首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Since some cytokines effectively enhance the cytotoxicity of monoclonal antibodies, we investigated whether a combination of cytokines can augment the antibody-dependent cellular cytotoxicity (ADCC) of monoclonal antibodies 17-1A and BR55-2 against the colorectal carcinoma cell line HT29. Since monocytes/macrophages are important effector cells for ADCC, we used a new flow cytometric cytotoxicity assay, which allows the analysis of long-term-ADCC exerted by these cells. In our previous studies with peripheral blood mononuclear cells from normal donors, we found that IL-2, IL-12 and IFN-alpha increase ADCC. Therefore, we examined whether combination of these three cytokines with IL-2, IL-4, IL-6, IL-10, IL-12, IFN-alpha, IFN-gamma, GM-CSF, M-CSF and TNF-alpha may yield higher ADCC than obtained by the application of single cytokines. Indeed, we found that the combinations IL-2/IFN-alpha, IL-2/IL-12 and IL-12/IFN-alpha potentiated ADCC. Interestingly, the ineffective single cytokines TNF-alpha and GM-CSF in the combinations IL-2/TNF-alpha, IFN-alpha/TNF-alpha and IFN-alpha/GM-CSF also proved to enhance ADCC. In contrast, IL-4 significantly suppressed the IL-2, IL-12 and IFN-alpha-induced ADCC. In addition, the immunosuppressive cytokine IL-10 in higher concentrations significantly suppressed the IL-12-induced-ADCC. Our results may be useful to find combinations of cytokines and mAb for the treatment of cancer.  相似文献   

2.
We have previously shown the ability of different cytokines to induce antibody-dependent cellular cytotoxicity (ADCC) in murine cells in vitro. In addition we found that the administration to mice of IL-2-induced cells which mediated ADCC and that these cells were phenotypically similar to the cells induced in vitro. In the present study we tested the ability of various cytokines, including IL-1, TNF, IFN-alpha, and IFN-gamma to induce ADCC in vivo. We found that both IFN-alpha and IFN-gamma induced ADCC in the livers and spleens of C3H/Hen-treated mice and that these cytokines together with TNF enhanced the IL-2-induced ADCC in vivo. In C57BL/6 mice which, as previously shown, exhibit relatively low ADCC activity, IFN-alpha and IFN-gamma increased the IL-2-induced ADCC only when 100,000 U of IL-2 were used for priming. The effect of IFN-alpha on ADCC was dose dependent and was optimal after the administration of 200,000 U of the cytokine given three times a day for 3 days. Similar to the cells induced in vivo by IL-2, the precursors of the cells mediating ADCC were asialo GM1+ whereas the effectors were mainly nonadherent, Thy-1+ cells. IFN-alpha-generated cells mediating ADCC in the liver and spleen and, when combined with IL-2, ADCC was induced in the thymus as well. This effect of IFN-alpha on the induction of ADCC was exploited in an immunotherapy model in which we found that IFN-alpha significantly enhanced the antibody-mediated antitumor effect on established B16 melanoma liver micrometastases. Furthermore, when IL-2 and IFN-alpha administration was combined with the administration of mAb, a significantly reduced number of established 6- to 8-day B16 melanoma liver macrometastases and prolonged survival of tumor-bearing mice were seen. These studies imply that the administration of appropriate cytokine combinations may be a useful adjunct to the administration of mAb for the treatment of cancer in humans.  相似文献   

