首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Cortivazol is a phenylpyrazolo glucocorticoid of high potency and unusual structure. In both wild-type and highly dexamethasone(dex)-resistant clones of the human leukemic cell line CEM, exposure to cortivazol leads to cell death. It has been shown recently that in wild-type CEM cells but not in a dex-resistant, glucocorticoid receptor(GR)-defective clone ICR-27 TK-3, dex induces GR mRNA. To test the hypothesis that cortivazol acts in dex-resistant cells by making use of the residual GR found there, wild-type and dex-resistant clones were treated with various concentrations of cortivazol and induction of GR mRNA was studied. Cortivazol significantly induced GR mRNA in the normal CEM-C7 as well as in two classes of dex-resistant clones, although the dex-resistant clones needed at least 10 times more cortivazol than the normal cells for significant GR mRNA induction. Increased levels of GR mRNA were noticed as early as 3 h after treatment. A general correlation between induction of GR mRNA and lysis of the normal and dex-resistant cells was found. Positive induction of GR mRNA might be one of the earliest crucial steps in the lysis of normal and dex-resistant CEM cells, or might serve as a marker for the process. However, the lysis pathway in the dex-resistant cells is defective in that dex-resistant clones needed significantly more cortivazol than the normal cells for lysis of the cells.  相似文献   

2.
3.
In the cultured acute lymphoblastic leukemic (ALL) cell line, clones of sensitive cells are killed by receptor-occupying concentrations of glucocorticoids. In addition, several types of resistance have been identified. The types of resistance are r- (glucocorticoid binding site loss), ract/l (activation labile receptors) and r+ly- (defective lysis mechanism). The two types of receptor mutants have been examined for the presence and expression of the glucocorticoid receptor (GR) gene. Southern blot analysis, using a full-length cDNA probe for human GR, shows that the gene in both is grossly intact. Examination of the expression of the gene by Northern blots reveals the presence of normal, 7-kb message in both types of receptor mutants, though in amounts somewhat reduced from wild-type. This report focuses on the activation labile mutants. Since characterization of these mutants suggests that they can bind ligand but not retain it during activation, we hypothesized that they would respond normally to a ligand that could not be lost during activation. This seems to be the case. When the covalent affinity ligand dexamethasone mesylate, itself a partial glucocorticoid agonist/antagonist, is used, the ract/l cells are killed to an extent corresponding to that evoked by a sub-optimal concentration of the full agonist dexamethasone. We conclude: (1) that the ract/l receptors can function to kill cells if provided a ligand that they do not lose during activation; (2) that the partial agonist activity of dexamethasone mesylate for cell killing is not due to release of a small amount of free dexamethasone; (3) that the poor agonist activity of dexamethasone mesylate receptor complexes suggests that the role of steroid is strictly to participate in conversion of the receptor to its DNA binding form, after which presence of the steroid actually interferes with proper receptor action.  相似文献   

4.
Glucocorticoids kill certain types of lymphoblasts, but the mechanisms are unknown. It is clear that sufficient numbers of functional glucocorticoid receptors are required to mediate lysis, but whether they do so through the classical model of steroid hormone activation and modulation of gene expression has not been established. In this report we have asked which region(s) of the steroid receptor are important for mediating lysis in leukemic T lymphoblasts. CEM-ICR 27 leukemic lymphoblasts, a clone of CEM cells which lack functional glucocorticoid receptors and therefore are neither lysed by dexamethasone nor capable of showing glutamine synthetase induction, were provided with steroid receptors by DNA transfections of various receptor gene constructs. We measured steroid mediated lysis, receptor number and induction of glutamine synthetase in the transfected cells. Our results provide evidence that the lysis mechanism in the ICR27 lymphoblasts is restored when functional receptor number is restored. The DNA binding region specifying high affinity for GRE sites is required. Lysis is mediated by any steroid that allows for activation of the receptor containing such a region. Our data support the view that steroid-mediated cell death occurs by a process requiring direct interaction of steroid-receptor complexes with the genome.  相似文献   

