDP mutants. No phosphorylation from ATP was observed for the +28 mutation of α2 despite a high expression level. A significant rise of [Na+]i and reduction of [K+]i was detected in cells expressing mutants with reduced Na+ affinity and did not require a concomitant reduction of the maximal catalytic turnover rate or expression level. Moreover, two mutations that increase Na+ affinity were found to reduce [Na+]i. It is concluded that the Na+ affinity of the Na+,K+-ATPase is an important determinant of [Na+]i.  相似文献   

4.
The effect of Bacillus thuringiensis insecticidal toxins on the monovalent cation content and intracellular pH (pH i ) of individual Sf9 cells of the lepidopteran species Spodoptera frugiperda (fall armyworm) was monitored with the fluorescent indicators potassium-binding benzofuran isophthalate (PBFI) and 2′,7′-bis(carboxyethyl)-5,6-carboxyfluorescein (BCECF). The sequential removal of K+ and Na+ from the medium, in the presence of CryIC, a toxin which is highly active against Sf9 cells, caused sharp shifts in the fluorescence ratio of PBFI, demonstrating a rapid efflux of these ions. In Sf9 cells, pH i depends strongly on the activity of a K+/H+ exchanger. In the absence of toxin, removal of K+ from the external medium resulted in a reversible acidification of the cells. In the presence of CryIC, pH i equilibrated rapidly with that of the bathing solution. This effect was both time- and concentration-dependent. In contrast with CryIC, CryIIIA, a coleopteran-specific toxin, and CryIA(a), CryIA(b) and CryIA(c), toxins which are either inactive or poorly active against Sf9 cells, had no detectable effect on pH i . B. thuringiensis endotoxins thus appear to act specifically by increasing the permeability of the cytoplasmic membrane of susceptible cells to at least H+, K+ and Na+.  相似文献   

5.
6.
The effect of external and internal K+ on Nao+-dependent Ca2+ efflux was studied in dialyzed squid axons under constant membrane potential. With axons clamped at their resting potentials, external K+ (up to 70 mM) has no effect on Na+?Ca2+ exchange. Removal of Ki+ causes a marked inhibition in the Nao+-dependent Ca2+ efflux component. Internal K+ activates the Na+?Ca2+ exchange with low affinity (K12 = 90 mM). Activation by Ki+ is similar in the presence or in the absence of Nai+, thus ruling out a displacement of Nai+ from its inhibitory site. Axons dialyzed with ATP also show a dependency of Ca2+ efflux on Ki+. The present results demonstrate that Ki+ is an important cofactor (partially required) for the proper functioning of the forward Na+?Ca2+ exchange.  相似文献   

7.

Background

Orthophosphate (Pi) is a central compound in the metabolism of all organisms, including parasites. There are no reports regarding the mechanisms of Pi acquisition by Trypanosoma cruzi.

Methods

32Pi influx was measured in T. cruzi epimastigotes. The expression of Pi transporter genes and the coupling of the uptake to Na+, H+ and K+ fluxes were also investigated. The transport capacities of different evolutive forms were compared.

Results

Epimastigotes grew significantly more slowly in 2 mM than in 50 mM Pi. Influx of Pi into parasites grown under low Pi conditions took place in the absence and presence of Na+. We found that the parasites express TcPho84, a H+:Pi-symporter, and TcPho89, a Na+:Pi-symporter. Both Pi influx mechanisms showed Michaelis–Menten kinetics, with a one-order of magnitude higher affinity for the Na+-dependent system. Collapsing the membrane potential with carbonylcyanide-p-trifluoromethoxyphenylhydrazone strongly impaired the influx of Pi. Valinomycin (K+ ionophore) or SCH28028 (inhibitor of (H+ + K+)ATPase) significantly inhibited Pi uptake, indicating that an inwardly-directed H+ gradient energizes uphill Pi entry and that K+ recycling plays a key role in Pi influx. Furosemide, an inhibitor of the ouabain-insensitive Na+-ATPase, decreased only the Na+-dependent Pi uptake, indicating that this Na+ pump generates the Na+ gradient utilized by the symporter. Trypomastigote forms take up Pi inefficiently.

