首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zusammenfassung Im elastischen Gewebe werden zwei Komponenten beschrieben, ein fibrilläres Grundgerüst und eine dichte amorphe Kittsubstanz. Die Fibrillen sind periodisch quergestreift und haben eine Periodenlänge, die der des Kollagens ungefähr entspricht. Sie sind etwa 60–80 m dick. Osmiumsäurefixierung maskiert die Fibrillen, bei Anwendung einer Silbermethode sind sie auch innerhalb der elastischen Fasern darstellbar. Sie zeigen Oberflächenversilberung und können infolgedessen am ehesten mit Retikulumfibrillen verglichen werden. Daß sie mit diesen identisch sind, wird bezweifelt.Mit Kollagen haben sie nur die annähernd gleiche Querstreifung gemeinsam. Die Versilberung des Kollagens ergibt ein völlig anderes Bild als die der elastischen Fibrillen. Während durch die Silbermethode die Querstreifung der Kollagenfibrillen hervorgehoben wird,verschwindet sie bei den elastischen Fibrillen. Diese verschwinden bei Trypsineinwirkung. Die amorphe Substanz scheint durch Pektinase angreifbar zu sein.Fragen der Genese, der Doppelbrechung sowie der Färbung des Elastins werden diskutiert.Für die Überlassung des Themas danke ich Herin Prof. Dr. W. Schwarz.  相似文献   

2.
Zusammenfassung Die Entfärbung des Organismus nach beendigter Einführung der Farbe findet, wie aus den Protokollen zu ersehen ist, sehr ungleichmäßig statt; die einen Zellen geben die Farbe sehr rasch ab, in den anderen zieht sich der Entfärbungsprozeß sehr stark in die Länge. Was den Verlauf der Entfärbung der einzelnen Zellen anbetrifft, so findet in der Mehrzahl derselben der Schwund der Farbe vornehmlich durch die allmähliche Abgabe derselben in das umgebende Medium statt, die Farbe wird aus den Zellen durch den durch dieselben hindurchgehenden Flüssigkeitsstrom gleichsam ausgewaschen. Es leuchtet ein, daß der physikalische Zustand der Farbeinklusionen in diesem Falle eine große Rolle spielen muß; es ist deshalb verständlich, daß zuerst die Farbe zu schwinden beginnt, welche im gelösten Zustand im Inhalt der Farbevakuolen vorhanden ist, viel langsamer schwindet die in der Vakuole oder unmittelbar im Zytoplasma ausgeflockte Farbe.Der Mechanismus, welcher den Prozeß der Entfärbung der Zellen reguliert, ist nicht immer leicht verständlich. Man kann annehmen, daß zwei Hauptfaktoren auf diesen Prozeß einwirken: die topographische Nähe der gegebenen Zelle zum Blute, was sich auf den Zellen des retikuloendothelialen Systems deutlich kundtut, und die Stärke des durch die Zelle hindurchgehenden Flüssigkeitsstromes bei genügender Lösbarkeit der in der Zelle abgelagerten Farbe. Die Bedeutung des zweiten Faktors ist auf den Leberzellen und den Zellen der gewundenen Nierenkanälchen deutlich sichtbar, welche sich sehr rasch entfärben, obschon sie eine große Menge von Farbe enthielten. Im Gegensatz dazu entfärben sich die Zellen der Sammelröhrchen und der D. D. papillares der Nieren, die einen Typus der Zellen der Ausführungsgänge vorstellen, so langsam, daß in ihnen noch 160 Tage nach beendigter Einführung der Farbe der größte Teil der Farbeablagerungen zurückbleibt. Eine ebensolche, zwar schwächer ausgeprägte Erscheinung wird auch in den Zellen der Ausführungsgänge der Leber beobachtet.Es muß aber noch ein Faktor zugelassen werden: die inneren Eigenschaften der speichernden Zellen. Auf Kosten dieses Faktors gehören die schwer verständlichen Tatsachen, wie die Verlangsamung der Fibrozytenentfärbung, im Vergleich mit den Histiozyten, trotz der äußerst großen räumlichen Nähe derselben zueinander. Ich halte es nicht für nötig, auf die Kontroversen in bezug auf diese Frage zwischen den verschiedenen Verfassern einzugehen, da die diesbezüglichen Meinungen größtenteils einen spekulativen Charakter aufweisen; die beständigen Verweisungen auf die Aktivität der Histiozyten bringen ebenfalls zur Aufklärung des Wesens der Frage gar nichts bei. Auf Kosten der individuellen Eigenschaften der Zellen muß man auch die Veränderungen der Färbung der Farbeablagerungen stellen, in einigen Zellen des R.-E-App. (Kupffersche Zellen, retikuläre Zellen der Milz und des Lymphknotens), welche aus blauen zu gelblich-braunen oder sogar schwarzen werden. Da diese Vakuolen und Körner von brauner Färbung keine Reaktion auf Eisen ergeben, so muß man sie für ein Produkt der intrazellulären Spaltung der aufgenommenen Farbe erklären. Bis zu einem gewissen Grade hängt diese Erscheinung vielleicht auch von irgendwelchen Beimengungen zum Trypanblau ab (nach Schulemann [Tabulae biologicae] kommt die Verunreinigung der Farben durch Nebenprodukte sehr häufig vor); damit steht die Tatsache in voller Übereinstimmung, daß in der Einführungsstelle der Farbe nach 40 Tagen beinahe sämtliche Histiozyten von schwarz-braunen Körnern angefüllt sind, während in den Histiozyten der von der Einführungsstelle der Farbe weit abstehenden Gebiete die Farbeeinschlüsse vom Anfang bis zum Ende ihre rein blaue Färbung beibehalten.Was die Schnelligkeit der Entfärbung verschiedener Zellensysteme anbetrifft, so erweist es sich, daß dieser Prozeß einer gewissen Gesetzmäßigkeit unterworfen ist, welche sich beim Vergleich der Schnelligkeit der Ablagerung der Farbe mit der Schnelligkeit ihres Schwindens aus ein und denselben Zellarten besonders deutlich kundtut. Als eine mehr oder weniger allgemeine Regel kann man feststellen, daß die Schnelligkeit der Entfärbung der Schnelligkeit der Färbung dieser oder jener Zelle oder eines Zellensystems gerade proportional ist. Als eine Illustration zu dieser Regel kann man nennen: einerseits die Zellen des R.-E.-Systems und die Leberzellen sowie die Zellen des Hauptstückes der Niere: rasche Speicherung und rasche, besonders in Anbetracht der Menge der sich in ihnen ablagernden Farbe, Entfärbung; andererseits aber die Fibrozyten und die Zellen der Ausführungsgänge der Niere und der Leber, in welchen die Farbe mit großer Verspätung erscheint, aber auch lange aufgehalten wird.Somit erfordert die genaue Aufklärung der Entfärbungsgesetze der in den Organismus eingeführten Stoffe eine genaue Kenntnis der Gesetze ihrer Verteilung und Ablagerung. Diese letzteren werden aber, wie aus den Versuchen Schulemanns gut genug bekannt ist, vor allem durch die physikalisch-chemischen Eigenschaften des in den Organismus eingeführten Stoffes bedingt.  相似文献   