3.
The question of whether cells bearing complement receptors (CR) mediate cytotoxicity in vitro against allogeneic Chang liver cell targets was investigated by assessing peripheral blood mononuclear cells (PBMC) from normal humans for cell surface characteristics and cytotoxic capacity before and after depletion of CR+ cells capable of forming rosettes with sheep erythrocytes coated with 19S antibody and mouse complement (EAC) and depletion of Fc receptor-bearing cells capable of forming rosettes with human O+ erythrocytes coated with Ripley antibody (EA-Ripley). PBMC depleted of CR+ cells by density centrifugation contained markedly reduced proportions of phagocytes and sIg + cells and increased proportions of both sIg ?, FcR+ cells as well as cells forming rosettes with sheep erythrocytes (E). PBMC depleted of CR+ cells mediated cytotoxicity to an extent equal to or greater than that mediated by unfractionated PBMC in assays of spontaneous cell-mediated cytotoxicity (SCMC), antibody-dependent cellular cytotoxicity (ADCC), and mitogen-induced cellular cytotoxicity (MICC). Cells harvested from the EAC-rosette enriched pellet mediated cytotoxicity 5- to 10-fold less than unfractionated PBMC; however, the cytotoxic activity of the pellet could not be attributed to CR + effector cells since similar cytotoxic activity was present in cell pellets obtained by density centrifugation of PBMC which had been incubated with E coated with 19S antibody or E alone. PBMC depleted of EA-Ripley rosette-forming cells contained decreased proportions of sIg?, FcR+ cells and increased proportions of CR+ cells; PBMC so depleted contained virtually no SCMC and ADCC effector cell activity. These findings indicate that at least the majority of effector cells which mediate SCMC, ADCC, and MICC do not bear CR.  相似文献   

4.
We have previously demonstrated that incubation with IL-2 can induce ADCC activity in murine cells and that this activity was mediated by asialo GM1+, FcR+ cells. In the present study we show that the cytokines IFN-alpha and IFN-gamma, TNF-alpha, and IL-1 alpha are unable to induce antibody-dependent cellular cytotoxicity (ADCC) in murine cells; however, TNF-alpha and IL-1 alpha could substantially augment the ADCC induced by IL-2. IL-1 increased the IL-2-induced ADCC activity in a dose-dependent fashion and in cells isolated from the thymus and spleen. The precursors of the ADCC induced by the combination of IL-1 and IL-2 were asialo GM1+ cells, similar to the precursor cells of IL-2-induced ADCC. The effect of IL-1 and TNF on ADCC was not the result of an increase in the FcR density on the cell surface or the result of an increase in the number of FcR+ cells although IL-1 increased the recovery of viable cells in culture. The main effect of IL-1 and TNF was the enhancement of the lytic ability of the IL-2 cultured cells as indicated by increased intra-cellular benzyloxycarbonyl L-lysine thiobenzylester-esterase activity. These results suggest that lymphokines such as IL-1 and TNF may synergize with IL-2 in the induction of ADCC and could thus potentially be useful for the immunotherapy of established tumors when combined with the administration of specific anti-tumor antibodies.  相似文献   

5.
Macrophage colony-stimulating factor (M-CSF) was investigated as a stimulator of ADCC to the murine R1.1 thymoma target by murine peritoneal exudate macrophages which were elicited by proteose peptone. Both an 125IUdR release and a viable cell count assay were used. The latter assay avoids radiation damage, and the fate of the targets can be determined over a long period. Pretreatment of macrophages for several days in culture with lymphokine (LK) from concanavalin A-induced mouse spleen cells moderately stimulated ADCC. Preincubation of macrophages with conventional or recombinant human M-CSF or immunoaffinity-purified mouse M-CSF alone had little effect. However, M-CSF greatly enhanced ADCC to the tumor target when used as a costimulant with LK, IFN-gamma, IFN-alpha, IFN-beta, or IL-2 to pretreat macrophages. Incubation of macrophages with LK or LK plus M-CSF for 2 days generated stronger ADCC than 1- or 3-day incubations. Enhancement of LK-stimulated ADCC by M-CSF appeared to plateau at about 1000 U/ml. The enhancement of macrophage cytotoxicity when stimulated with IFNs or IL-2 was most effective at the lowest active concentration of these LKs. At 1 U/ml IFN-gamma or IL-2, or 5 U/ml IFN-alpha or IFN-beta, M-CSF boosted ADCC activity to that using 10-fold of the LK alone. IL-1, IL-4, and TNF had little or no stimulating activity for ADCC alone or with M-CSF, and the other hemopoietic growth factors IL-3 and GM-CSF did not promote this effector function alone or with IFN-gamma. We previously showed that M-CSF boosted macrophage antibody-independent killing of TU5 sarcoma targets with or without LK (Cell. Immunol. 105, 270, 1987). These studies thus show that M-CSF is a positive regulator of both macrophage-nonspecific tumor lysis and ADCC.  相似文献   

