首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
We have isolated the ypfP gene (accession number P54166) from genomic DNA of Bacillus subtilis Marburg strain 60015 ( Freese and Fortnagel, 1967 ) using PCR. After cloning and expression in E. coli , SDS–PAGE showed strong expression of a protein that had the predicted size of 43.6 kDa. Chromatographic analysis of the lipids extracted from the transformed E. coli revealed several new glycolipids. These glycolipids were isolated and their structures determined by nuclear magnetic resonance (NMR) and mass spectrometry. They were identified as 3-[ O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl]-1,2-diacylglycerol, 3-[ O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl]-1,2-diacylglycerol and 3-[ O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl-(1→6)- O -β- D -glucopyranosyl]-1,2-diacylglycerol. The enzymatic activity expected to catalyse the synthesis of these compounds was confirmed by in vitro assays with radioactive substrates. In these assays, one additional glycolipid was formed and tentatively identified as 3-[ O -β- D -glucopyranosyl]-1,2-diacylglycerol, which was not detected in the lipid extract of transformed cells. Experiments with some of the above-described glycolipids as 14C-labelled sugar acceptors and unlabelled UDP-glucose as glucose donor suggest that the ypfP gene codes for a new processive UDP-glucose: 1,2-diacylglycerol-3-β- D -glucosyl transferase. This glucosyltransferase can use diacylglycerol, monoglucosyl-diacylglycerol, diglucosyldiacylglycerol or triglucosyldiacylglycerol as sugar acceptor, which, apart from the first member, are formed by repetitive addition of a glucopyranosyl residue in β (1→6) linkage to the product of the preceding reaction.  相似文献   

2.
Abstract Rabbit polyclonal antibodies against the lipopolysaccharide (LPS) of the Rd1P mutant strain R7 of Salmonella minnesota were serologically characterized using R7 LPS, dephosphorylated LPS, deacylated LPS, deacylated, dephosphorylated and reduced LPS, and synthetic partial structures. The latter comprised partial structures of the core region of Rd1P LPS bound to the β 1 → 6-linked glucosamine disaccharide with two amide-linked 3-hydroxytetradecanoic acid residues or artificial glycoconjugates comprised of the synthetic oligosaccharides coupled to bovine serum albumin. Using a passive hemolysis and an enzyme immunoassay, absorption and inhibition experiments, the antibody specificities present could be determined. One group of antibodies required components of the core region and the phosphorylated glucosamine disaccharide of the lipid A moiety for binding. The majority of phosphate-independent antibodies was directed against the trisaccharide l -glycero-α- d -manno-heptopyranose(1 → 3)- l -glycero-α- d -manno-heptopyranose(1 → 5)3-deoxy- d -manno-octulosonic acid. Antibodies against the 1 → 3- and 1 → 7-linked heptose disaccharides and against a single heptose were also detected, however, with low titers. No antibodies were found which required the presence of fatty acids.  相似文献   

3.
The O-antigen, consisting of many repeats of an oligosaccharide, is an essential component of the lipopolysaccharide on the surface of Gram-negative bacteria. The O-antigen is one of the most variable cell constituents, and different O-antigen forms are almost entirely due to genetic variations in O-antigen gene clusters. In this paper, we present structural and genetic evidence for a close relationship between Escherichia coli O107 and E. coli O117 O antigens. The O-antigen of E. coli O107 has a pentasaccharide repeating unit with the following structure: →4)-β- d -Gal p NAc-(1→3)-α- l -Rha p -(1→4)-α- d -Glc p NAc-(1→4)-β- d -Gal p -(1→3)-α- d -Gal p NAc-(1→, which differs from the known repeating unit of E. coli O117 only in the substitution of d -GlcNAc for d -Glc. The O-antigen gene clusters of E. coli O107 and O117 share 98.6% overall DNA identity and contain the same set of genes in the same organization. It is proposed that one cluster was evolved from another via mutations, and the substitution of a few amino acids residues in predicted glycosyltransferases resulted in the functional change of one such protein for transferring different sugars in O107 ( d -GlcNAc) and O117 ( d -Glc), leading to different O-antigen structures. This is an example of the O-antigen alteration caused by nucleotide mutations, which is less commonly reported for O-antigen variations.  相似文献   

