首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Published justifications for weighting characters in parsimony analyses vary tremendously. Some authors argue for weighting a posteriori, some for a priori, and especially those authors that rely on a falsificationist approach to systematics argue for non-weighting. To find a decision, while following the falsificationist approach, one first has to investigate the necessary conditions for the possibility of phylogenetic research to establish an empirical science sensu Popper. A concept of phylogenetic homology together with the criterion of identity is proposed, which refers to the genealogical relations between individual organisms. From this concept a differentiation of the terms character and character state is proposed, defining each character as a single epistemological argument for the reconstruction of a unique transformation event. Synapomorphy is distinguished from homology by referring to the relationship between species instead of individual organisms, thus the set of all synapomorphies constitutes a subset of the set of all homologies. By examining the structure of characteristics during character analysis and hypothesizing specific types of transformations responsible for having caused them, a specific degree of severity is assigned to each identity test. It thus provides a specific degree of corroboration for every hypothesis that successfully passed this test. Since the congruence criterion tests hypotheses of synapomorphy against each other on grounds of their degree of corroboration gained from the identity test, these different degrees of corroboration determine the specific weights given to characters and character state transformations before the cladistic analysis. This provides a reasonable justification for an a priori weighting scheme within a falsificationist approach to phylogeny. It also demonstrates the indispensable necessity of its application.  相似文献   

2.
3.
4.
“Remane-Hennigian systematists” still reject parsimony analysis for phylogenetics, because homology or apomorphy analyses are not included. In contrast, “pattern cladists” regard homology as a deductive concept after applying a parsimony test of character congruence. However, as in molecular phylogeny, selection of “good” characters is always done on the basis of ana priorihomology analysis. The distribution criterion of homology—“homologous characters have identical or hierarchical distribution”—is the basis of parsimony analysis. Because this criterion also might fail in cases of genealogical reticulation or concerted homoplasy, character congruence is not a strict test but another probabilistic criterion of homology. A synthetic approach is proposed for phenotypic analysis with application ofa prioricriteria of homology. The resultinga prioriprobabilities of homology serve as criteria for selection and weighting of characters (very low = not selected/poor/mediocre/good/Dollo characters). After application of a parsimony algorithm the final cladogram decides homology estimations.  相似文献   

5.
Abstract — Pipunculidae (Diptera) of the Hawaiian islands belong to the endemic hawaiiensis subgroup of the subgenus Cephalops ( Semicephalops ). In total 36 species are known from the Hawaiian islands. Cladistic analysis of 31 species, using 21 morphological characters from the male terminalia, resulted in 480 equally parsimonious trees. Three rounds of successive weighting resulted in 610 equally parsimonious trees. A biogeographic analysis was carried out, using the three-area statement technique and based on the strict consensus tree produced from the tree set obtained by successive weighting. The analysis puts the sequence of the island groups in congruence with the geological history of the islands. The results of the cladistic and biogeographic analyses were compared with earlier similar analyses.  相似文献   

6.
The behavior of two topological and four character‐based congruence measures was explored using different indel treatments in three empirical data sets, each with different alignment difficulties. The analyses were done using direct optimization within a sensitivity analysis framework in which the cost of indels was varied. Indels were treated either as a fifth character state, or strings of contiguous gaps were considered single events by using linear affine gap cost. Congruence consistently improved when indels were treated as single events, but no congruence measure appeared as the obviously preferable one. However, when combining enough data, all congruence measures clearly tended to select the same alignment cost set as the optimal one. Disagreement among congruence measures was mostly caused by a dominant fragment or a data partition that included all or most of the length variation in the data set. Dominance was easily detected, as the character‐based congruence measures approached their optimal value when indel costs were incremented. Dominance of a fragment or data partition was overwhelmed when new sequence length‐variable fragments or data partitions were added. © The Willi Hennig Society 2005.  相似文献   

7.
Hypotheses of taxic homology are hypotheses of taxa (groups). Hypotheses of transformational homology are hypotheses of transformations between character states within the context of an explicit model of character evolution. Taxic and transformational homology are discussed with respect to secondary loss and reversal in the context of three-taxon statement analysis and standard cladistic analysis. We argue that it is important to distinguish complement relation homologies from those that we term paired homologues. This distinction means that the implementation of three-taxon statement analysis needs modification if all data are to be considered potentially informative. Modified three-taxon statement analysis and standard cladistic analysis yield different results for the example of character reversal provided by Kluge (1994) for both complement relation data and paired homologues. We argue that these different results reflect the different approaches of standard cladistic analysis and modified t.t.s. analysis. In the standard cladistic approach, absence, as secondary loss, can provide evidence for a group. This is because the standard cladistic approach implements a transformational view of homology. In the t.t.s approach discussed in this paper, absence can only be interpreted as secondary loss by congruence with other data; absence alone can never provide evidence for a group. In this respect, the modified t.t.s. approach is compatible with a taxic view of homology.  相似文献   