6.
Summary The effects of human recombinant interleukin-6 (hrIL-6) on antibody-dependent cellular cytotoxicity (ADCC) activity mediated by human peripheral blood mononuclear cells (PMNC) were investigated. Human PMNC were preincubated for 24 h with various concentrations of hrIL-6 and were used as effector cells in a 4-h51Cr-release assay. The ability of hrIL-6 to augment ADCC was measured using anti-colorectal carcinoma mAbs D612, 17.1A and 31.1 (each directed against a distinct tumor antigen) and using three human colorectal carcinoma cell lines, LS-174T, WiDr and HT-29, as targets. A significant increase in ADCC activity was observed after PMNC were preincubated in 100–400 U/ml but not in lower concentrations of hrIL-6. Variations in activities of PMNC among donors were observed. Non-specific mAb showed no effect in augmenting ADCC activity. hrIL-6 treatment did not augment non-specific (non-mAb-mediated) cytotoxicity. The enhancement of ADCC activity was blocked by the addition of an antibody against hrIL-6 but not by an antibody to the IL-2 receptor (capable of blocking the induction of lymphokine-activated killer cell cytotoxicity by IL-2), suggesting that hrIL-6 augmentation of ADCC activity may not be mediated through IL-2. These results demonstrate that hrIL-6 augments ADCC activity of human PMNC using mAbs to human tumor antigens and human tumor cells as targets, suggesting a potential role for IL-6 in combination with anti-cancer antibodies for cancer immunotherapy.  相似文献   

7.
Recombinant IL-4 inhibits IL-2-induced lymphokine-activated killer (LAK) cell development of PBMC. We evaluated the effect of various cytokines in reversing IL-4-mediated LAK inhibition. PBMC were cultured in IL-2 (10-1000 u/ml) with or without IL-4 (2-100 u/ml) and tested for cytotoxicity against the NK-sensitive K562 cells and NK-resistant UCLA-SO-M14 cells. Addition of IL-4 at the beginning of culture suppresses LAK activity in a dose-dependent fashion. Addition of IFN-gamma or TNF-alpha partially reverses IL-4-mediated inhibition (30-100%) in a dose-dependent fashion. IFN-gamma and TNF-alpha must be added within the first 24 hr of initiating culture in order to reverse IL-4 inhibition. Furthermore, IFN-gamma and TNF-alpha are most effective at reversing IL-4 inhibition at low concentrations of IL-2 (less than 100 u/ml). Addition of other IL-2-induced cytokines such as GM-CSF (50 u/ml), M-CSF (250 u/ml), and IFN-alpha (10-10,000 u/ml) fails to reverse IL-4 inhibition. In addition to suppression of LAK induction, IL-4 also inhibits IL-2-induced IFN-gamma and TNF-alpha protein production in PBMC. The reversal of IL-4-mediated LAK inhibition by TNF-alpha and IFN-gamma may therefore be due to resupply of these endogenously suppressed cytokines.  相似文献   