4.
Abstract: To search for new and bioactive compounds from traditional Chinese medicines, a new glycoside, 3-O-[α- L -rhamnopyranosyl-(1→3)-( n -butyl-β- D -glucopyranosiduronate)]-28-O-β- D -glucopyranosyloleanolic acid ( 1 ), was isolated from the roots of Cyathula officinalis Kuan, along with 3-O-(methyl-β- D -glucopyranosiduronate)-28-O-β- D -glucopyranosyl oleanolic acid ( 2 ), 3-O-β- D -glucopyranosyl oleanolic acid ( 3 ), 3-O-β- D -glucuronopyranosyl oleanolic acid ( 4 ), 3-O-[β- L -rhamnopyranosyl-(1→3)-(β- D -glucuronopyranosyl)] oleanolic acid ( 5 ), 3-O-(β- D -glucuronopyranosyl)-28-O-β- D -glucopyranosyl oleanolic acid ( 6 ), 28-O-β- D -glucuronopyranosyl-(1→4)-β- D -glucopyranosyl hederagenin ( 7 ), 3-O-[β- L -rhamnopyranosyl-(1→3)-β- D -glucuronopyranosyl]-28-O-β- D -glucopyranosyl oleanolic acid ( 8 ), and 3-O-[β- D -glucopyranosyl-(1→2)-α- L -rhamnopyranosyl-(1→3)-β- D -glucuronopyranosyl]-28-O-β- D -glucopyranosyl oleanolic acid ( 9 ). The structures of these compounds were determined based on spectral and chemical evidence. The 50 per cent growth-inhibiting (GI50) of compounds 1 and 5 against MDA-MB-231 (a human breast cancer cell line) was 3.44 × 10-4 and 4.66 × 10-4 mol/L, respectively.
(Managing editor: Wei WANG)  相似文献   

5.
Antiserum raised against the LiCl extract of maize shoot cell walls suppresses auxin-induced elongation of maize coleoptile segments. A series of polyclonal antibodies were raised against protein fractions separated from the LiCl extract of maize ( Zea mays L. cv. B73 x Mo17) coleoptiles by SP-Sephadex and Bio-Gel P-150 chromatography. To understand the role of cell wall proteins in growth regulation, the effect of these antibodies on auxin-induced elongation and changes in the cell walls of maize coleoptiles was examined. Four of the fractions prepared reacted with the antiserum raised against the total LiCl extract and effectively suppressed its growth-inhibiting activity. Only these fractions contained the proteins responsible for eliciting growthinhibiting antibodies. The antibodies capable of growth inhibition of auxin-induced elongation of segments also inhibited auxin-induced cell wall loosening (decrease in the minimum stress-relaxation time of the cell walls) of segments. The antibodies raised against one of the protein fractions separated by SP-Sephadex inhibited the autolytic reactions of isolated cell walls and the auxin-induced decrease in (1→3), (1→4)-β-D-glucans in the cell walls. Thus, the degradation of β-D-glucans by cell wall enzymes may be associated with the cell wall loosening that is responsible for cell elongation. Because the other antibodies did not influence the auxin-induced degradation of (1→3), (1→4)-β-D-glucanses, β-D-glucanases and other cell wall enzymes may cooperate in regulation of cell elongation in maize coleoptiles.  相似文献   

6.
The lactic acid bacterium, Leuconostoc mesenteroides, when grown on an arbutin-containing medium, was found to produce an intracellular β-glucosidase. The enzyme was purified by chromatofocusing, ion-exchange chromatography and gel filtration. The molecular mass of the purified intracellular β-glucosidase, as estimated by gel filtration, was 360 kDa. The tetrameric structure of the β-glucosidase was determined following treatment of the purified enzyme with dodecyl sulphate (SDS). The intracellular β-glucosidase exhibited optimum catalytic activity at 50°C and pH 6 with citrate–phosphate buffer, and 5·5 with phosphate buffer. The enzyme was active against glycosides with (1→4)-β, (1→4)-α and (1→6)-α linkage configuration. From Lineweaver–Burk plots, K m values of 0·07 mmol l−1 and 3·7 mmol l−1 were found for p -nitrophenyl-β- D -glucopyranoside and linamarin, respectively. The β-glucosidase was competitively inhibited by glucose and by D -gluconic acid–lactone and a glucosyl transferase activity was observed in the presence of ethanol. The β-glucosidase of Leuconostoc mesenteroides, with cyanogenic activity, could be of potential interest in cassava detoxification, by hydrolysing the cyanogenic glucosides present in cassava pulp.  相似文献   

