首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
《Insect Biochemistry》1989,19(7):651-656
Five molecular species of ecdysteroidogenic peptides were isolated from female heads of the mosquito, Aedes aegypti. Three groups of fractions, separated by conventional liquid chromatography, had gonadotropic activity in an in vivo bioassay using autogenous Aedes atropalpus. The active peptides from one of the three groups were purified to homogeneity with ion-exchange and reversed phase HPLC. Aedes atropalpus decapitated at eclosion do not deposit yolk, whereas injection of 12–15 pg of the purified peptides elicited yolk deposition. In an in vitro assay, the same peptides also stimulated ovaries of A. aegypti to secrete ecdysteroids, as measured in a RIA.The purified peptides have a molecular weight between 6500 and 13,000. Amino acid composition analysis of one species revealed 92 amino acid residues, and the number of basic residues substantiated the basic nature of the peptide observed during chromatography. Since the peptides were purified to homogeneity and are functional in both bioassays, we consider the peptides to be “ovarian ecdysteroidogenic hormones”.  相似文献   

6.
Characterization of the enzymes involved in the chitin biosynthetic pathway in mosquitoes is critical due to the importance of chitin in the formation of the peritrophic matrix [PM] and its potential impact on vector competence. Chitin is the homopolymer of the amino sugar N-acetyl-D glucosamine [GlcNAc]. The final step of incorporation of GlcNAc into the chitin polymer is catalyzed by the enzyme chitin synthase [CS]. CS is a membrane bound enzyme, but the mechanism of its action in the biosynthesis of the PM is not understood. We have isolated and sequenced a CS-encoding cDNA clone from the mosquito Aedes aegypti, compared its sequence with CS from other organisms and studied its RNA expression. The cDNA is 3.5 kb in length with an open reading frame of 2.6 kb that encodes a protein of 865 amino acids with a predicted molecular mass of 99.5 kDa. The putative translation product shares 90% similarity to two CS proteins from Caenorhabditis elegans and 50% similarity to Saccharomyces cerevisiae in the catalytic domain of CS enzymes. Data suggest that CS is a single copy gene. RT-PCR analysis shows CS message in whole non-blood-fed females, whole blood-fed females, non-blood-fed midguts and in midguts dissected at different time points post-blood-feeding. In situ hybridization studies of midgut samples revealed that CS mRNA increases following a bloodmeal and is localized to the periphery of the epithelial cells facing the midgut lumen.  相似文献   

7.
8.
System L amino acid transporters mediate the movement of bulky neutral amino acids across cell membranes. Until now three proteins that induce system L activity have been identified: LAT1, LAT2, and LAT3. The former two proteins belong to the solute carrier family 7 (SLC7), whereas the latter belongs to SLC43. In the present study we present a new cDNA, designated LAT4, which also mediates system L activity when expressed in Xenopus laevis oocytes. Human LAT4 exhibits 57% identity to human LAT3. Like LAT3, the amino acid transport activity induced by LAT4 is sodium-, chloride- and pH-independent, is not trans-stimulated, and shows two kinetic components. The low affinity component of LAT4 induced activity is sensitive to the sulfhydryl-specific reagent N-ethylmaleimide but not that with high affinity. Mutation in LAT4 of the SLC43 conserved serine 297 to alanine abolishes sensitivity to N-ethylmaleimide. LAT4 activity is detected at the basolateral membrane of PCT kidney cells. In situ hybridization experiments show that LAT4 mRNA is restricted to the epithelial cells of the distal tubule and the collecting duct in the kidney. In the intestine, LAT4 is mainly present in the cells of the crypt.  相似文献   

9.
10.
Aedes aegypti PISCF-allatostatin or allatostatin-C (Ae-AS-C) was isolated using a combination of high performance liquid chromatography and enzyme-linked immunosorbent assay (ELISA). The matrix-assisted laser desorption/ionization time-of-flight (TOF) mass spectrum of positive ELISA fractions revealed a molecular mass of 1919.0 Da, in agreement with the sequence qIRYRQCYFNPISCF, with bridged cysteines. This sequence was confirmed by matrix-assisted laser desorption/ionization tandem TOF/TOF mass spectrometry analysis. The corresponding Ae-AS-C cDNA was amplified by PCR, and the sequence of the peptide was confirmed. An in vitro radiochemical assay was used to study the inhibitory effect of synthetic Ae-AS-C on juvenile hormone biosynthesis by the isolated corpora allata (CA) of adult female A. aegypti. The inhibitory action of synthetic Ae-AS-C was dose-dependent; with a maximum at 10(-9) m. Ae-AS-C showed no inhibitory activity in the presence of farnesoic acid, an immediate precursor of juvenile hormone, indicating that the Ae-AS-C target is located before the formation of farnesoic acid in the pathway. The sensitivity of the CA to inhibition by Ae-AS-C in the in vitro assay varied during the adult life; the CA was most sensitive during periods of low synthetic activity. In addition, the levels of Ae-AS-C in the brain were studied using ELISA and reached a maximum at 3 days after eclosion. These studies suggest that Ae-AS-C is an important regulator of CA activity in A. aegypti.  相似文献   

11.
Ribonucleotide reductase catalyses the de novo synthesis of deoxyribonucleotides. Class I reductases use an iron center to generate a tyrosyl free radical that can initiate formation of the deoxyribonucleotide. These reductases are alpha 2 beta 2 holoenzymes, and the subunits are denoted as R1 and R2. R1 contains the allosteric binding site and the active site, whereas R2 contains a binuclear iron center that initiates formation of the tyrosyl radical. We have cloned and sequenced the cDNAs encoding the R1 and R2 subunit in the yellow fever mosquito, Aedes aegypti. The messages for these proteins are increased in response to blood-feeding.  相似文献   