8.
Treatment of chronic lymphocytic leukemia patients with anti-CD20 mAb rituximab (RTX) leads to substantial CD20 loss on circulating malignant B cells soon after completion of the RTX infusion. This CD20 loss, which we term shaving, can compromise the therapeutic efficacy of RTX, and in vitro models reveal that shaving is mediated by effector cells which express Fc gammaRI. THP-1 monocytes and PBMC promote shaving, but PBMC also kill antibody-opsonized cells by antibody-dependent cellular cytotoxicity (ADCC), a reaction generally considered to be due to NK cells. We hypothesized that within PBMC, monocytes and NK cells would have substantially different and competing activities with respect ADCC or shaving, thereby either enhancing or inhibiting the therapeutic action of RTX. We measured ADCC and RTX removal from RTX-opsonized Daudi cells promoted by PBMC, or mediated by NK cells and monocytes. NK cells take up RTX and CD20 from RTX-opsonized B cells, and mediate ADCC. PBMC depleted of NK cells show little ADCC activity, whereas PBMC depleted of monocytes have greater ADCC than the PBMC. Pre-treatment of RTX-opsonized B cells with THP-1 cells or monocytes suppresses NK cell-mediated ADCC, and blockade of Fc gammaRI on monocytes or THP-1 cells abrogates their ability to suppress ADCC. Our results indicate NK cells are the principal cells in PBMC that kill RTX-opsonized B cells, and that monocytes can suppress ADCC by promoting shaving. These results suggest that RTX-based immunotherapy of cancer may be enhanced based on paradigms which include infusion of compatible NK cells and inhibition of monocyte shaving activity.  相似文献   

9.
Peripheral blood mononuclear cells (PBMC) from humans without antibodies to dengue 2 virus lysed dengue 2 virus-infected Raji cells to a significantly greater degree than uninfected Raji cells. The addition of mouse anti-dengue antibody increased the lysis of dengue-infected Raji cells by PBMC. Dengue 2 immune human sera also increased lysis of dengue-infected Raji cells by PBMC. These results indicate that both PBMC-mediated cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC) can cause significant lysis of dengue-infected Raji cells. The lysis of infected Raji cells in the ADCC assay correlated with the dilution of dengue-specific antibody which was added, indicating the dengue virus specificity of the lysis of dengue virus-infected Raji cells. Alpha interferon (IFN alpha) was detected in the culture supernatant of PBMC and dengue-infected Raji cells. However, enhanced lysis of dengue-infected Raji cells by PBMC may not be due to the IFN produced, because neutralization of all IFN activity with anti-IFN alpha antibody did not decrease the lysis of dengue-infected cells, and effector cells pretreated with exogenous IFN alpha also lysed dengue-infected cells to a greater degree than uninfected cells. The effector cells responsible for lysis of dengue virus-infected Raji cells in the natural killer and ADCC assays were analyzed. Nonadherent PBMC caused more lysis than did adherent cells. Characterization of nonadherent cells with monoclonal antibodies showed that the predominant responsible effector cells were contained in OKM1+ and OKT3- fraction in the natural killer and ADCC assays.  相似文献   

10.
M Ito  T Ihara  C Grose    S Starr 《Journal of virology》1985,54(1):98-103
Seven murine monoclonal antibodies reacting with major glycoproteins of varicella-zoster virus were tested for functional activity in assays for antibody-dependent cellular cytotoxicity (ADCC) and antibody-plus-complement-mediated lysis. Human peripheral blood mononuclear cells killed varicella-zoster virus-infected fibroblasts in the presence of three of four monoclonal antibodies directed against gp98/62 and a single monoclonal antibody directed against gp118. Neither of two monoclonal antibodies directed against gp66 was able to mediate ADCC. In 18-h assays, adherent effector cells were more active than nonadherent effector cells in mediating ADCC. Adherent cells treated with anti-Leu-11b and complement retained their cytotoxic activity, suggesting that monocytes are responsible for most of the adherent-cell-mediated cytotoxicity. Both immunoglobulin G1 and G2a murine monoclonal antibodies were able to participate in ADCC. Of the two immunoglobulin G2a monoclonal antibodies tested, both of which reacted with gp98/62, only one mediated lysis in the presence of complement. These results indicate that some murine monoclonal antibodies against major glycoproteins of varicella-zoster virus have functional activity in cytotoxicity assays.  相似文献   