7.
Polyclonal antibodies, raised against ((1→3), (1→4)-β-D-glucans from oat ( Avena sativa L.) caryopsis, were used to investigate the location and the metabolism of mixed-linked β-D-glucans. The binding of these antibodies to the cell walls of oat coleoptiles was shown by an indirect fluorescence method. Distinct fluorescent regions were observed along the inner layers of the walls of each cell. The preimmune serum or antibodies pretreated with oat caryopsis β-D-glucans did not react with the cell walls. Glucan antibodies were bound to the walls of other Poaceae coleoptiles as well as to those from oat mesocotyls and roots, whereas they were not bound to the walls of some dicotyledons tested. The relative glucan content of the cell walls of oat coleoptiles as determined by β-D-glucanase (EC 3.2.1.73) treatment was maximum between day 3 and 4 after soaking, but it declined during further elongation. A rapid decrease in glucan content was observed in excised coleoptiles when auxin or β-D-glucanase was present. There was a clear correlation between the glucan content expressed on a basis of cell wall polysaccharides and the amount of the antibodies bound to the cell walls. These results indicate that the antibodies are useful probes to detect and determine (1→3), (1→4)-β-D-glucans of cell walls.  相似文献   

8.
A New Steroidal Glycoside from Ophiopogon japonicus (Thunb.) Ker-Gawl.   总被引:1,自引:0,他引:1  
To study the chemical constituents from traditional Chinese herb Ophiopogon japonicus (Thunb.) Ker-Gawl., a new steroidal glycoside, named ophiopojaponin C (1), together with two known ones, was isolated by column chromatography. Spectroscopic and chemical evidence revealed the structures to be ophiopogenin 3-O-[α-L-rhamnopyranosyl(1→2)]-β-D-xylopyranosyl(1→4)-β-D-glucopyranoside (1), diosgenin 3-O-[2-O-acetyl-α-L-rhamnopyranosyl(1→2)]-β-D-xylopyranosyl(1→3)-β-D-glucopyranoside (2), and ruscogenin 1-O-[2-O-acetyl-α-L-rhamnopyranosyl(1→2)]-β-D-xylopyranosyl(1→3)-β-D-fucopyranoside (3).  相似文献   

9.
We studied the development and feeding behaviour of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae), on the Radius and Sapko alfalfa ( Medicago sativa L.) (Fabaceae) cultivars. Three saponins and flavones were identified in the alfalfa cultivars after thin layer chromatography separation. Cultivar Radius differed from Sapko in that it had a higher level of saponins, including zanhic acid tridesmoside and 3-GlcA,28-AraRhaXyl medicagenic acid glycoside. The flavones identified, including 7- O -β-D-glucuronopyranosyl-4'- O- [2'- O- E-feruloyl- O -β-D-glucuronopyranosyl(1→2)- O -β-D-glucuronopyranoside] apigenin, 7- O -{2- O- E-feruloyl-[β-D-glucuronopyranosyl(1→3)]- O -β-D-glucuronopyranosyl(1→2)- O -β-D-glucuronopyranoside} apigenin, and 4'- O- [2'- O -E-feruloyl- O -β-D-glucuronopyranosyl(1→2)- O -β-D-glucuronopyranoside] apigenin, occurred in tissues of both alfalfa cultivars. However, cv. Radius had very low mean flavonoid concentrations in comparison to cv. Sapko. Pea aphids that fed on cv. Radius plants showed a reduction in reproduction and survival. The aphid pre-reproductive period on cv. Radius was prolonged and the reproductive and post-reproductive periods on cv. Radius were reduced, compared to those on cv. Sapko. Cultivar Radius also negatively influenced aphid probing behaviour. This was especially the case during the initial period of the pathway phase. The results suggested that alfalfa cv. Radius, which had a higher level of saponins and a lower level of flavonoids, was less accepted by the pea aphid.  相似文献   