3.
Zusammenfassung Wir haben zwei Fragen aufgeworfen. Die erstere lautete: Wie verhalten sich Plastiden zur Essigsäure? Die zweite: Gibt es einen genetischen Zusammenhang zwischen Chondriosomen und Plastiden ?Es scheint mir, daß ich auf die erste Frage eine ganz bestimmte Antwort erhalten habe. Die Plastiden leiden in allen Stadien ihrer Entwicklung von der Essigsäure. Die alten Plastiden büßen ihre Fähigkeit ein, sich durch die zur Färbung der Plastiden gewöhnlich angewandten Farbstoffe zu färben; die jungen Anlagen der Plastiden sind überhaupt nicht nachzuweisen. Vielleicht bleibt auch ein unfärbbares Gefüge von ihnen übrig, es ist aber schwer wahrzunehmen, da es keine Differential-färbung annimmt. In einigen Fällen habe ich tatsächlich, wie es scheint, in den nach Carnoy fixierten Präparaten die Schatten von Chondriosomen und Mitochodnrien erkannt. Im wesentlichen ist das Verhalten der Chondriosomen und Plastiden gegenüber der Essigsäure offenbar identisch.Was die zweite Frage anbetrifft, so zeigt die große ihr gewidmete Literatur, wie schwer sie zu lösen ist. Eine direkte langdauernde Beobachtung am lebenden Objekt hat bis jetzt keine positiven Ergebnisse geliefert (Kassmann). Das Studium von fixierten Präparaten zwingt dazu, das Entwicklungsbild der Plastiden zu rekonstruieren, und zwar vermittelst Gegenüberstellung von cytoplasmatischen Gebilden in Zellen von verschiedenem Alter. Diese Gegenüberstellung kann nicht ganz frei von subjektiven Momenten sein. Die Lage wird auch noch dadurch erschwert, daß die zu untersuchenden Gebilde beim Gebrauch ein und desselben Fixators verschiedene Bilder zeigen. So hat Bowen z. B. der Benda-Methode den Vorzug gegeben, ich konnte jedoch mit diesem Verfahren keine guten Resultate erzielen und gewann meine besten Präparate bei Fixation nach Regaud. Alle diese Umstände lassen mich meine Resultate sehr vorsichtig werten, insofern dieselben sich auf die genetische Beziehung zwischen Chondriosomen und Plastiden beziehen.Ich will nicht leugnen, daß ich beim Beginn dieser Arbeit gewissermaßen mit dem Standpunkte sympathisierte, nach dem Chondriosomen und Plastiden keine homologen Gebilde darstellen; meine eigenen Beobachtungen führten mich jedoch zu dem entgegengesetzten Standpunkt. Nach meinen Beobachtungen sind die Chondriosomen als ein bestimmtes Stadium in der Entwicklung der Plastiden aufzufassen. Davon zeugen die von verschiedenen Autoren und auch von mir, wahrgenommenen Übergangsformen zwischen Chondriosomen und Plastiden. Wenn bei der Feststellung solcher Formen der subjektive Faktor auch nicht ausgeschieden werden kann, so gibt es doch indirekte Daten, welche die Beziehung von Chondriosomen und Plastiden bestätigen. Sogar erwachsene Plastiden verhalten sich, wie wir oben gesehen haben, den Essigsäure enthaltenden Fixatoren gegenüber gleich den Chondriosomen. Die Formen der Plastiden, die ich oben als infantil bezeichnete, ahmen genau die Formen einiger Chondriosomen nach. Es ist wohl kaum möglich, diese infantilen Plastiden als ein Deformationsprodukt aufzufassen, denn sie treten bei verschiedenen Fixationsverfahren auf. So kann man der Regaud-Flüssigkeit wohl kaum die Fähigkeit zusprechen, die Plastiden zu verlängern (Kiyohara, Bowen), denn wenn diese Flüssigkeit eine solche Eigenschaft gehabt hätte, so hätte sich ihr Einfluß vor allem an den jüngsten Plastiden geltend gemacht, das Beispiel der Elodea zeigt uns aber, daß dem nicht so ist.Der Umstand, daß in alten Zellen außer Plastiden Chondriosomen vorhanden sind, stellt für die Theorie, welche die Einheit des Plastidoms annimmt, keine Schwierigkeit dar. Es ist leicht denkbar, daß in der Zelle in einem gewissen Augenblick solche Verhältnisse zustandekommen, welche die weitere Umwandlung der Chondriosomen in Plastiden verhindern. Wir wissen, daß derartige Verhältnisse manchmal bei buntblättrigen Pflanzen vorhanden sind und daß die lädierten Zellen demzufolge mit Chondriosomen allein ausgestattet bleiben (Sou Jan Tsinen); wahrscheinlich treten derartige Verhältnisse im Evolutionsprozesse aller tierischen Zellen ein. Obgleich das Endstadium der Entwicklung von Chondriom-Plastiden bei den Tieren ausfällt, so spielen die Chondriosomen bei ihnen bekanntlich gelegentlich die Rolle von Stärkebildnern, die für die pflanzliche Zelle so charakteristisch ist.Somit erscheint die Einheit von Chondriosomen und Plastiden durch direkte und indirekte Beweise genügend begründet.  相似文献   