11.
There is growing interest in HIV-specific antibody-dependent cellular cytotoxicity (ADCC) as an effective immune response to prevent or control HIV infection. ADCC relies on innate immune effector cells, particularly NK cells, to mediate control of virus-infected cells. The activation of NK cells (i.e., expression of cytokines and/or degranulation) by ADCC antibodies in serum is likely subject to the influence of other factors that are also present. We observed that the HIV-specific ADCC antibodies, within serum samples from a panel of HIV-infected individuals induced divergent activation profiles of NK cells from the same donor. Some serum samples primarily induced NK cell cytokine expression (i.e., IFNγ), some primarily initiated NK cell expression of a degranulation marker (CD107a) and others initiated a similar magnitude of responses across both effector functions. We therefore evaluated a number of HIV-relevant soluble factors for their influence on the activation of NK cells by HIV-specific ADCC antibodies. Key findings were that the cytokines IL-15 and IL-10 consistently enhanced the ability of NK cells to respond to HIV-specific ADCC antibodies. Furthermore, IL-15 was demonstrated to potently activate "educated" KIR3DL1(+) NK cells from individuals carrying its HLA-Bw4 ligand. The cytokine was also demonstrated to activate "uneducated" KIR3DL1(+) NK cells from HLA-Bw6 homozygotes, but to a lesser extent. Our results show that cytokines influence the ability of NK cells to respond to ADCC antibodies in vitro. Manipulating the immunological environment to enhance the potency of NK cell-mediated HIV-specific ADCC effector functions could be a promising immunotherapy or vaccine strategy.  相似文献   

12.
By traditional definitions, NK cells can be activated by cytokines to exhibit two functionally distinct levels of cytotoxicity. Whereas IL-2-mediated activation of NK cells leads to the development of lymphokine-activated killer (LAK) cytotoxicity, characterized by the acquisition of cytolytic activity against NK-resistant targets, IFN-treated NK cells become activated without the acquisition of novel cytolytic specificities. In this study we show that NK cells activated by 18 to 24 h of stimulation with either IFN-alpha or IFN-gamma do acquire LAK cytolytic activity, demonstrated by the ability of IFN-treated PBMC to lyse NK-resistant COLO 205 cells as well as fresh tumor targets. The level of IFN-alpha-induced LAK activity was significantly greater than that induced by IFN-gamma, although IL-2-induced LAK activity was considerably greater than IFN-alpha-induced LAK cytotoxicity. Maximal IFN-induced LAK cytotoxicity occurred after 24 h of culture, and occurred with the use of IFN-alpha at 500 U/ml and IFN-gamma at 1000 U/ml. Whereas neutralizing antibody experiments demonstrated that IFN-alpha-induced LAK activation did not involve the participation of endogenously produced IL-2, the partial inhibition (63%) of IFN-gamma-induced LAK cytotoxicity by anti-IL-2 and of IL-2-induced LAK by anti-IFN-gamma (33.3%) indicates that the induction of LAK cytotoxicity by either of these individual cytokines involves the endogenous production and participation of the other cytokine. Similar to IL-2-induced LAK cells, phenotypic analysis revealed that IFN-alpha/gamma LAK cells were Leu-19+, although the Leu 19"dim"+ subset exhibited greater IFN-induced LAK activity than the Leu-19"bright"+ subset. The results of this study clearly demonstrate that IFN-alpha and IFN-gamma induce classic LAK activity and IFN-gamma plays a participatory role in the optimal induction of LAK cells by IL-2.  相似文献   