8.
In this study we use sensitivity analysis sensu Wheeler (1995 ) for a matrix entirely composed of DNA sequences. We propose that not only congruence but also phylogenetic structure, as measured by character resampling, should be used to choose among competing weighting regimes. An extensive analysis of a five‐gene data set for Themira (Sepsidae: Diptera) reveals that even with different ways of partitioning the data, measures of topological congruence, character incongruence, and phylogenetic structure favor similar weighting regimes involving the down‐weighting of transitions. We furthermore use sensitivity analysis for obtaining empirical evidence that allows us to select weights for third positions, deciding between treating indels as fifth character states or missing values, and choosing between manual and computational alignments. For our data, sensitivity analysis favors manual alignment over a Clustal‐generated numerical alignment, the treatment of indels as fifth character states over considering them missing values, and equal weights for all positions in protein‐encoding genes over the down‐weighting of third positions. Among the topological congruence measures compared, symmetric tree distance performed best. Partitioned Bremer Support analysis reveals that COI contributes the largest amount of support for our phylogenetic tree for Themira. © The Willi Hennig Society 2005.  相似文献   

9.
In order to investigate the effects of different weighting methods on a phylogeny reconstruction based on DNA sequences and to evaluate the phylogenetic information content of various secondary structures, a fragment of the large ribosomal mitochondrial gene (16S) was sequenced from 13 species of New World monkeys, three species of catarrhines, and Tarsius. The data were analyzed cladistically without weighting characters or changes, and with different weighting methods: a priori differential weights for transitions and transversions, two variants of dynamic weighting for each kind and direction of change, and successive approximations, using both the character consistency index (CI) and the rescaled consistency index (RC). The results were compared with published trees constructed from nuclear sequences of ε-globins and morphological characters by different authors. The result of the analysis of the mtDNA data set with successive approximations, using the RC as weighting function, was the closest to the topology on which all molecular and morphological trees concur. Other relationships were unique to this tree. "Loops" were the type of secondary structure that showed maximum variation in sequence length and sites with the lowest character CI and RC. A large number of sites within loops showed high values for these indices, however, which suggests that uniform downweighting of these regions represents a large loss of phylogenetic information. Successive weighting, which assigns a weight for each particular character, seems to be a desirable alternative to this practice. We propose a new variant of dynamic weighting, which we call homoplasy-correcting dynamic weighting, that like dynamic weighting, is applicable to any kind of sequence, coding or noncoding.  相似文献   

10.
Although phylogenetic reconstruction of ancestral character states is becoming an increasingly common technique for studying evolution, few researchers have assessed the reliability of these reconstructions. Here I test for congruence between a phylogenetic reconstruction and a widely accepted scenario based on independent lines of evidence. I used Livezey's (1991) phylogeny to reconstruct ancestral states of plumage dichromatism in dabbling ducks (Anatini). Character state mapping reconstructs monochromatic ancestors for the genus Anas as well as most of its main clades. This reconstruction differs strongly from the widely accepted scenario of speciation and plumage evolution in the group (e.g., Delacour and Mayr 1945; Sibley 1957). This incongruence may occur because two standard assumptions of character state reconstruction are probably not met in this case. Violating either of these two assumptions would be a source of error sufficient to create misleading reconstructions. The first assumption that probably does not apply to ducks is that terminal taxa, in this case species, are monophyletic. Many of the widespread dichromatic species of ducks may be paraphyletic and ancestral to isolated monochromatic species. Three lines of evidence support this scenario: population-level phylogenies, biogeography, and vestigial plumage patterns. The second assumption that probably does not apply to duck plumage color is that gains and losses of character states are equally likely. Four lines of evidence suggest that dichromatic plumage might be lost more easily than gained: weak female preferences for bright male plumage, biases toward the loss of sexually dichromatic characters, biases toward the loss of complex characters, and repeated loss of dichromatism in other groups of birds. These seven lines of evidence support the accepted scenario that widespread dichromatic species repeatedly budded off isolated monochromatic species. Drift and genetic biases probably caused the easy loss of dichromatism in ducks and other birds during peripatric speciation. In order to recover the accepted scenario using Livezey's tree, losses of dichromatism must be five times more likely than gains. The results of this study caution against the uncritical use of unordered parsimony as the sole criterion for inferring ancestral states. Detailed population-level sampling is needed and altered transformation weighting may be warranted in ducks and in many other groups and character types with similar attributes.  相似文献   