4.
Zusammenfassung Die vorliegenden Untersuchungen erstreben eine ätiologische Erklärung der Kerneinschlüsse.Die Anzahl der Kerneinschlüsse schwankt von 0,02 bis 0,70%. Der Mittelwert beträgt 0,138%.Die weiblichen Lebern enthalten mehr Einschlüsse als die männlichen ( 0,175%, 0,131%).Großkernige Zellen sowie solche mit Riesenkernen enthalten häufiger Einschlüsse als zweikernige Zellen, soweit die Kerne dieser Zellen nicht selbst groß sind.In den sogenannten dunklen Leberzellen wurden keine Einschlüsse gefunden wohl aber gelegentlich in den dunklen Randzellen der Leberläppchen.Intermediärzone und Läppchenzentrum scheinen von Einschlußkörpern bevorzugt zu sein, was wahrscheinlich von der Wasserstoffionenkonzentration und dem geringeren Gas- und Flüssigkeitsaustausch der Zellen im Zentrum abhängt.Ein herdförmiges Auftreten der Einschlüsse kommt besonders in Lebern mit wenig Einschlüssen zum Ausdruck.Kernkristalle wurden nur in einem Fall beobachtet. Sie sind äußerst selten. Die Entstehung der Kristalle wird diskutiert.  相似文献   

5.
Zusammenfassung Die mit der Methode von Bielschowsky-Gros durchgeführten Untersuchungen erstreckten sich auf die feineren Innervationsverhältnisse des menschlichen Nierenparenchyms. Dabei konnten die früher veröffentlichten Ergebnisse (Knoche 1950) erweitert werden.Neben den Arterien und Venen stehen auch die intertubulär gelegenen Kapillaren unter dem Einfluß des vegetativen Nervensystems, dessen Endigungsform in Gestalt des nervösen Terminalretikulums die Harnkanälchen und Kapillaren in kontinuierlichem Zusammenhang überzieht.Zahlreiche interstitielle Zellen sind in der Nierenrinde, im Bindegewebe des Nierenbeckens und in der Gefäßadventitia in das vegetative Endnetz eingeschlossen.Ein genaues Studium ist der feineren Innervation des am Gefäßpol eines Malpighischen Körperchens befindlichen Regulationsapparates gewidmet. Die paravaskulären, paraportalen Zellen und die Macula densa empfangen ihre nervöse Versorgung von seiten des auf der Muscularis der Vasa afferentia aufgelagerten marklosen Nervengeflechtes. Ein zwischen den Kernen des Goormaghtighschen Zellhaufens lokalisiertes zartes Neurofibrillennetz wurde im Zusammenhang mit marklosen, von den periarteriolären Geflechten stammenden Nervenfasern beschrieben. Dieses nervöse Fibrillennetz mit seinen Schwannschen Zellen wird als ein in das vegetative Synzytium eingeschaltetes sensibles Endorgan betrachtet und ihm der Charakter eines neurovegetativen Rezeptorenfeldes für Blutdruckschwankungen im Glomerulus zuerkannt. Für die Regulation des Blutstromes in den Glomeruluskapillaren ist in erster Linie das sich an der Kapillarwand erstreckende, nervöse Terminal retikulum verantwortlich zu machen.Da auch an den Tubuli recti feinste, retikulär miteinander verknüpfte, marklose Nervenfasern gefunden wurden, ist die Anwesenheit eines ein gesamtes Nephron, einschließlich des Malpighischen Körperchens mit seinem Regulationsapparat, umgebendes markloses Nervengeflecht anzunehmen, das mit den Gefäßgeflechten und dem periglomerulären Nervenplexus in Verbindung steht. Trotz der Abhängigkeit der Nierenarbeit vom Nervensystem scheint nach der anatomischen Anlage des intramuralen Nervengewebes eine gewisse selbständige, nervöse Regulationsfähigkeit dem Nierenparenchym innezuwohnen.Meinem Lehrer, Herrn Prof. Dr. Stöhr zu seinem 60. Geburtstag gewidmet.  相似文献   

6.
Zusammenfassung In sympathischen Ganglien findet sich als Hüllgewebe um die Ganglienzellen oder in Gestalt von Haufen und Strängen ein mit großen, hellen, rundlichen oder mit kleinen, dunklen, längsovalen Kernen ausgestattetes Plasmodium. Es ist mit den neurogenen Nebenzellen identisch.Dieses Nebenzellenplasmodium muß einen ziemlich lockeren Zusammenhang besitzen, da sich bei vielen Fixierungsmitteln kernhaltige Plasmateile loslösen und verschieden geformte Zellen vortäuschen können.Das Nebenzellenplasmodium stellt wahrscheinlich ein Gewebe sui generis dar. Es enthält spärliche Nissl-Granula und steht als Hüllplasmodium mit dem Neuroplasma der Ganglienzellen in engstem Zusammenhang.Vielleicht ist die Konstruktion des Nebenzellenplasmodiums einem retikulären Bau ähnlich; in seinen Gewebsspalten finden sich ein Netz feinster, kollagener Fasern und ein mit der Hortega-Methode darstellbares Fasernetz eingebettet. Beide Fasernetze entwickeln um die Ganglienzellen ein besonderes Hüllgewebe.Ob das mit der Hortega-Methode dargestellte Fasersystem zur Glia gehört, läßt sich nicht mit Bestimmtheit angeben.Das um die Ganglienzellen gelagerte Hüllplasmodium beherbergt in seinem Innern teils die pericellulären, nervösen Faserkörbe, teils die fibrillären Verbreiterungen der kurzen Fortsätze der Ganglienzellen und muß auch den durchtretenden Fortsätzen der Ganglienzellen Raum geben. Die sympathische Ganglienzelle bildet mit ihrem Hüllplasmodium eine morphologisch und wohl auch physiologisch untrennbare Einheit.Wahrscheinlich ist das Hüllplasmodium von Einfluß auf die Entwicklung der Fortsätze einer Ganglienzelle, da sich an den Stellen, wo das Hüllplasmodium stärker entwickelt ist, auch die Fortsätze in vermehrter Zahl beobachten lassen. Für die Anschauung spricht auch der Bau der von Cajal beschriebenen Glomerulos.Die im Innern des Nebenzellenplasmodiums vorkommenden Nervenelemente entbehren stets der Schwannschen Scheide.Im sympathischen Ganglion besteht somit ein untrennbarer plasmatischer Zusammenhang von neurofibrillärer Substanz und Nebenzellenplasmodium. Daher dürfte auch die Übertragung eines nervösen Reizes auf eine Ganglienzelle nicht ohne gleichzeitige Mitbeteiligung des Nebenzellenplasmodiums möglich sein.Im Hinblick auf neuere Arbeiten, in denen bei der Übertragung eines nervösen Reizes an Stelle der Synapsen einem chemischen Vorgang eine große Bedeutung zugeteilt wird, ist eine Mitbeteiligung des Nebenzellenplasmodiums an der Bildung bestimmter Reizstoffe denkbar.  相似文献   