Conclusions

Pi starvation stimulates membrane potential-sensitive Pi uptake through different pathways coupled to Na+ or H+/K+ fluxes.

General significance

This study unravels the mechanisms of Pi acquisition by T. cruzi, a key process in epimastigote development and differentiation to trypomastigote forms.  相似文献   

8.
Voltage clamp fluorometry was used to monitor conformational changes associated with electrogenic partial reactions of the Na+,K+-ATPase after changes in the concentration of internal sodium (Na+i) or external potassium (K+o). To probe the effects of the Na+i concentration on the Na+ branch of the Na+,K+-ATPase, oocytes were depleted of Na+i and then loaded with external sodium (Na+o) using the amiloride-sensitive epithelial sodium channel. The K+ branch of the Na+,K+-ATPase was studied by exposing the oocytes to different K+o concentrations in the presence and absence of Na+o to obtain additional information on the apparent affinity for K+o. Our results demonstrate that lowering the concentration of Na+i or increasing the amount of K+o in the external solution shifts the equilibrium toward E1/E1P. Furthermore, the K+o-induced relocation toward E1 occurs at a much lower K+o concentration when Na+o is absent, indicating a higher apparent affinity. Finally, voltage-dependent steps associated with the K+ branch or the Na+ branch of the Na+,K+-ATPase are affected by the K+o concentration or the Na+i concentration, respectively.  相似文献   

9.
Our aim was to determine whether fixation of inorganic carbon (Ci), due to phosphoenolpyruvate carboxylase activity, is limited by the availability of Ci in the cytoplasm of maize (Zea mays L.) root tips. Rates of Ci uptake and metabolism were measured during K2SO4 treatment, which stimulates dark Ci fixation. 13Ci uptake was followed by 13C-nuclear magnetic resonance (NMR); 5 millimolar K2SO4 had no significant effect on 13Ci influx. The contribution of respiratory CO2 production to cytoplasmic HCO3 was measured using in vivo 13C-NMR and 1H-NMR of cell extracts; K2SO4 treatment had no effect on respiratory CO2 production. The concentration of cytoplasmic HCO3 was estimated to be approximately 11 millimolar, again with K2SO4 having no significant effect. These experiments allowed us to determine the extent to which extracellularly supplied 14Ci was diluted in the cytoplasm by respiratory CO2 and thereby measure phosphoenolpyruvate (PEP) carboxylase activity in vivo using 14Ci. PEP carboxylase activity in root tips was enhanced approximately 70% over controls within 12 minutes of the addition of 5 millimolar K2SO4. The activity of carbonic anhydrase, which provides PEP carboxylase with Ci, was determined by saturation transfer 13C-NMR to be more than 200 times that of PEP carboxylase in vivo. The regulation of PEP carboxylase in K2SO4-treated roots is discussed.  相似文献   