13.
Summary Human peripheral blood mononuclear cells (lymphocytes and monocytes) (PBMC) were preincubated for 0–24 h with human recombinant interleukin-4 (IL-4) and used as effector cells in an 18 h antibody-dependent cellular cytotoxicity (ADCC) assay with mAb 17-1A (mouse IgG2A) against SW948 (a human colorectal carcinoma cell line). A statistically significant increase in the lytic capability was noted after 2–24 h of preactivation. IL-4 at 1 ng/ml induced the highest cell lysis while higher and lower concentrations were inferior or had no effect at all. Preactivation for 24 h induced a more effective lytic cell population than 2 h prestimulation: 63 LU (lytic units)/106 cells vs 42 LU/106 cells. Pretreatment with 1 ng/ml IL-4 for 2 h induced a statistically significant increase in the ADCC activity of PBMC (P <0.05), of monocytes (P <0.01) and E-rosette-negative cells (natural killer cells) (P <0.05) compared to non-activated cells. IL-4 did not induce lymphokine-activated killer activity of PBMC against SW948. The spontaneous cytotoxicity against K562 was, however, increased after stimulation with 1 ng/ml IL-4 for 2 h of E-rosette-negative non-adherent cells.  相似文献   

14.
 Monoclonal antibodies (mAb) are promising substances for the treatment of colorectal carcinoma, but the efficiency of this therapy still needs further improvement. We used a flow-cytometric cytotoxicity test to determine the efficacy of the cytokines interferon α (IFNα) and γ (IFNγ), interleukin-2 (IL-2), macrophage-colony-stimulating factor (M-CSF), granulocyte/macrophage-CSF (GM-CSF) and tumor necrosis factor α (TNFα) in enhancing the antibody-dependent cellular cytoxicity (ADCC) of the mAb 17-1A and the mAb BR55-2 against the colorectal carcinoma cell line HT29. In experiments performed at an effector to target ratio of 9:1, with peripheral blood mononuclear cells from five healthy volunteers as effector cells, we found that IFNα, IFNγ and IL-2 significantly augmented the ADCC of both mAb at concentrations between 3 ng/ml and 30 ng/ml. The other three cytokines were not effective. In further experiments we examined combinations of the three effective cytokines in different concentrations. The combination of IFNα and IL-2 proved to be optimal in enhancing ADCC of both mAb. Thus, the examination of ADCC by flow cytometry may reveal potentially useful combinations of cytokines and mAb for the treatment of colorectal carcinoma. Received: 11 September 1997 / Accepted: 19 February 1998  相似文献   

15.
J Xiao  Z Brahmi 《Cellular immunology》1989,122(2):295-306
In a previous study, we demonstrated that human natural killer cells (NK) lost their lytic activity after interaction with a sensitive target. The loss of NK activity also led to the loss of antibody-dependent cellular cytotoxicity (ADCC), prompting us to postulate that NK and ADCC activities may result from a common lytic mechanism. In this study, we examined whether nonadherent lymphocytes cultured 7 days in the presence of IL-2 (lymphokine-activated killer (LAK) cells) could also be inactivated and, subsequently, be reactivated in the presence of IL-2. We tested three populations of effector cells (EC): cells isolated from freshly drawn blood and tested immediately, cells cultured with IL-2 for 18 hr, and LAK cells. Once they have interacted with K562, all three cell populations lost greater than 90% of their NK-like lytic activity (NK-CMC) but only 80% of ADCC. However, when we treated the three cell types with antibody-coated K562, they lost 90-99% of NK-CMC and 90-97% of ADCC. In these inactivated effector cells we also observed: (i) a reduction in membrane expression of C-reactive protein; and (ii) a decrease in the expression of Leu-11a when EC were inactivated with antibody-coated K562. The loss of lytic activity against K562 was accompanied by a concomitant loss of activity against other LAK-sensitive targets as well as against antibody-coated targets (ADCC). In competitive inhibition experiments the inactivated effector cells failed to inhibit normal NK-CMC and ADCC activities mediated by fresh NK cells. As we have shown previously, this target-directed inactivation was not due to cell death or to lack of conjugate formation. Inactivated LAK cells regained their lytic potential when cultured with IL-2 and this effect was time dependent. By 72 hr, LAK cells inactivated with K562 regained 99% NK-CMC and 82% ADCC, whereas LAK cells inactivated with antibody-coated K562 regained only 80% NK-CMC and 70% ADCC. When we treated the effector cells with emetine, a potent inhibitor of protein synthesis, we could still inactivate the effector cells with K562 and with antibody-coated K562 but could not reactivate them with IL-2.  相似文献   