7.
Zusammenfassung Wir halten an unserer Auffassung der Synapsen im Sympathikus im Sinne einer elektrischen Maschennetzschaltung bzw. eines Rückkoppelungssystems mit Kondensator, Widerstand und Detektor fest. Diese Vorstellung ist sowohl mit den komplizierten morphologischen Strukturen, als auch den neueren physiologischen Ergebnissen über die vorwiegend elektrische Natur der Erregung und Leitung in den Ganglien in Übereinstimmung (Lorente de Nó, Prosser, Govaerts).Die Synapsen liegen an den Stellen der in verschiedenen Formen auftretenden, um die Ganglienzellen liegenden Endapparate, wo sie direkten Kontakt mit der Zelloberfläche haben. Man hat sich das daher nicht nur an einer kleinen umschriebenen Stelle, sondern auch auf einer größeren Strecke und an verschiedenen Punkten zugleich vorzustellen.Die Synapsen sind ebenso wie alle an die Zellen herantretenden oder aus ihr heraustretenden Nervenfasern in eine Isoliermasse, das Scheidenplasmodium (Stöhr) eingebettet, das physiologisch auch noch StoffWechselfunktionen dient, die wir im einzelnen noch nicht kennen, das jedoch kein Acetylcholin produziert (Lorente de Nó).Die Stöhrsche Auffassung vom Terminalretikulum als einem feinsten nervösen Netzwerk, das Ganglienzellen und Nervenfasern in gleicher Weise schleierartig einhüllt, das Scheidenplasmodium innerviert und auf diese Weise sowohl Ganglienzellen als Scheidenzellen nervöse Impulse zuteilt, läßt sich in keiner Weise mit den neueren physiologischen Vorstellungen vorwiegend elektrischer Erregungsprozesse zur Deckung bringen. Danach ist das Terminalretikulum physiologisch ein Absurdum, da dadurch weder eine Erregungsleitung, noch differente, selektionierte Reize möglich sind. Die Existenz des nervösen Terminalretikulums wird von den meisten Forschern in Frage gestellt.Das Scheidenplasmodium ist ektodermaler Abstammung und umfaßt ebenso die sogenannten Kapselzellen, als auch die die Fortsätze und Nervenfasern umscheidenden Zellen, ist also identisch mit den Schwannschen Zellen (Koelliker, Kohn).Sogenannte neurogene Nebenzellen (Kohn) spielen im Sympathikus des Erwachsenen keine wesentliche Rolle, da sie, wenn überhaupt, immer nur vereinzelt vorkommen. Es ist in keiner Weise berechtigt, nach Stöhr diese zusammen mit den Scheidenzellen als Nebenzellenplasmodium zu bezeichnen und es als Gewebe sui generis zu betrachten.Eine Innervation des Scheidenplasmodiums widerspricht absolut den morphologischen und physiologischen Tatsachen, dagegen liegen in ihm stets die Zellfortsätze und Endapparate (Isolation und Stoffwechsel). Ein Kapselraum existiert um die lebende Nervenzelle offenbar nicht (Szantroch).Die Kernform der Scheidenzellen ist wechselnd, was weitgehend von funktionellen Zuständen und mechanischen Faktoren abhängt.Das Eindringen von Scheidenplasmodium in das Neuroplasma der Ganglienzellen ist beim Menschen absolut unbewiesen, und damit auch eine Verzahnung (Stöhr), außerdem aber würde es der physiologisch-elektrischen Vorstellung der Erregung und Leitung völlig widersprechen.Als äußere Hülle der sympathischen Ganglienzellen figuriert eine außen aus gröberen, innen aus feinsten netzförmigen Bindegewebsfasern bestehende Kapsel.Ein exakter Beweis gegen den individuellen Zellcharakter der Ganglienzellen, die vielfach in Gruppen zusammenwirken, ist bisher nicht erbracht und daher die Neuronentheorie, wenn auch nicht mehr in ihrer starren Form, durchaus noch gültig und vor allem durch die neueren physiologischen Ergebnisse fest gestützt.  相似文献   