11.
On gaps.   总被引:4,自引:0,他引:4  
Gaps result from the alignment of sequences of unequal length during primary homology assessment. Viewed as character states originating from particular biological events (mutation), gaps contain historical information suitable for phylogenetic analysis. The effect of gaps as a source of phylogenetic data is explored via sensitivity analysis and character congruence among different data partitions. Example data sets are provided to show that gaps contain important phylogenetic information not recovered by those methods that omit gaps in their calculations. However, gap cost schemes are arbitrary (although they must be explicit) and thus data exploration is a necessity of molecular analyses, while character congruence is necessary as an external criterion for hypothesis decision.  相似文献   

12.
Current notions on homology, and its recognition, causation, and explanation are reviewed in this report. The focus is primarily on concepts because the formulation of precise definitions of homology has contributed little to our understanding of the issue. Different aspects or concepts of homology have been contrasted, currently the most important ones being the distinction between systematic and biological concepts. The systematic concept of homology focuses on common ancestry and on taxa; the biological concept tries to explain patterns of conservatism in evolution by shared developmental constraints. Similarity or correspondence is generally accepted as a primary criterion in the delimitation of homologues, albeit that this criterion is not without practical and theoretical problems. Apart from similarity, the biological concept of homology also stresses developmental individuality of putative homologous structures. Structural and positional aspects of homology can be separated, with positional homology acquiring an independent status. Similarity, topographic relationships, and ontogenetic development cannot be tests of homology. Within the cladistic paradigm, the most decisive test of homology is that of congruence; proponents of the biological-homology concept have been less concerned with test implications. Adopting a hierarchical view of nature suggests that characters have to be homologized at their appropriate level of organization. A taxic or systematic approach to homology has precedence over a transformational or biological approach. Nevertheless, pattern analysis and process explanations are not independent of each other.  相似文献   

13.
Current taxon assignments at the species level are frequently discordant with DNA-based analyses. Recent studies on tiger beetles in the Cicindela hybrida complex identified discordance between mtDNA patterns and the entities currently defined by the taxonomic literature. To test the accuracy of morphologically delimited groups, five named taxa (species) from 24 representative sampling sites across Europe were scored for 41 external morphological characters. Three of the named taxa were 'diagnosable', that is, defined by between one and three characters unique to each group. Newly sequenced ITS1 and existing mitochondrial cox1 markers established 20 and 22 different haplotypes, respectively, but only cox1 produced (four) diagnosable units. Phylogenetic analysis and statistical parsimony networks showed poor congruence of character variation with the taxonomic entities (and each other). Variation in morphological characters was therefore tested directly for association with DNA-based nesting groups at various hierarchical levels using permutational contingency analysis. Significant statistical associations of 11 (of 13 variable) morphological characters were observed with nesting groups from ITS1 and mitochondrial DNA markers, predominantly at the 4-step level. The analysis demonstrates the need for formal tests of congruence with morphological variation at the level of individual characters, a step that is omitted from recent studies of 'integrative taxonomy'. In addition, statistical correlation of particular morphological characters with DNA-based nesting groups can identify the lowest hierarchical level at which various character sets show congruence, as a means to define evolutionarily separated entities supported by diverse data sources.  相似文献   

14.
15.
16.
The most extensive combined phylogenetic analyses of the subclass Marchantiidae yet undertaken was conducted on the basis of morphological and molecular data. The morphological data comprised 126 characters and 56 species. Taxonomic sampling included 35 ingroup species with all genera and orders of Marchantiidae sampled, and 21 outgroup species with two genera of Blasiidae (Marchantiopsida), 15 species of Jungermanniopsida (the three subclasses represented) and the three genera of Haplomitriopsida. Takakia ceratophylla (Bryophyta) was employed to root the trees. Character sampling involved 92 gametophytic and 34 sporophytic traits, supplemented with ten continuous characters. Molecular data included 11 molecular markers: one nuclear ribosomal (26S), three mitochondrial genes (nad1, nad5, rps3) and seven chloroplast regions (atpB, psbT‐psbH, rbcL, ITS, rpoC1, rps4, psbA). Searches were performed under extended implied weighting, weighting the character blocks against the average homoplasy. Clade stability was assessed across three additional weighting schemes (implied weighting corrected for missing entries, standard implied weighting and equal weighting) in three datasets (molecular, morphological and combined). The contribution from different biological phases regarding node recovery and diagnosis was evaluated. Our results agree with many of the previous studies but cast doubt on some relationships, mainly at the family and interfamily level. The combined analyses underlined the fact that, by combining data, taxonomic enhancements could be achieved regarding taxon delimitation and quality of diagnosis. Support values for many clades of previous molecular studies were improved by the addition of morphological data. The long‐held assumption that morphology may render spurious or low‐quality results in this taxonomic group is challenged. The morphological trends previously proposed are re‐evaluated in light of the new phylogenetic scheme.  相似文献   