5.
Progesterone receptor-containing T47D human breast cancer cells are responsive to progestins but fail to respond to other steroid hormones, in particular dexamethasone, because they have no measurable levels of receptors for estrogens, androgens, or glucocorticoids. To quantitatively study dual responsiveness of the mouse mammary tumor virus (MMTV) promoter to progestins and glucocorticoids, we have stably transfected T47D cells with a glucocorticoid receptor (GR) expression vector. A cloned derivative (A1-2) was isolated that expresses a normal, full length GR, as assessed by steroid binding and Western immunoblot with a monoclonal anti-GR antibody. Moreover, GR is expressed at levels (80,000-100,000 molecules per cell) comparable to the high levels of endogenous progesterone receptor (200,000 molecules per cell). In A1-2 cells transiently transfected with an MMTV-chloramphenicol acetyl transferase reporter gene, induction by glucocorticoid was substantially greater (5-fold) than induction mediated by progestins. These results suggest that glucocorticoids may be the primary regulator of MMTV.  相似文献   

6.
Glucocorticoids induce growth inhibition and eventually cause cell lysis in certain sensitive leukemic cells. To investigate how glucocorticoids interact with cell growth pathways, we studied the expression of 14 growth-related genes in dexamethasone-treated CEM-C7A cells, a steroid-sensitive clone of the CCRF-CEM cell line, and in several closely related clones. The 14 genes studied were chosen to represent four different levels of mitogenic signal transduction. Detectable mRNA levels were found for 8 of the 14 genes, but among these only c-myc expression was obviously suppressed by dexamethasone. The c-myc mRNA levels declined abruptly during the first 12 h after addition of 1 microM dexamethasone, and maximal suppression occurred by 18 h. This change was not seen in the C7A controls, in the glucocorticoid-resistant, receptor-deficient clone ICR-27, or in the glucocorticoid-resistant, receptor-positive clone C1. H.10, a hybrid clone between C1 and ICR-27, showed restoration of the sensitive phenotype, and in H.10 cells the c-myc mRNA was also suppressed by dexamethasone. Our results suggest that: 1) functional glucocorticoid receptor is required for inducing c-myc suppression. 2) In dexamethasone-resistant cells with functional receptors c-myc is not suppressed. 3) The growth arrest induced by glucocorticoids correlates with, and may be regulated via, suppression of c-myc expression.  相似文献   

7.
8.
In clones of the CEM human acute lyumphoblastic leukemic cell line, glucocorticoids, oxysterols and activators of the cAMP pathway acting synergistically with glucocorticoids, each can cause apoptotic cell death. Morphologically and kinetically, these deaths resemble one another. The kinetics are striking: in each case, after addition of the lethal compound(s), an interval of approximately 24 h follows, during which cell growth continues unabated. During this “prodromal” period, removal of the apoptotic agent leaves the cells fully viable. We hypothesize that a sequence of biochemical events occurs during the prodrome which eventually results in the triggering of the full apoptotic response as evidenced by the activation of caspases and DNA fragmentation. At some point, the process is irreversible and proceeds relatively rapidly to cell death. Suppression of c-Myc seems a universal early event evoked by each of these lethal compounds or combinations, and we conclude that the negative regulation of this proto-oncogene is an important aspect of the critical pre-apoptotic events in these cells.  相似文献   

9.
10.
11.
12.
In clones of the CEM human acute lyumphoblastic leukemic cell line, glucocorticoids, oxysterols and activators of the cAMP pathway acting synergistically with glucocorticoids, each can cause apoptotic cell death. Morphologically and kinetically, these deaths resemble one another. The kinetics are striking: in each case, after addition of the lethal compound(s), an interval of approximately 24 h follows, during which cell growth continues unabated. During this “prodromal” period, removal of the apoptotic agent leaves the cells fully viable. We hypothesize that a sequence of biochemical events occurs during the prodrome which eventually results in the triggering of the full apoptotic response as evidenced by the activation of caspases and DNA fragmentation. At some point, the process is irreversible and proceeds relatively rapidly to cell death. Suppression of c-Myc seems a universal early event evoked by each of these lethal compounds or combinations, and we conclude that the negative regulation of this proto-oncogene is an important aspect of the critical pre-apoptotic events in these cells.  相似文献   