8.
Zusammenfassung Vorliegende Untersuchungen bezwecken, die Histogenese der Groß-hirnrinde beim Schafe von den frühesten Stadien der Differenzierung der Neuronen und der Gliazellen ab durch die Golgische Chromsilbermethode zu erforschen. Ferner wurden die Änderungen in der Form der Neuronen und der Gliazellen in späteren Stadien der Entwicklung bis zur Geburt verfolgt. Die Beobachtung von His, daß bipolare Neuroblasten von der Keimschicht gegen die Oberfläche der Rinde wandern, wurde bestätigt. Die bipolaren Neuroblasten sammeln sich in der kompakten sog. 'Bil-Dungszone (Koelliker), wo sie sich schon in frühen Stadien der Entwicklung mit der Chromsilbermethode färben. Der obere plumpere Fortsatz der bipolaren Neuroblasten wird zu einem Dendrit (dem Spitzenfortsatz der reiferen Pyramidenzelle), der untere gegen die Keimschicht gerichtete Fortsatz wird zum Neuriten. Die sog. Bildungszone wird durch Einwanderung von Neuroblasten von der Tiefe allmählich dicker; bald differenzieren sich die oberflächlichsten Neuroblasten weiter und wandern in entgegengesetzter Richtung, d. h. gegen die tieferen Schichten, wo sie in verschiedener Höhe stehenbleiben und das charakteristische Gepräge der Pyramidenzellen annehmen. Gleichzeitig fährt die Wanderung von Ganglienzellen von der Tiefe gegen die Oberfläche der Rinde fort. Dieser Vorgang vollzieht sich während der ganzen fetalen Entwicklung und sogar nach der Geburt, wenn die mittlere Schicht eine beträchtliche Dicke erworben hat. Dadurch wird die Zahl der Neuronen bis in späten Perioden des Wachstums allmählich größer. Die Differenzierung der Ganglienzellen, welche in späten Stadien wandern, wenn sogar die weiße Substanz eine beträchtliche Dicke erreicht hat, fährt fort. Die Zellen gewinnen die Merkmale der reifen Zellen (lange Dendriten, Tigroidschollen im Cytoplasma) lange bevor sie ihre definitive Lage erreicht haben. Diese Zellen werden zu den polymorphen Zellen der fertigen Hirnrinde.Die Stützsubstanz der embryonalen Hirnwand besteht ausschließlich aus Fortsätzen der Ependymzellen. Diese bilden sich nur bei dem 250 mm langen Schaffetus zurück. Die Gliazellen erscheinen lange bevor die Fortsätze der Ependymzellen verschwinden, in verschiedenen Höhen der Hirnwand, in der Bildungszone und in der intermediären Schicht. Die Gliazellen sind in der fetalen Rinde mit zahlreichen, feinen Fortsätzen versehen, die ihnen ein besonderes, von dem der reifen Gliazellen verschiedenes Gepräge verleihen. Beim Fortschreiten der Entwicklung unterliegen sie einer tiefen Umwandlung dergestalt, daß neue, ganz verschieden aussehende Fortsätze an Stelle der fetalen erscheinen. Vor der Geburt ähneln sie stark den protoplasmatischen Astrocyten. Die beobachteten Umwandlungen sollen als Ausdruck der ameboiden Tätigkeit der Gliazelle gedeutet werden.Meinen Beobachtungen nach stammt nur ein Teil der Gliazellen von umgewandelten Ependymzellen ab, welche sich aus ihrer ursprünglich tiefen Lage nach der Oberfläche verschoben haben. Andere Gliazellen gehen aus Spongioblasten hervor, d. h. aus Zellen, welche ihren Ursprung direkt aus der Keimschicht nehmen, als scheinbar undifferenzierte Zellen durch die Hirnwand wandern und sich später zu Gliazellen differenzieren [Schaper (1897), Lenhossék (1891)].

Alle presenti ricerohe ha contribuito il C.N.R.  相似文献   

9.
Zusammenfassung Durch wiederholte subcutane Verabreichung mäßiger Dosen von Trypanblau wurde unter Vermeidung jeglicher Gewebsschädigung eine gute vitale Anfärbung aller speicherungsfähigen Zellen des Mäuseeierstockes erzielt.Die Art der Farbstoffspeicherung ermöglicht Rückschlüsse auf den Funktionszustand der speichernden Zellen. Gesunde lebende Zellen speichern den Farbstoff in kleinen Granula. Starke, grobgranuläre Speicherung in einer Zelle kann bereits als Entartungsreaktion gewertet werden. Fleckige und diffuse Anfärbung von Zellen ist als Zeichen des Zelltodes anzusehen.Alle Bindegewebszellen des Ovars zeigen granuläre Farbstoffspeicherung; die Stärke der Speicherung ist dem Differenzierungsgrad der Zellen umgekehrt proportional.Noch bei geschlechtsreifen Mäusen erfolgt vereinzelt ein Einwuchern meist kleinerer Gruppen von Zellen des Ovarialoberflächenepithels unter Durchbrechung der Tunica albüginea in die Tiefe. Die Zellen des Oberflächenepithels zeigen bei ihrer Dedifferenzierung als Oberflächendeckzellen geringe feingranuläre Farbstoffspeicherung; dieses Speicherungsvermögen für Trypanblau geht jedoch mit ihrer fortschreitenden Umdifferenzierung bald wieder verloren. Wenige dieser aus dem Oberflächenepithel einwandernden Zellen sind frei von Vitalfarbstoff (Ureier).Am Aufbau des Stratum granulosum der Follikel haben neben Abkömmlingen des Oberflächenepithels des Eierstockes auch vitalspeichernde Zellen bindegewebiger Herkunft mit Anteil. Bei den bereits größeren in der Ovarialoberfläche außerhalb der Tunica albüginea zur Entwicklung gekommenen Eiern finden sich vorwiegend Zellen bindegewebigen Charakters an Stelle des Stratum granulosum.Das Speicherungsvermögen für Trypanblau erlischt in den aus dem Bindegewebe stammenden Granulosazellen zu dem Zeitpunkt, wo der einschichtige Granulosazellmantel von einem allseitig in sich geschlossenen, lockeren Bindegewebsnetz umgeben ist. Die Zellen der Granulosa junger Primärfollikel sind trotz ihrer allmählich bereits erkennbar werdenden Formverschiedenheit frei von vitaler Farbstoffeinlagerung.Erst nach Einsetzen der Liquorbildung entwickeln sich im Stratum granulosum zwei in Form und Farbstoffspeicherungsvermögen deutlich verschiedene Zelltypen. Der syncytiale Zelltyp zeigt mit zunehmendem Alter der Follikel an Zahl zunehmende stäubchenförmige Farbstoffgranula. Der abgerundete, mehr epitheliale Zelltyp der Granulosa ist frei von vitaler Farbstoffeinlagerung.Das Auftreten von Farbstoffspeicherung in Granulosazellen ist nicht nur mit Eisler als Ausdruck einer stärkeren Durchströmüng derselben, sondern vielmehr als Ausdruck ihrer beginnenden Umdifferenzierung zu werten. Die weitere Abwandlung dieser Zellen, vor allem im Corpus atreticans, vollendet die bereits im normalen Follikel eingeleitete Umdifferenzierung.Vereinzelt finden sich in fast reifen normalen Follikeln abnorm stark grobschollig Trypanblau speichernde Granulosazellen, die sich unter erheblicher Vergrößerung und Vakuolenbildung im Protoplasma aus dem syncytialen Verband lösen und im Liquorraum zerfallen (örtlich begrenzter langsamer Beginn der Follikelatresie in de Graafschen Follikeln).Die Entstehung des Liquor folliculi darf jedoch keinesfalls mit dem Untergang von Granulosazellen in Zusammenhang gebracht werden. Der von Vitalfarbstoff freie Liquor ist lediglich als Transsudat aufzufassen.Bei Eintritt der Follikelatresie zeigen die Granulosazellen zwei grundsätzlich verschiedene Möglichkeiten ihres Verhaltens: chromatolytische Entartung und progressive Umwandlung; auch letztere endet schließlich meist in degenerativen Formen, wie das auch die Art der Farbstoffspeicherung dartut. Beide Reaktionsarten der Granulosa sind durch fließende Übergänge miteinander verbunden. Bei dem Typ der progressiven Umwandlung des Stratum granulosum scheinen kleinere peripher gelegene Zellgruppen noch längere Zeit unverändert weiter zu leben. Die Beziehung dieser Zellgruppen zur interstitiellen Drüse können an Hand des untersuchten Materials nicht beurteilt werden.Lebendige Eizellen sind stets frei von vitalem Farbstoff; erst totes Eimaterial zeigt Anfärbung mit Trypanblau.Junge Oocyten können im Gegensatz zu älterem Eimaterial bei beginnender Follikelatresie häufiger noch mit dem Versuch einer Umdifferenzierung antworten, der jedoch bald mit dem Eitod endet.Die starke Farbstoff speicherung in den Polkörperchen noch vollständig gesunder Follikel zeigt, daß der Vitalfarbstoff auf intrazellulärem Weg durch das Stratum granulosum geleitet wird. Die Tatsache der Farbstoffspeicherung im Polkörperchen gibt Berechtigung zu der Annahme, daß die Zona pellucida lediglich eine von Granulosazellen ausgeschiedene Interzellularsubstanz darstellt, die noch von Fortsätzen der Coronazellen durchbrochen ist. Die eigentliche Stoffwechselgrenzmembran des Eies ist seine verdichtete Zelloberfläche, das Oolemma.Die verschiedenen Bilder der Follikelatresie legen die Vermutung nahe, daß der Vorgang der Follikelatresie entweder durch den primären Eitod oder durch den Zerfall der Granulosa eingeleitet wird. Die durch primären Eitod eingeleitete Follikelatresie ist gekennzeichnet durch den unter dem Bilde der Caryolyse erfolgenden Eitod und die progressive Umwandlung der Granulosa. Die durch den Zerfall der Granulosa eingeleitete Follikelatresie verläuft besonders in jungen Follikeln noch häufig mit Teilungsversuchen des Eies; sie ist identisch mit der von Flemmikg beschriebenen chromatolytischen Atresie der Follikel.  相似文献   