10.
Abstract: Cyclic AMP (cAMP)-dependent protein kinase (cAMP-kinase) partially purified from the membrane fractions of rat brains was stimulated by novel phosphonogly-cosphingolipids (glycolipids) derived from the skin and nerve fibers of Aplysia kurodai. Among various glycolipids tested, a major glycolipid from the skin, 3-O-MeGalβ 1→3GalNAcα 1→3 [6'- O -(2-aminoethylphosphonyl) Galα1→2] (2-aminoethylphosphonyl→6) Glcβ 1→4GICβ1→1ceramide (SGL-II), was most potent, giving half-maximal activation at 32.2 μ M. Activation of cAMP-kinase was maximal with 250 μ M SGL-II using kemptide as substrate. The effect of SGL-II was additive on kinase activity at submaximal concentrations of cAMP. The kinase activity activated with SGL-II was inhibited by the addition of protein kinase inhibitor peptide, a specific peptide inhibitor for cAMP-kinase. Its inhibitory pattern was similar to that for the catalytic subunit. Of the various substrates tested, the glycolipid-stimulated cAMP-kinase could phosphorylate microtubule-associated protein 2, synapsin I, and myelin basic protein but not histone H1 and casein. The regulatory subunit strongly inhibited the activity of purified catalytic subunit of cAMP-kinase. This inhibition was reversed by addition of SGL-II, as observed for cAMP. SGL-II was capable of partially dissociating cAMP-kinase, which was observed by gel filtration column chromatography. However, the binding activity of cAMP to the holoenzyme was not inhibited with SGL-II. These results demonstrate that the glycolipids can directly activate cAMP-kinase in a manner similar, but not identical, to that of cAMP.  相似文献   

11.
An exo-β-(1β3)-glucanase derived from Selerotinia libertiana induced growth of Avena sativa coleoptiles and degraded hemicelluloses and β-(1→4):(1→3) mixed linked glucan. However, neither endo-β-(1→4)- nor endo-β-(1→3)-glucanase activity could be detected in the enzyme preparation. Nojirimycin inhibited the glucan degradation caused by the enzyme but glucono-1,5-lactone did not. Another exo-β-(1→3)-glucanase derived from Basidiomycete QM 806 did not induce coleoptile growth and did not degrade the glucan. Growth-inducing properties of exo-β-(1→3)-glucanases are discussed.  相似文献   

12.
Schisandra rubriflora Rehd. et Wils. is a traditional Chinese medicine. To search for new and bioactive components from traditional Chinese medicines and provide scientific evidence for taxonomy, the chemical constituents of the plant were investigated by various column chromatography methods (silica gel, Sephadex LH-20, and RP-18). From the aerial parts of S. rubriflora, three new megastigmane glycosides,namely (3S, 5R, 6S, 9R)-megastigmane-3, 9-diol 3-O-[α-L-arabionfuranosyl-(1→6)-β-D-glucopyranoside](1), 7-megastigmene-3-ol-9-one 3-O-[α-L-arabionfuranosyl-(1→6)-β-D-glucopyranoside] (2), and megastigmane-3α, 4β, 9ξ-tfiol 3-O-β-D-glucopyranoside (3), along with 14 known compounds, were isolated.The structures of the new compounds were elucidated by a combination of spectroscopic and chemical methods.  相似文献   

13.
A yeast strain isolated in the laboratory was studied and classified as a Zygosaccharomyces bailii. Both intracellular and extracellular β-glucosidases of this yeast were purified by ion-exchange chromatography, gel filtration and hydroxylapatite (only for the intracellular enzyme). The tetrameric structure of the two β-glucosidases was determined following treatment of the purified enzyme with dodecyl sulphate. The intracellular β-glucosidase exhibited optimum activity at 65°C and pH 5.5. The extracellular enzyme exhibited optimum catalytic activity at 55°C and pH 5. The molecular mass of purified intracellular and extracellular β-glucosidases, estimated by gel filtration, was 440 and 360 kDa, respectively. Both enzymes are active against glycosides with (1 → 4)-β, (1 → 6)-β and (1 → 4)-α linkage configuration. The intracellular enzyme possesses (1 → 6)-α-arabinofuranosidase activity and extracellular enzyme (1 → 6)-α-rhamno-pyranosidase activity. The two β-glucosidases are competitively inhibited by glucose and by D-gluconic-acid-lactone and a slight glucosyl transferase activity is observed in the presence of ethanol. Since the glycosides present in wine and fruit juices represent a potential source of aromatic flavour, the possible use of the yeast β-glucosidases for the liberation of the bound aroma is discussed.  相似文献   