12.
Inward-rectifying K+ (Kir) channels play critical physiological roles in a variety of vertebrate cells/tissues, including the regulation of membrane potential in nerve and muscle, and the transepithelial transport of ions in osmoregulatory epithelia, such as kidneys and gills. It remains to be determined whether Kir channels play similar physiological roles in insects. In the present study, we sought to 1) clone the cDNAs of Kir channel subunits expressed in the renal (Malpighian) tubules of the mosquito Aedes aegypti, and 2) characterize the electrophysiological properties of the cloned Kir subunits when expressed heterologously in oocytes of Xenopus laevis. Here, we reveal that three Kir subunits are expressed abundantly in Aedes Malpighian tubules (AeKir1, AeKir2B, and AeKir3); each of their full-length cDNAs was cloned. Heterologous expression of the AeKir1 or the AeKir2B subunits in Xenopus oocytes elicits inward-rectifying K+ currents that are blocked by barium. Relative to the AeKir2B-expressing oocytes, the AeKir1-expressing oocytes 1) produce larger macroscopic currents, and 2) exhibit a modulation of their conductive properties by extracellular Na+. Attempts to functionally characterize the AeKir3 subunit in Xenopus oocytes were unsuccessful. Lastly, we show that in isolated Aedes Malpighian tubules, the cation permeability sequence of the basolateral membrane of principal cells (Tl+ > K+ > Rb+ > NH4+) is consistent with the presence of functional Kir channels. We conclude that in Aedes Malpighian tubules, Kir channels contribute to the majority of the barium-sensitive transepithelial transport of K+.  相似文献   

13.
Characterization of hemocytes from the yellow fever mosquito,Aedes aegypti   总被引:3,自引:0,他引:3  
Mosquitoes are the most important arthropod disease vectors, transmitting a broad range of pathogens that cause diseases such as malaria, lymphatic filariasis, and yellow fever. Mosquitoes and other insects are able to mount powerful cellular and humoral immune responses against invading pathogens. To date, most studies have concentrated on the humoral response. In the current study we describe the hemocytes (blood cells) of the yellow fever mosquito, Aedes aegypti, by means of morphology, lectin binding, and enzyme activity and immunocytochemistry. Our light and electron microscopic studies suggest the presence of four distinct hemocyte types: granulocytes, oenocytoids, adipohemocytes, and thrombocytoids. We believe granulocytes and oenocytoids are true circulating hemocytes, but adipohemocytes and thrombocytoids are likely adhered to fixed tissues. Granulocytes, the most abundant cell type, have acid phosphatase and alpha-naphthyl acetate esterase activity, and bind the exogenous lectins WGA, HPA, and GNL. Phenoloxidase, an essential enzyme in the melanotic encapsulation immune response, was detected inside oenocytoids. This is, to our knowledge, the first report that has detected phenoloxidase inside mosquito hemocytes at the ultrastructural level. These results have begun to form a knowledge base for our ongoing studies on the function of Ae. aegypti hemocytes, and their involvement in controlling infections.  相似文献   

14.
Stanek DM  Pohl J  Crim JW  Brown MR 《Peptides》2002,23(8):1367-1378
A neuropeptide F (NPF) was isolated from an extract of adult Aedes aegypti mosquitoes based on its immunoreactivity in a radioimmunoassay for Drosophila NPF. After sequencing the peptide, cDNAs encoding the NPF were identified from head and midgut. These cDNAs encode a prepropeptide containing a 36 amino acid peptide with an amidated carboxyl terminus, and its sequence shows it to be a member of the neuropeptide F/Y superfamily. Immunocytochemistry and Northern blots confirmed that both the brain and midgut of females are likely sources of NPF, found at its highest hemolymph titer before and 24 h after a blood meal.  相似文献   

15.
16.
17.
Ion-exchange chromatography analysis of whole body extracts of Aedes aegypti mosquitoes which had received amino acids in their diet revealed that generally there were changes in the titre of two or more amino acids. Cysteine produced the greatest number of changes and was toxic to the insect. Of the ten amino acids provided, none resulted in the significant change in the concentration of tyrosine following a blood meal as was observed in previous studies. Evidence is presented for the conversion of arginine to ornithine and for the synthesis of arginine from glutamic acid. The data presented tend to support the hypothesis of lysine synthesis from α-ketoglutarate and for the use of proline as an energy reserve in the insect.  相似文献   

18.
Immuno-screening of an adult Aedes aegypti midgut cDNA expression library with anti-peritrophic matrix antibodies identified cDNAs encoding a novel peritrophic matrix protein, termed Ae. aegypti Adult Peritrophin 50 (Ae-Aper50), and the epithelial cell-surface membrane protein, AEG12. Both genes are expressed exclusively in the midguts of adult female mosquitoes and their expression is strongly induced by blood feeding. Ae-Aper50 has a predicted secretory signal peptide and five chitin-binding domains with intervening mucin-like domains. Localization of Ae-Aper50 to the peritrophic matrix was demonstrated by immuno-electron microscopy. Recombinant Ae-Aper50 expressed in baculovirus-infected insect cells binds chitin in vitro. Site-directed mutagenesis was used to study the role that cysteine residues from a single chitin-binding domain play in the binding to a chitin substrate. Most of the cysteine residues proved to be critical for binding. AEG12 has a putative secretory signal peptide at the amino-terminus and a putative glycosyl-phosphatidylinositol (GPI) anchor signal at its carboxyl-terminus and the protein was localized by immuno-electron microscopy to the midgut epithelial cell microvilli.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号