17.
ON WEIGHTING AND CONGRUENCE   总被引:5,自引:0,他引:5  
Abstract — A priori differential weighting of molecular characters is a common methodological practice in molecular phylogenetics and evolution. This has been a largely subjective exercise with few criteria for deciding which characters to down-weight and how much to do so. A priori differential weighting is conducted to remove heterogeneity from the data sets and to improve the congruence among the informative, and usually more conservative characters. Herein, we test whether congruence is improved with a priori differential weighting by using the incongruence length difference test on a linked genetic data set consisting of 14 mammalian taxa and the 13 protein coding genes of the mitochondrial genome. Weighting by omitting the third codon position did not improve congruence with respect to the equally weighted data, while weighting transversions did improve the congruence between the 13 protein coding genes. Nonetheless, the most parsimonious tree found from transversion weighting did not differ from one using all of the data equally weighted.  相似文献   

18.
The stability of complex patterns of geographic variation was investigated by assessing the congruence between multivariate ordinations derived from randomly chosen real characters. Two series of populations were analysed representing two situations with complex patterns of geographic variation. The first, a ‘Eurasian’ series of populations, showed a strongly structured hierarchical pattern, the second, an ‘eastern’ series of populations, showed a more subtle complex pattern of smooth clines and steps. The characters were selected from a total of 81 (Eurasian) or 61 (eastern) within-population independent characters from six different systems. The congruence between ordinations of the geographical populations was measured by the rotational fit statistic, R2. Three procedures were used to compare ordinations based on from two to up to 80 characters randomly chosen to give: A, completely independent character sets; B, subsets compared to the total set; and C, potentially overlapping sets. All three procedures showed that congruence between the ordinations was asymptotic in relation to character number. This relationship was described by one of two mathematical models (procedure B did not result in a hyperbolic model as found with simple patterns of geographic variation). Generally speaking, once a sufficient number of characters are used, the complex patterns of geographic variation are stable, reliable and predictive and not substantially influenced by character choice. The strongly structured hierarchical pattern required 15 or so characters to achieve reliability whilst the more subtle patterns required 20 or so characters. However, the addition of further characters does improve reliability in both cases. The greater percentage of variance portrayed by three-dimensional ordinations compared to two-dimensional ordinations is achieved at the cost of lower congruence when a sufficient number of characters are used. If case studies of geographic variation were to adopt these procedures (preferably using completely independent character sets; procedure A) the reliability of their results would be indicated).  相似文献   

19.
The relationship between phylogenetic accuracy and congruence between data partitions collected from the same taxa was explored for mitochondrial DNA sequences from two well-supported vertebrate phylogenies. An iterative procedure was adopted whereby accuracy, phylogenetic signal, and congruence were measured before and after modifying a simple reconstruction model, equally weighted parsimony. These modifications included transversion parsimony, successive weighting, and six-parameter parsimony. For the data partitions examined, there is a generally positive relationship between congruence and phylogenetic accuracy. If congruence increased without decreasing resolution or phylogenetic signal, this increased congruence was a good predictor of accuracy. If congruence increased as a result of poor resolution, the degree of congruence was not a good predictor of accuracy. For all sets of data partitions, six-parameter parsimony methods show a consistently positive relationship between congruence and accuracy. Unlike successive weighting, six-parameter parsimony methods were not strongly influenced by the starting tree.  相似文献   

20.
A set of cranial characters was examined in the fruit bats Rousettus egyptiacus and Eidolon helvum to compare trends and relative importance of major components of bilateral morphometric variation, and their relationship with character size. Using two‐way, sides‐by‐individuals ANOVA , four components of variation were estimated for each bilateral variable: individual variation (I), directional asymmetry (DA), non‐directional asymmetry (NDA) and measurement error (E). Both species exhibit similar major trends of variation in asymmetry across characters, as shown by principal component analysis, using variance components as variables. Degree of interspecific congruence among characters was confirmed by a two‐way ANOVA with species and variance components as fixed factors. Congruence of asymmetry patterns between species suggests that the concept of population asymmetry parameter (PAP) could be extended to higher hierarchies. PAPs above the species level may result from common mechanisms or similar developmental constraints acting on species’ buffering capacities and morphological integration processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号