14.
The Staphylococcus aureus serotype 5 capsular polysaccharide (CP5) has a trisaccharide repeating unit of (→ 4)-3-O-Ac-β- D -ManNAcA p -(1 → 4)-α- L -FucNAc p -(1 → 3)-β- D -FucNAc p -(1→). Tn 918 mutagenesis of strain Reynolds yielded a mutant that produced wild-type levels of O-deacetylated CP5. The site and orientation of the single transposon insertion in mutant JL232 were determined by analysis of Southern blots and amplification of DNA flanking the transposon. DNA sequencing revealed that Tn 918 was inserted within an open reading frame of 627 bp. The predicted amino acid sequence encodes a protein of approximately 26 kDa with homology to members of the NodL-LacA-CysE family of bacterial acetyltransferases. Southern blot analysis showed that genes similar to cap5H were present only in strains of S . aureus belonging to capsular serotypes 2, 4 and 5. In an in vitro assay, the parental strain was more resistant to opsonophagocytic killing than the mutant strain. In a mouse model of staphylococcal infection, the parental strain was able to seed the bloodstream from the peritoneal cavity and colonize the kidneys more efficiently than the O-deacetylated mutant. When cap5H was provided to the mutant in trans , it fully restored CP5 O-acetylation. The virulence of the complemented mutant strain closely approximated that of the parental strain.  相似文献   

15.
The immunodominant part in the O-antigenic polysaccharide from Escherichia coli O128 was immunologically characterized by an enzyme-linked immunosorbent assay (ELISA). The antibody specificity was determined by the inhibitory effects of the methyl glycosides of constituent mono- and oligosaccharides synthesized related to the O-antigenic polysaccharide from E. coli O128. It was found that methyl alpha-L-fucopyranoside was the most effective inhibitor amongst the monosaccharides while the highest antibody specificity was directed towards the trisaccharide with the structure: beta-D-GalpNAc-(1-->6)-[alpha-L-Fucp-(1-->2)]-beta-D-Galp-1-->OMe suggesting that the monospecific antibody has the extended combining site.  相似文献   

16.
Abstract The genes oadGAB encoding the oxaloacetate decarboxylase γ, α and β-subunits from Klebsiella pneumoniae were expressed in Escherichia coli . Using different expression vectors, the entire enzyme or its individual subunits were synthesised. The expression was evidenced immunologically in whole cells with polyclonal antibodies raised against the purified oxaloacetate decarboxylase. The expressed α-subunit or a combination of a and β-subunits were shown to reside in the cytoplasm, while the entire oxaloacetate decarboxylase or a γα-complex were located mostly in the cytoplasmic membrane. Interestingly, overexpression of the γα-complex or the entire oxaloacetate decarboxylase in E. coli led to a significant immunogold labelling in the cytoplasm, indicating that the a-subunit was not completely complexed to the membrane-bound γ or βγ-subunits.  相似文献   

17.
Enzymes hydrolysing the exopolysaccharides of Xanthomonas campestris and related species (xanthan) have been obtained from a Bacillus species isolated by enrichment culture. Growth on xanthan induced a number of enzymes acting on the xanthan molecule. These included one or more β-glucanohydrolases and β-glucosidases, together with mannosidases. The former activities were also present in cultures grown in the presence of laminaran or scleroglucan, but not in simple synthetic media with glucose as substrate. Partial purification of the enzymes active on glucans was achieved by ammonium sulphate precipitation and chromatography on DEAE-sepharose and CM-sepharose. The specificity of the β-glucosidase and the β-glucanohydrolase were investigated. Several β-glucans were hydrolysed to glucose and disaccharides, but there was no activity against β→ 6 linked polymers, cellulose azure or microcrystalline cellulose. Carboxymethylcellulose was hydrolysed, as were laminaran, scleroglucan and pachyman. Activity was greater against the β→ 4 linked glucans than against the β→ 3 linked glucans tested. As periodate-oxidized laminarin was also hydrolysed, it was concluded that the glucanohydrolase acted as an endo enzyme. The β-glucosidase had a pH optimum at about 8–2 and a temperature optimum at 45°C; it showed higher activity against o -nitrophenyl-D-glucopyranoside, cellobiose, trehalose and sophorose than against gentibiose.  相似文献   