13.
14.
The expression of epidermal growth factor receptor (EGF-R), transforming growth factor alpha (TGF) and the c-myc oncogene was investigated in different specimens of gynecologic carcinomas. EGF specific binding sites were detected in about 50% of adenocarcinomas (ovarian, endometrial, breast) and in over 90% of squamous carcinomas (cervical). There is a positive correlation between the EGF-R binding assay, immunohistochemistry and the relative amounts of mRNA by Northern blotting. TGF was investigated by immunohistochemistry and Northern blotting. TGF immunoreactivity was detected exclusively in the epithelial cells of nonmalignant tissues (skin, cervix, endometrium, large bowel, lung) as well as different ovarian carcinomas. The TGF immunostaining score correlates with the TGF mRNA amounts. The c-myc expression was analyzed by Northern blotting in the specimens of ovarian carcinomas. Whereas, a positive correlation between the c-myc and TGF expression was noticed, no correlation existed between EGF-R and c-myc expression. Progressive disease (PD) of ovarian carcinomas after chemotherapy was mainly noticed in the group of EGF-R tumors and those with high amounts of c-myc mRNA. EGF-R+ ovarian carcinomas responded significantly better to chemotherapy. However, similar survival times existed between the EGF-R+ and EGF-R group and the survival times of patients having responded to the treatment was reduced in the EGF-R+ group. This indicates that EGF-R+ and those carcinomas expressing high amounts of c-myc constitute a more aggressive group of ovarian carcinomas.  相似文献   

15.
B Gametchu  F Chen  F Sackey  C Powell  C S Watson 《Steroids》1999,64(1-2):107-119
The presence of the glucocorticoid (GC) receptor is required for GC-evoked apoptosis. However, the explicit mechanism of involvement of this receptor continues to be debated. Employing the murine (S-49) and human (CCRF-CEM) lymphoid cell lines, we demonstrated that this response requires a specialized form of the glucocorticoid receptor (GR) that resides in the plasma membrane (mGR). Our studies of mGR have been done in our stable mGR-enriched (by sequential cell separation--immunopanning, fluorescent cell sorting, soft agar cloning) S-49 and CCRF-CEM cells. Direct and indirect immunofluorescent studies of live intact cells showed GR-specific periplasma membrane staining. Immunoanalysis by flow cytometry demonstrated abundant mGR in mGR++ cells, but only barely detectable mGR in mGR-- cells. Western blot and autoradiographic analyses of immunoprecipitated membrane extracts from these cells show they contain immunoreactive and competitively labeled high Mr receptor ranging from 94 to 150 kDa. Using mGR++ CCRF-CEM cells and three synchronization procedures (double thymidine, thymidine/colcemid, and colcemid blocks), we have investigated the influence of cell cycle on regulation and function of mGR. Both mGR expression and GC-mediated lymphocytolysis appear highest at late S-G2/M. Analysis of mGR in lymphocytes of several leukemic patients indicated differences in the levels of receptor expression. These findings might provide diagnostic clues about patients' differential response to steroid therapy and potential therapeutic avenues for effective treatment of hormone-responsive leukemic patients.  相似文献   

16.
The control of human breast cancer cell proliferation in vitro is known to involve complex interactions between steroid hormones, peptide hormones and growth factors. Little is known, however, of the mechanisms by which these factors, alone or in combination, control cell cycle progression and the expression of specific genes involved in cell cycle control. A pre-requisite for such studies is a cellular system in which non-proliferating or slowly proliferating cells can be maintained in a defined environment and stimulated to progress through the cell cycle by addition of hormones and growth factors. Such a system has been developed for T-47D human breast cancer cells: quiescent or slowly proliferating cells maintained in a serum-free medium can be stimulated to increase their rate of cell cycle progression upon a single addition of insulin, IGF-I, EGF, TGF or bFGF. Oestradiol alone was ineffective but caused a significant increase in % S phase cells when added in the presence of insulin. Progestins, in the presence or absence of insulin, had a biphasic effect with an initial increase in cell cycle progression followed by cell cycle arrest. Both antioestrogens and the antiprogestin, RU 486, in the absence of oestrogen or progestin, were potent inhibitors of insulin-induced proliferation. Increases in cell cycle progression were invariably accompanied by acute increases in c-fos and c-myc mRNA levels. Induction of c-myc by oestrogen and 3rogestin was inhibited by antioestrogens and RU 486, respectively. These data illustrate that the culture of breast cancer cells in a serum-free, chemically defined environment provides an excellent model in which to define the role of individual factors involved in breast cancer growth control. The biological data derived from this system provide a basis for identifying and characterizing genes involved in the control of cell cycle progression in human breast cancer.  相似文献   