16.
 Squamous cell carcinomas of the head and neck (SCCHN) frequently display high levels of the epidermal growth factor receptor (EGFR). Since EGFR is expressed on the cell surface it may form a suitable target for anticancer therapy with anti-receptor monoclonal antibodies (mAb). Besides the interference with receptor/ligand interactions, binding of mAb to EGFR leads to immunoglobulin-coated tumour cells that may induce or enhance non-specific immune effector mechanisms like antibody-dependent cell-mediated cytotoxicity (ADCC). In established cell lines of SCCHN (UM-SCC 11B, 14C, 22B, and 8029 NA) we investigated the antitumour activity of allogeneic peripheral blood mononuclear cells (PBMC) in combination with rat (ICR 62), mouse (EMD 55900), and humanized (EMD 72000) anti-EGFR mAb. In addition, autologous PBMC were available for tumour line UD-SCC 4. The EGFR protein content of the tumour cell lines ranged between 170 fmol/mg protein and 8100 fmol/mg protein, and MCF-7 cells served as receptor-negative controls. PBMC activity against SCCHN targets was determined in 96-well microtitre-plate monolayer cultures by the colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay after coincubation for 4 h, 24 h and 72 h at effector target ratios of 1:1, 5:1, 10:1 and 20:1. PBMC subpopulations were obtained by macrophage depletion (plastic adherence) or natural killer (NK) cell enrichment (magnetic bead negative selection). Prolonged time of exposure and increased effector:target ratios revealed marked antitumour activity of PBMC alone. This non-specific immune destruction was enhanced considerably by humanized and rat, but not mouse anti-EGFR mAb. Increased EGFR protein in tumour cells partly correlated with an intensification of ADCC but was accompanied by decreased primary PBMC cytotoxicity. The utilization of PBMC subpopulations suggested a mainly NK-cell-mediated ADCC, which appeared to benefit directly or indirectly, e.g. via the secretion of cytokines, from other PBMC components. In conclusion, humanized (EMD 72000) and rat (ICR 62) anti-EGFR mAb were able to generate strong antitumour ADCC in target monolayers of SCCHN. Received: 5 December 1997 / Accepted: 15 January 1998  相似文献   

17.
 Cytokine-induced killer cells (CIK), generated in vitro from peripheral blood mononuclear cells (PBMC) by addition of interferon γ (IFNγ), interleukin-2 (IL-2), IL-1 and a monoclonal antibody (mAb) against CD3, are highly efficient cytotoxic effector cells with the CD3+CD56+ phenotype. In this study, we evaluated whether the cytotoxicity of these natural-killer-like T lymphocytes against the colorectal tumor cell line HT29 can be enhanced by the addition of a bispecific single-chain antibody (bsAb) directed against EpCAM/CD3. For determination of bsAb-redirected cellular cytotoxicity we used a new flow-cytometric assay, which directly counts viable tumor cells and can assess long-term cytotoxicity. We found that this bsAb induced distinct cytotoxicity at a concentration above 100 ng/ml with both PBMC and CIK at an effector-to-target cell ratio as low as 1:1. CIK cells revealed higher bsAb-redirected cytotoxicity than PBMC. Cellular cytotoxicity appeared after 24 h whereas PBMC showed the highest bsAb-redirected cytotoxicity after 72 h. The addition of the cytokines IL-2 and IFNα but not granulocyte/macrophage-colony-stimulating factor enhanced bsAb-redirected cytotoxicity of both PBMC and CIK. When the bsAb was combined with the murine mAb BR55-2, which recognizes the Lewisy antigen, bsAb-redirected cytotoxicity was partly augmented, whereas murine mAb 17-1A, which binds to EpCAM as well, slightly suppressed bsAb-redirected cytotoxicity induced by the bsAb. We conclude that CIK generated in vitro or in vivo combined with this new EpCAM/CD3 bsAb and the cytokine IL-2 should be evaluated for the treatment of EpCAM-expressing tumors. Received: 9 December 1999 / Accepted: 18 May 2000  相似文献   