18.
A β-(1→4)-xylosyltransferase (XylTase; EC 2.4.2.24) participating in the synthesis of arabinoxylans was investigated using microsomal membranes prepared from developing barley ( Hordeum vulgare L.) endosperms. The microsomal fraction transferred Xyl from uridine 5'-diphosphoxylose (UDP-Xyl) into exogenous β-(1→4)-xylooligosaccharides derivatized at their reducing ends with 2-aminopyridine. HPLC analysis showed chain elongation of pyridylaminated β-(1→4)-xylotriose (Xyl3-PA) by repeated attachment of one to five single xylosyl residues depending on the reaction time, leading to the formation of Xyl4−8-PA. Methylation analysis and enzymatic digestions with β-xylosidase (EC 3.2.1.37) and endo -β-(1→4)-xylanase (EC 3.2.1.8) confirmed that the transfer of xylosyl residues into the newly synthesized products occurred through β-(1→4)-linkages. The activity of the XylTase was maximal at pH 6.8 and 20°C and most enhanced in the presence of 0.5% Triton X-100 and 5 m M MnCl2. The apparent Michaelis constant and maximal velocity of the enzyme for Xyl3-PA were 2.1 m M and 25 400 pmol min−1 mg protein−1, respectively. The enzyme also transferred [14C]Xyl from UDP-[14C]Xyl into higher β-(1→4)-xylooligosaccharides and birchwood xylans through β-(1→4)-linkages. The enzyme activity varied according to the stage of development (7–35 days after flowering) of the endosperms. Maximal activity occurred at 13–16 days; no activity was detectable in mature seeds. A comparison of endosperms from 10 different cultivars of barley harvested 11–22 days after flowering showed no correlation between enzyme activity and the amount of Xyl in the cell walls.  相似文献   

19.
Abstract The filamentous fungus Acremonium persicinum released high levels of proteolytic enzyme activity into the culture fluid during growth at pH 7 or above. Almost total inhibition of this crude activity by phenylmethylsulfonyl fluoride suggested that it was mainly due to the presence of a serine protease. This protease inactivated one of three extracellular (1 → 3)- β -glucanases produced by this fungus, although the activities of the remaining two (1 → 3)- β -glucanases did not appear to be affected. Growth of A. persicinum in acidic conditions resulted in the presence of much lower extracellular proteolytic activity and no apparent (1 → 3)- β -glucanase inactivation.  相似文献   

20.
Abstract Murine monoclonal antibodies (mAbs) were generated using group B Neisseria meningitidis and Escherichia coli K1 polysaccharides (PSs) conjugated to outer membrane vesicle (OMV) via adipic acid dihydrazide, and were used to identify the immunodeterminants expressed on these capsular PSs. Ten mAbs representative of IgM and all subclasses of IgG were obtained which recognized diverse immunodeterminants on α(2 → 8) polysialic acid (PSA). The specificity of mAbs to different antigenic determinants was assessed by their differential binding to PSA attached to a solid phase by different methods and confirmed by absorption studies. Two mAbs from the E. coli K1 fusion were directed to the O -acetyl epitope and the rest reacted with both the PSs only when attached to a solid phase by certain means. The methods by which PSA was coated on the solid phase had an impact on the epitope expression and binding pattern. At the concentrations used, the O -acetyl-specific mAbs, IgG1 and IgG3 mAbs were not bactericidal against group B N. meningitidis , whereas other mAbs were. The conjugates B and K1 PSs present to the murine immune system different antigenic determinants, some of which elicit bactericidal antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号