17.
18.
The DDT1 MF2 smooth muscle cell line was derived from an estrogen/androgeninduced leiomyosarcoma arising in the hamster ductus deferens. Growth of this cell line is arrested in Go/G1 by treatment with glucocorticoids. To facilitate the study of the mechanism of glucocorticoid-induced cell growth arrest, a glucocorticoid-resistant variant cell line, DDT1 MF2 GR1 (GR1), was developed by genetic selection. Growth of this mutant cell line is completely resistant to the inhibitory action of glucocorticoids. However, we now demonstrate that both primary and secondary glucocorticoid-induced events still exist in the GR1 cell line. By analyzing the expression and genetic pattern of glucocorticoid receptor, no detectable rearrangement of the glucocorticoid receptor gene was found although the expression of both mRNA and protein levels of the receptor were lower in the variant compared to wild-type cells. In addition, we found that the expression of two growth-associated genes, Ha-ras and transforming growth factor β1 (TGF-β1) are down-regulated by glucocorticoids in wild-type DDT1 MF2 cells but not in GR1 cells. These results indicated that the function or activity of glucocorticoid receptor in the GR1 cells is not qualitatively altered. Our data suggest that a lower glucocorticoid receptor level is not the real cause or at least not the single cause for the GR1 cell's loss of sensitivity to the inhibitory action of glucocorticoid. Instead, we postulate the existence of a defect downstream of the primary site of action of glucocorticoid receptor complexes in GR1 cells. © 1993 Wiley-Liss, Inc.  相似文献   

19.
Using the breast cell lines MCF-10A, MDA-MB-468 and T-47D, we investigated the role of various glucocorticoids in regulating human kallikrein 10 expression. We found that increased concentrations of glucocorticoids decreased KLK10 expression in MCF-10A and increased KLK10 expression in MDA-MB-468 and T-47D cells. Stimulation of the cell lines using other steroid hormones did not yield any difference in KLK10 expression in MCF-10A and MDA-MB-468 cells, suggesting that regulation of KLK10 occurs primarily through glucocorticoids. However, T-47D cells expressed higher levels of KLK10 upon dihydrotestosterone stimulation. Blocking the glucocorticoid receptor (GR) demonstrated that the mechanisms of induction and repression are different in the three cell lines studied. Taken together, our results suggest an alternative mode of KLK10 regulation - by glucocorticoids via GR-dependent mechanisms.  相似文献   

20.
We studied the glucocorticoid response to the synthetic steroid pregna-1,4-diene-11beta-ol-3,20-dione (DeltaHOP) in several cell types and correlated its biological effect with the ability of the glucocorticoid receptor (GR) to be retained in the nuclear compartment. We observed that the DeltaHOP-transformed GR was diffusely distributed in the nucleus compared to the discrete structures observed for the dexamethasone (DEX)-transformed GR. Despite the fact that the receptor was entirely nuclear upon binding of each steroid and exhibited identical nuclear export rates, a greater amount of DeltaHOP-transformed GR was recovered in the cytoplasmic fraction after hypotonic cell lysis. Furthermore, accelerated nuclear export of GR was evidenced in digitonin-permeabilized cells treated with ATP and molybdate. Inasmuch as limited trypsinization of DEX-GR and DeltaHOP-GR complexes yielded different proteolytic products, we conclude that GR undergoes a differential conformational change upon binding of each ligand. We propose that these conformational differences may consequently lead to changes of stability in the interaction of the GR with chromatin. Therefore, the dynamic exchange of liganded GR with chromatin is likely to have significant consequences for the observed pleiotropic physiological responses triggered by glucocorticoid ligands, not only in different tissues but also in the same cell type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号