10.
Zusammenfassung Bei supravitaler Fixierung und Anwendung besonderer Färbetechnik lassen sich in zahlreichen Nucleoli der Nervenzelle bei einer Reihe von Säugetieren vielfältige Strukturen erkennen, welche auch mit der Phasenkontrastoptik nachweisbar sind. Es läßt sich nachweisen, daß aus diesen Strukturen, die als Innenkörperchen bezeichnet werden. die Vakuolen entstehen, welche auf Grund des morphologischen Substrates als ein physiologisches Produkt des Nucleolus anzusehen sind. Damit erfahren die Vorstellungen von Körner (1937), C. und O. Vogt 1946, 1947) u. a. eine weitere Stütze.Die Untersuchungen wurden durch die Unterstützung der Deutschen Forschungsgemeinschaft ermöglicht.  相似文献   

11.
Zusammenfassung Die im vorstehenden mitgeteilten Beobachtungen an den menschlichen Nebennieren bedeuten eine neuerliche Bestätigung meiner Auffassung, daß viele Gewebe nach der Geburt durch amitotische Vorgänge (Phänoschisis und Endoschisis) wachsen, wobei dieses Wachstum nach dem Gesetz der Verdoppelung des Volumens in konstanten Proportionen erfolgt (Endoamitose).Dieser gleiche Vorgang des amitotischen Wachstums tritt auch in Erscheinung, wenn es sich um den Ersatz von zugrunde gehenden Zellen handelt. Da der Ausfall an solchen Zellen jeweils verschieden groß ist, so ist naturgemäß auch die Zahl der in einem Gewebe zu beobachtenden Amitosen sehr verschieden; ja manchmal kann man in einem Gewebe überhaupt keine sicheren Amitosen beobachten, um in dem gleichen Gewebe eines anderen Individuums wieder viele Amitosen zu beobachten. In dem Markgewebe der menschlichen Nebenniere habe ich dieses Schwanken in der Menge der Amitose ebenfalls feststellen können.Wachstum und Regeneration als verschiedene Erscheinungsformen der gleichen Fähigkeit der lebenden Substanz erfolgen also auch in dem Markgewebe der Nebenniere des erwachsenen Menschen auf dem Wege der Amitose. Mitosen konnte ich nicht beobachten, doch kann unter besonderen Bedingungen gelegentlich auch Teilung durch Mitose auftreten (vgl. Kolmer 1918).Hinsichtlich des Cytozentrums konnte festgestellt werden, daß auch dieses bei Gelegenheit der Amitose eine innere Teilung durchmacht, so daß dann bei den Zellen mit zwei großen Kernen vier Zentriolen vorhanden sind; ebenso kann man auch in Zellen mit einem einzigen großen Kern gelegentlich vier Zentriolen beobachten, doch finden sich in anderen Zellen mit einem großen Kern auch nur zwei Zentriolen, was als innere Teilung (Endoschisis) gedeutet wird.  相似文献   