18.
Since interleukin (IL-)2, IL-10 and IL-12 may contribute to the pathogenesis of human immune deficiency virus (HIV) infection we examined the effect of interferon (IFN)-alpha on these cytokines in cultures of various subsets of peripheral blood mononuclear cells (PBMC) in ten HIV-infected patients and ten healthy controls. Our main findings were: (1) IFN-alpha markedly enhanced IL-10 levels in a dose-dependent manner in both lipopolysaccharide (LPS)- and phytohaemagglutinin (PHA)-stimulated PBMC, as well as in anti-CD3- and anti-CD3/anti-CD28-stimulated T cells in both HIV-infected patients and controls. (2) In contrast, IFN-alpha had a downregulatory effect on IL-10 levels in Candida -stimulated PBMC,with particularly strong suppressive effect in HIV-infected patients. (3) Furthermore, IFN-alpha had a significant but modest stimulatory effect on IL-2 levels in PHA- and Candida -stimulated PBMC and anti-CD3-stimulated T cells. (4) IFN-alpha enhanced IL-12 levels in a dose-dependent manner in LPS-stimulated PBMC in both patients and controls. Our findings that IFN-alpha markedly enhanced IL-10 and modestly enhanced IL-2 and IL-12, suggest a net immunosuppressive effect of IFN-alpha in HIV-infected patients, possibly contributing to progression of immunodeficiency in these patients.  相似文献   

19.
Macrophages in varying states of activation differ in their ability to perform antibody-dependent cellular cytotoxicity (ADCC) and antibody-independent macrophage-mediated tumor cytotoxicity (MTC). To define further the activation requirements for macrophages to perform various cytolytic functions, we stimulated peptone-elicited peritoneal macrophages, which are only poorly cytolytic, with one of a panel of cytokines and then quantified three distinct cytolytic capacities. The peptone-elicited macrophages, after stimulation with IFN-alpha/beta, IL-4, or TNF, had increased ability to perform both the rapid and slow variants of ADCC but not to perform MTC. Stimulation with high doses of IFN-gamma, however, increased the macrophages' ability to perform all three cytolytic functions. GM-CSF had no effects on any cytolytic capacity. The effects of IL-4, TNF, IFN-gamma, and IFN-alpha/beta on the macrophages' capacity for both forms of ADCC were dose-dependent. IFN-gamma and IFN-alpha/beta increased the macrophages' capacity for both variants of ADCC within 4 hr of treatment, whereas IL-4 and TNF did so only after prolonged treatment. These results suggest that three forms of macrophage cytolytic capacity can be enhanced by cytokine treatment but that the requirements for enhancing each of the three forms of macrophage cytolytic capacity differ.  相似文献   

20.
Prostaglandins can inhibit the generation of lymphokine-activated killer (LAK) cells by interleukin-2 (IL-2) whereas indomethacin augmented the induction of LAK cells by inhibiting prostaglandin synthesis. In the present study we demonstrate that prostaglandin E2 substantially inhibited the generation of both LAK and antibody-dependent cellular cytotoxicity (ADCC) activity by IL-2. In addition, indomethacin enhanced the induction of LAK activity and ADCC in splenocytes exposed to IL-2 in vitro. The effect of indomethacin was dose-dependent, reaching an optimal effect at 1 microM when 100-1000 units/ml IL-2 were employed. The effect of indomethacin on the generation of ADCC was seen in cells taken from both tumor-bearing mice and normal mice. ADCC induced by IL-2 was augmented by culturing cells from the spleen, liver and lungs, in the presence of indomethacin. ADCC induced in the presence of IL-2 and indomethacin was mediated by cells that were mainly plastic non-adherent cells and expressed the asialo-GM1 glycolipid. The potential of indomethacin in combined therapy with cytokines and specific anti-tumor monoclonal antibodies is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号