10.
In the present investigation, intracellular sodium ([Na+]i) levels were determined in GH4C1 cells using the fluorescent probe SBFI. Fluorescence was determined by excitation at 340 nm and 385 nm, and emission was measured at 500 nm. Intracellular free sodium ([Na+]i) was determined by comparing the ratio 340/385 to a calibration curve. The ratio was linear between 10 and 60 mM Na+. Resting [Na+]i in GH4C1 cells was 26 ± 6.2 mM (mean ± SD). In cells incubated in Na+-buffer [Na+]i decreased to 3 ± 3.6 mM. If Na+/K+ ATPase was inhibited by incubating the cells with 1 mM ouabain, [Na+]i increased to 47 ± 12.8 mM in 15 min. Stimulating the cells with TRH, phorbol myristyl acetete, or thapsigargin had no effect on [Na+]i. Incubating the cells in Ca2+-buffer rapidly increased [Na+]i. The increase was not inhibited by tetrodotoxin. Addition of extracellular Ca2+, nimodipine, or Ni2+ to these cells immediately decreased [Na+]i, whereas Bay K 8644 enhanced the influx of Na+. In cells where [Na+]i was increased the TRH-induced increase in intracellular free calcium ([Ca2+]i) was decreased compared with control cells. Our results suggest that Na+ enters the cells via Ca2+ channels, and [Na+]i may attenuate TRH-induced changes in [Ca2+]i in GH4C1 cells. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Side-by-side with inhibition of the Na+,K+-ATPase ouabain and other cardiotonic steroids (CTS) can affect cell functions by mechanisms other than regulation of the intracellular Na+ and K+ ratio ([Na+]i/[K+]i). Thus, we compared the doseand time-dependences of the effect of ouabain on intracellular [Na+]i/[K+]i ratio, Na+,K+-ATPase activity, and proliferation of human umbilical vein endothelial cells (HUVEC). Treatment of the cells with 1-3 nM ouabain for 24-72 h decreased the [Na+]i/[K+]i ratio and increased cell proliferation by 20-50%. We discovered that the same ouabain concentrations increased Na+,K+-ATPase activity by 25-30%, as measured by the rate of 86Rb+ influx. Higher ouabain concentrations inhibited Na+,K+-ATPase, increased [Na+]i/[K+]i ratio, suppressed cell growth, and caused cell death. When cells were treated with low ouabain concentrations for 48 or 72 h, a negative correlation between [Na+]i/[K+]i ratio and cell growth activation was observed. In cells treated with high ouabain concentrations for 24 h, the [Na+]i/[K+]i ratio correlated positively with proliferation inhibition. These data demonstrate that inhibition of HUVEC proliferation at high CTS concentrations correlates with dissipation of the Na+ and K+ concentration gradients, whereas cell growth stimulation by low CTS doses results from activation of Na+,K+-ATPase and decrease in the [Na+]i/[K+]i ratio.  相似文献   

12.
13.
14.
The cell sap of the internode ofNitella flexilis was replaced with the isotonic artificial pond water of high Ca2+-concentration (0.1 mM KCl, 0.1 mM NaCl, 10 mM CaCl2 and 275 mM mannitol) and changes in osmotic value and concentrations of K+, Na+ and Cl of the cells were followed. When the operated cells were incubated in the artificial pond water containing 0.1 mM each of KCl, NaCl, CaCl2, they survived for only a short period of time (<10 hr). The cells did not absorb ions from the artificial pond water and showed a conspicuous decrease in the rate of cytoplasmic streaming. In such cell the concentration of K+ in the protoplasm decreased significantly. In order to reverse normal concentration gradients of K+ and Na+ across the protoplasmic layer, the cells of low vacuolar ionic concentrations were incubated in the artificial cell sap (90 mM KCl, 40 mM NaCl, 15 mM CaCl2, 10 mM MgCl2). It was found that the cells rapidly absorbed much K+, Na+ and Cl and survived for a longer period (1–2 days). During this period the rate of cytoplasmic streaming was nearly normal. Furthermore, the cell lost much mannitol, indicating an enormous increase in permeability to it. Since both absorption of ions and leakage of mannitol at 1 C occurred at nearly the same rates as at 22 C, the processes are assumed to be passive.  相似文献   

15.
The effect of nutrient solutions with certain essential elements lacking, on oxidation reduction potential (RP) of the first leaf was examined in two cultivars of barley seedlings NO3 ? and K+ decreasedRP considerably, PO 4 3? did not. The effect of NO3 ? and K+ was dependent. on the illuminance. Under glasshouse conditions, the increased level of NO3 ? and K+ did not cause any change ofRP. In field conditions, the increased supply of nitrogen fertilizers resulted in a lowerRP in leaves at ear emergence and a higher yield. The use ofRP measurement in leaves for the estimation of the effect of mineral nutrition on plants is discussed.  相似文献   