12.
Zusammenfassung Am Auerbachschen Plexus im Darm bei Katze und Kaninchen läßt sich ein Maschenwerk erster und zweiter Ordnung, sowie ein feines der Ringmuskelschicht direkt aufliegendes Tertiärgeflecht unterscheiden. In den Nervenbündeln aller drei Geflechte finden sich reichlich Schwannsche Kerne vor.Die Ganglienzellen des Auerbachschen Plexus befinden sich hauptsächlich im Maschenwerk erster Ordnung, kommen aber auch noch vereinzelt in den Maschen des Sekundärgeflechts vor. Es lassen sich an den Ganglienzellen zwei verschieden gebaute Zelltypen im Sinne Dogiels unterscheiden. Typus 2 wird durch multipolare Zellen repräsentiert, deren zwei bis sechs lange Fortsätze sich meist dichotomisch aufteilen und Neurit und Dendriten nicht unterscheiden lassen. Die Endigungsweise der Fortsätze war nicht feststellbar. Über die Funktion des Zelltypus 2 lassen sich keine bestimmten Angaben beisteuern.Der Zelltypus 1 ist gewöhnlich durch einen einzigen langen Fortsatz und zahlreiche, sich häufig verästelnde kurze Fortsätze ausgezeichnet. Gelegentlich kommen auch zwei lange, an den entgegengesetzten Polen der Zelle entspringende Fortsätze zu Gesicht. Die kurzen Fortsätze endigen mit ungeheuer feinen fibrillären Verbreiterungen, welche, ähnlich einem periterminalen Netzwerk, manchmal in das Plasma der glatten Muskelfasern oder in das Endothel der Kapillaren hinein versenkt sind.Mit der Nisslmethode läßt sich in den Ganglienzellen des Auerbachschen Plexus eine sehr feine Tigroidsubstanz darstellen; sie erscheint bei der Katze kleinschollig, beim Kaninchen diffus verteilt.Der Meissnersche Plexus submucosus besteht aus mehreren, verschieden gebauten, etagenartig übereinander geschichteten Nervengeflechten. Am weitesten peripher, also direkt an die Ringmuskelschicht grenzend, liegt der Plexus entericus internus (Henle). Die übrigen in der Submukosa befindlichen Geflechte bilden den Plexus submucosus im engeren Sinne. Der Plexus entericus internus weist in der Konstruktion eine beträchtliche Ähnlichkeit mit dem Auerbachschen Geflecht auf; nur sind seine Nervenbündel schmäler, seine Maschen kleiner und unregelmäßiger und die Anhäufungen der Ganglienzellen in geringerem Umfang ausgebildet als im Auerbachschen Plexus.Im Meissnerschen Plexus des Dünndarmes von Katze und Kaninchen lassen sich ebenfalls zwei Arten von Ganglienzellen unterscheiden: Typus 1 mit vielen kurzen und einem oder zwei langen Fortsätzen; Typus 2 mit ungefähr zwei bis fünf langen Fortsätzen (Katze) oder mit sieben und mehr langen Fortsätzen (Kaninchen).Die Ganglienzellen des Auerbachschen Plexus sind meistens in einen dichten Filz feinster Nervenfäserchen eingehüllt, welche in ihrer Gesamtheit jedoch nicht als Endkorb zu betrachten sind. Gelegentlich dringt eine allerfeinste Terminalfaser in das Innere einer Ganglienzelle ein. Anastomotische, plasmatische Verbindungen zwischen benachbarten Ganglienzellen vom Typus 1 kommen sicher vor; benachbarte Ganglienzellen vom Typus 2 zeigen niemals anastomotische Verbindungen ihrer Fortsätze.Der Auerbachsche Plexus des Menschen unterscheidet sich in Größe und Gestaltung seiner Maschen von demjenigen der Katze und des Kaninchens. Er läßt ein Primär- und Sekundärgeflecht erkennen. Der Meissnersche Plexus submucosus besteht aus mehreren etagenförmig übereinander gelagerten Geflechten; am weitesten peripher liegt der Plexus entericus internus (Henle), der durch die Feinheit seiner Bündel und Ganglien und durch die Unregelmäßigkeit in der Größe und Anordnung seiner Maschen von der Konstruktion des Auerbachschen Plexus erheblich abweicht. Die Geflechte des Plexus submucosus im engeren Sinne nehmen, je näher sie der Muscularis mucosae liegen, an Feinheit ihrer Maschen und Bauelemente zu.Das Tertiärgeflecht des Auerbachschen Plexus bei Kaninchen und Katze ist durch eine außerordentliche Feinheit seiner Fäserchen ausgezeichnet; letztere sind in das Schwannsche synzytiale Leitgewebe eingebettet und dringen allmählich in die Ringmuskelschicht ein.Die interstitiellen Zellen sind mit den Schwannschen Zellen, Lemnoblasten, Leitzellen, peripheren Neuroblasten der Autoren identisch. Sie bilden das Leitgewebe oder Schwannsche Synzytium und können verschiedener Abkunft sein. Man kann — physiologisch gedacht — das Schwannsche Leitgewebe gemeinsam mit den in seinem Plasma eingebetteten Nervenfäserchen als ein nervöses terminales Plasmodium bezeichnen.Das nervöse terminale Plasmodium ist sehr schön in der Tunica propria der Darmzotten zu beobachten.In der Ringmuskelschicht findet sich ebenfalls das Schwannsche nervöse Synzytium vor. Einzeln verlaufende, feinste Nervenfäserchen mit kleinen fibrillären Netzchen wurden teils zwischen, teils innerhalb (?) der glatten Muskelfasern beobachtet. Eine eigentliche intraprotoplasmatische Endigung in der glatten Muskulatur ließ sich nicht finden. Auch in der Ringmuskelschicht wurden Ganglienzellen bemerkt.Außer den gewöhnlichen Kapillarbegleitnerven konnten mehrmals direkte Beziehungen zwischen der Kapillarwand einerseits und dem Fortsatz einer Ganglienzelle und Nervenfasern andererseits nachgewiesen werden.Die Submukosa des menschlichen Magens zeigt im Pylorusabschnitt eine außerordentlich reichliche Innervation. Die Maschen des Plexus submucosus sind sehr unregelmäßig; es kommen ferner unipolare, bipolare und multipolare Ganglienzellen von jeder erdenklichen Größe vor.In der Schleimhaut des Pylorus und in der Regio praepyloric a des menschlichen Magens lassen sich in der Submukosa eigentümliche, gewundene Nervenfasern beobachten, die in einem besonderen synzytialen Leitplasmodium einherziehen. An zirkumskripten Stellen von sehr verschiedener Ausdehnung können die Nervenfasern durch eine mannigfache Anhäufung zahlreicher Windungen nervöse Schlingenterritorien entstehen lassen.In einem gewundenen plasmatischen Leitstrang können mehrere Nervenfasern verschiedenen Kalibers verlaufen. Ein Teil dieser Nervenfasern nimmt von unipolaren, in der Submukosa befindlichen Ganglienzellen seinen Ursprung. Im übrigen finden sich in der Pylorusregion des menschlichen Magens reichlich Ganglienzellen, sowohl vereinzelt, wie in kleinen Ganglien angehäuft, vor.Vielleicht bilden die gefundenen Schlingenterritorien ein einheitliches nervöses Überwachungssystem für die Tätigkeit der Pylorusmuskulatur. Möglicherweise spielen sie auch bei der Entstehung des Magengeschwürs eine Rolle.Die Untersuchungen wurden mit Unterstützung der Deutschen Forschungsgemeinschaft ausgeführt.  相似文献   