16.
The properties of the α1 Na+-K+ pump were compared in Dahl salt-sensitive (DS) and salt-resistant (DR) strains by measuring ouabain-sensitive luxes (mmol/liter cell x hr = FU, Mean ± se) in red blood cells (RBCs) and varying internal ( i ) and external ( o ) Na+ and K+ concentrations. Kinetic parameters of several modes of operation, i.e., Na+/ K+, K+/K+, Na+/Na+ exchanges, were characterized and analyzed for curve-fitting using the Enzfitter computer program. In unidirectional flux studies (n=12 rats of each strain) into fresh cells incubated in 140 mm Na+ + 5 mm K+, ouabain-sensitive K+ influx was substantially lower in the DS than in DR RBCs, while ouabain-sensitive Na+ efflux and Na i were similar in both strains. Thus, the coupling ratio between unidirectional Na+∶K+ fluxes was significantly higher in DS than in DR cells at similar RBC Na+ content. In the presence of 140 mm Na o , activation of ouabain-sensitive K+ influx by K o had a lower K m and V max in DS as estimated by the Garay equation (N=2.70 ± 0.33, K m 0.74 ± 0.09 mm; V max 2.87 ± 0.09 FU) than in DR rats (N=1.23 ± 0.36, K m 2.31 ± 0.16 mm; v max 5.70 ± 0.52 FU). However, the two kinetic parameters were similar following Na o removal. The activation of ouabain-sensitive K+ influx by Na i had significantly lower V max in DS (9.3 ± 0.4 FU) than in DR (14.5 ± 0.6 FU) RBCs but similar K m. These data suggest that the low K+ influx in DS cells is caused by a defect in modulation by Na o and Na i . Na+ efflux showed no differences in Na i activation or trans effects by Na o and K o , thus accounting for the different Na+∶K+ coupling ratio in the Dahl strains. Further evidence for the differences in the coupling of ouabain-sensitive fluxes was found in studies of net Na+ and K+ fluxes, where the net ouabain-sensitive Na+ losses showed similar magnitudes in the two Dahl strains while the net ouabainsensitive K+ gains were significantly greater in the DR than the DS RBCs. Ouabain-sensitive Na+ influx and K+ efflux were also measured in these rat RBCs. The inhibition of ouabain-sensitive Na+ influx by K o was fully competitive for the DS but not for the DR pumps. Thus, for DR pumps, K o could activate higher K+ influx in DR pumps without a complete inhibition of ouabain-sensitive Na+ influx. This behavior is consistent with K o interaction with distinct Na+ and K+ transport sites. In addition, the inhibition of K+ efflux by Na, was different between Dahl strains. Ouabain-sensitive K+ efflux at Na i level of 4.6 mmol/liter cell, was significantly higher in DS (3.86 ± 0.67 FU) than in DR (0.86 ± 0.14 FU) due to a threefold higher K50 for Na i -inhibition 9.66 ± 0.41 vs. 3.09 ± 0.11 mmol/liter cell. This finding indicates that Na+ modulation of K+ transport is altered at both sides of the membrane. The dissociation of Na+ modulatory sites of K+ transport from Na+ transport sites observed in RBCs of Dahl strains suggests that K+ transport by the Na+-K+ pump is controlled by Na+ allosteric sites different from the Na+ transport sites. The alterations in K+ transport may be related to the amino acid substitution (Leu/Gln276) reported for the cDNA of the α1 subunit of the Na+-K+ pump in the DS strain or to post-translational modifications during RBC maturation. These studies were supported by the following grants: NIH (HL-35664, HL-42120, HL-18318, HL-39267, HL-01967). J.R.R. is a Ford Foundation Predoctoral Fellow. A preliminary report of this work was presented at the International Conference on the Na+-K+ pump and 44th Annual Meeting of the Society of General Physiologists held at Woods Hole, MA, September 5–9, 1990, and published as an abstract in the J. Gen. Physiol. 96:70a, 1990.  相似文献   

17.
Previously we have presented evidence for a direct relationship between post-mitotic new membrane formation and changes in the electrical membrane characteristics during cytokinesis of Xenopus eggs [1, 2]. In the present study the phenomena underlying the hyperpolarization of the electrical membrane potential during cytokinesis were investigated. Total Na+ and K+ contents at the onset of the first and second cleavage were measured independently by flame spectophotometry and by means of ion-selective electrodes. Total Cl? content was measured by the latter method only. The water content was determined from the difference between wet weight and dry weight. 3H2O-influx experiments yielded an independent estimate of the water content (0.737 μl/egg), a rate constant for the influx of 1.412 × 10?3 sec,?1 and a low water permeability of 1.87 × 10?5 cm sec?1. They furthermore revealed the absence of intracellular water compartmentation. The Na+, K+ and Cl? concentrations remained constant during first cleavage at 58.6, 87.3 and 62.6 mM/l cell water, respectively. The membrane potential (Em), the membrane resistance (Rm), and the intracellular ion activities of Na+, K+ and Cl? (aNai, aKi and aCli) were measured simultaneously and continuously during cleavage, using conventional glass microelectrodes and ion-selective microelectrodes. aNai showed an increase from 19.4 to 22.4 mM concomitant with the hyperpolarization of Em and the decline of Rm. aKi and aCli remained constant at 51.4 and 53.1 mM, respectively. From the calculated activity coefficients it was concluded that all Cl? ions were free, whereas 30% of the K+ ions and 60% of the Na+ ions were bound. The influence of changes in the ionic composition of the medium on Em was analysed in the uncleaved egg, in normally cleaving eggs, and in eggs cleaving outside the vitelline membrane. The latter conditions leads to exposure of the whole area of newly formed membrane to the medium. The cell membrane of the uncleaved egg exhibits no permselectivity. In normally cleaving eggs the relative permeability PNaPK was 0.73, while in eggs cleaving outside the vitelline membrane it was 0.19. It was concluded that the changes of Em during cytokinesis are due to the insertion of a part of the newly formed membrane into the cell surface. The K+ permeability of this new membrane is at least five times greater that that of the pre-existing membrane. The possible role of the hyperpolarization of Em in the regulation of the cell cycle is briefly discussed.  相似文献   

18.
M. Katsuhara  M. Tazawa 《Protoplasma》1986,135(2-3):155-161
Summary The mechanism of salt tolerance was studied using isolated internodal cells of the charophyteNitellopsis obtusa grown in fresh water. When 100 mM NaCl was added to artificial pond water (0.1 mM each of NaCl, KC1, CaCl2), no cell survived for more than one day. Within the first 30 minutes, membrane potential (Em) depolarized and membrane resistance (Rm) decreased markedly. Simultaneously, cytoplasmic Na+ increased and K+ decreased greatly. At steady state the increase in Na+ content was roughly equal to the decrease in K+ content. The Cl content of the cytoplasm did not change. These results suggest that Na+ enters the cytoplasm by exchange with cytoplasmic K+. Both the entry of Na+ and the exit of K+ are assumed to be passive and the latter being caused by membrane depolarization. Vacuolar K+, Na+, and Cl remained virtually constant, suggesting that rapid influx of Na+ from the cytoplasm did not occur.In 100 mM NaCl containing 10 mM CaCl2, membrane depolarization, membrane resistance decrease and changes in cytoplasmic [Na+] and [K+] did not occur, and cells survived for many days. When cells treated with 100 mM NaCl were transferred within 1 hour to 100 mM NaCl containing 10 mM CaCl2, Em decreased, Rm increased, cytoplasmic Na+ and K+ returned to their initial levels, and cells survived. Two possible mechanisms for the role of Ca2+ in salt tolerance inNitellopsis are discussed; one a reduction in plasmalemma permeability to Na+ and the other a stimulation of active Na+-extrusion.  相似文献   

19.
For the first time, simultaneous monitoring of changes in the concentration of cytosolic ATP ([ATP]c), pH (pHc), and intracellular free Ca2+ concentration ([Ca2+]i) of the individual neurons challenged with toxic glutamate (Glu) concentrations was performed. To this end, the ATP-sensor AT1.03, which binds to ATP and therefore enhances the efficiency of resonance energy transfer between blue fluorescent protein (energy donor) and yellow-green fluorescent protein (energy acceptor), was expressed in cultured hippocampal neurons isolated from 1–2-day-old rat pups. Excitation of fluorescence in the acceptor protein allowed monitoring changes in pHc. Cells were loaded with fluorescent low-affinity Ca2+ indicators Fura-FF or X-rhod-FF to register [Ca2+]i. It was shown that Glu (20 μM, glycine 10 μM, Mg2+-free) produced a rapid acidification of the cytosol and decrease in [ATP]c. An approximately linear relationship (r 2 = 0.56) between the rate of [ATP]c decline and latency of glutamate-induced delayed calcium deregulation (DCD) was observed: higher rate of [ATP]c decrease corresponded to shorter DCD latency period. DCD began with a decrease in [ATP]c of as much as 15.9%. In the phase of high [Ca2+]i, the plateau of [ATP]c dropped to 10.4% compared to [ATP]c in resting neurons (100%). In the presence of the Na+/K+-ATPase inhibitor ouabain (0.5 mM), glutamate-induced reduction in [ATP]c in the phase of the high [Ca2+]i plateau was only 36.6%. Changes in [ATP]c, [Ca2+]i, mitochondrial potential, and pHc in calcium-free or sodium-free buffers, as well as in the presence of the inhibitor of Na+/K+-ATPase ouabain, led us to suggest that in addition to increase in proton conductivity and decline in [ATP]c, one of the triggering factors of DCD might be a reversion of the neuronal plasma membrane Na+/Ca2+ exchange.  相似文献   

20.
The intracellular ionic distribution in uncleaved and cleaving Ambystoma eggs was investigated by analysing the influx of 3H2O, by determining the total content of Na+, K+ and Cl? in extracts of eggs at different stages by both flame spectrophotometry and ion-selective microelectrodes, and by the continuous measurement of the Na+, K+ and Cl? activities (aNai, aKi and aCli) using intracellular ion-selective microelectrodes. The electrical membrane potential (Em) and membrane resistance (Rm) were measured continuously in uncleaved and normally cleaving eggs as well as in eggs cleaving after removal of the vitelline membrane. The latter eggs expose their newly formed cleavage membrane to the external medium. Ionic permeability of the cell membrane before and during cleavage was analysed by a statistical comparison of the experimentally determined relationship between Em and the ionic gradients across the cell membrane with those predicted theoretically from a constant field equation in dependence on the relative permeability, through insertion of the measured intracellular ion activities.3H2O influx revealed the existence of a single intracellular water compartment (3.06 μl/egg) and a low water permeability (5.35 × 10?5 cm sec?1). Na+, K+ and Cl? concentrations were constant at 54.1, 72.1 and 73.1 mM respectively, while aNai, aKi and aCli were constant at 5.8, 51.8 and 59.7 mM respectively. It was concluded that all Cl? ions are in solution, while 12.5% of all K+ and 86% of all Na+ is bound. The uncleaved egg showed a positive Em of ca 40 mV and a specific membrane resistance of 39 kOhm cm2. Em could be described by a constant field equation with a permeability ratio PKPNa= 0.073. Shortly after the onset of first cleavage, Em rapidly decreased concomitant with a rise in Rm (68.5 kOhm cm2). This was interpreted as a drop in Na+ permeability. During the cleavage process Em progressively hyperpolarized and Rm decreased due to the insertion of a small fraction (3.3%) of the newly formed intercellular membrane into the cleavage furrow. This new membrane had a low specific resistance (0.69 kOhm cm2). Both in normally cleaving eggs and in eggs cleaving in the absence of the vitelline membrane Em behaved according to the constant field equation, PNaPK being 0.69 and 0.39, respectively. The differences with other amphibian eggs were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号