13.
Zusammenfassung Der Erregungsverlauf im Ocellus und im Ocellusnerven sowie die entsprechenden Kennlinien und Kenndaten werden verglichen.Die bisher an anderen Insekten gewonnenen elektrophysiologischen Ergebnisse über die Form der Elektroretinogramme der Ocellen sind mit denen der vorliegenden Arbeit vergleichbar.Der Begriff der physiologischen Komponente wird definiert.Die langsamen Spannungsschwankungen des Elektroretinogramms und die Nervenimpulse sind zwei physiologische Komponenten der Summenableitung aus dem Ocellusnerven.Aus den Kenntnissen über Bau und Elektrophysiologie der Ocellen ergibt sich zusammengefaßt folgendes Bild von den Eigenschaften und der Leistungsfähigkeit dieser Sinnesorgane: Die Ocellen sind phasischtonische Rezeptoren, die alle drei Parameter elektromagnetischer Schwingungen, die Beleuchtungsstärke, die Wellenlänge und die Dauer der Einwirkung dieser Schwingungen percipieren und das Zentralnervensystem darüber informieren können. Ein Bildsehen schließen die optischen Eigenschaften des dioptrischen Apparates aus. Mit der schnellen Adaptation ist bei den Ocellen gut fliegender Insekten wie bei den Facettenaugen (Autrum 1950) ein hohes zeitliches Auflösungsvermögen verbunden. Entsprechend den phasischen Eigenschaften (Erregungsspitze) sind die Ocellen zur empfindlichen Registrierung von Helligkeitsänderungen besonders geeignet. Dieser Umstand läßt es geraten erscheinen, bei künftigen Verhaltensversuchen nicht, wie frühere Autoren eine stationäre Belichtung, sondern kurz aufeinanderfolgende Helligkeitsänderungen (Flimmerlicht) zu verwenden. Daneben liefern aber die Ocellen auch eine Information über absolute Helligkeiten, und zwar durch die stationäre Entladung, deren Frequenz im Dunkeln am größten ist und mit zunehmender Beleuchtungsstärke abnimmt.Mit Unterstützung durch die Deutsche Forschungsgemeinschaft.  相似文献   

14.
Zusammenfassung Die einzelnen Zellen des Tintendrüsenepithels im Tintenbeutel von Sepia arbeiten völlig ungeordnet. Das Sekret, Schleim und Pigmentkörnchen wird merokrin abgegeben.Das von Graupner und Fischer festgestellte reversible Kernwachstum steht in Zusammenhang mit der Differenzierung der embryonalen Zelle zur Drüsenzelle und ihrer späteren Degeneration und kann nicht in unmittelbare Beziehung zu den wiederholten Pigmentbildungsperioden gebracht werden. Eine Chromidienbildung ist mit Sicherheit auszuschließen.Das Chondriom läßt keine unmittelbare Beteiligung an der Melaninbildung erkennen. Bei den als Chondriom bezeichneten Strukturen (Turchinj, Graupner und Fischer) handelt es sich um das typische Ergastoplasma einer Drüsenzelle.Nach der mitotischen Vermehrung der Epithelzellen in der Bildungszone neuer Drüsensepten erfolgt eine deutliche polare Differenzierung in das basophile Fußplasma, das in entsprechend fixierten Präparaten fibrilläre Ergastoplasmastrukturen zeigt, in die Zone der Pigmentgranulabildung über dem Zellkern und in den schleimerfüllten Zellapex, der nur bei den stärker beladenen Zellen mit fertigen, winzigen Melaninkörnchen angefüllt wird und bewimpert ist.Die Bildung der Pigmentkörnchen geht von typischen Lipochondrien aus, die sich vergrößern und reich zerteilen, wobei das Pigment zunächst in der Rindenzone der Abschnürungsgranula in Form von Kappen, Buckeln und aufsitzenden Körnchen erscheint. Die Lipochondrien sind osmiophil und basisch vital färbbar. Sie geben während der Melaninbildung positive Rongalitweißreaktion. — Die Morphogenese der Pigmentkörnchen entspricht damit in den Hauptzügen — bis auf die Anteilnahme eines typischen Golgi-Apparates — der Proenzymgranulabildung in der Pankreaszelle der weißen Maus.  相似文献   

15.
Zusammenfassung Der Aufsatz verfolgte den Zweck, den Einfluß der Vorbehandlung der Membran fixierter Epithelzellen zu erforschen.Eine große Versuchsreihe bestätigt die ungemeine Veränderlichkeit und Empfindlichkeit der Membran den geringsten Veränderungen der Behandlung und der Reagenzien gegenüber. Eine völlige Inversion im histologischen Bilde ist sogar schon bei einer Veränderung der Konzentration eines einzigen der in der Farbenmischung enthaltenen Komponenten zu erreichen. Diese Inversion findet einerseits ihre Erklärung in der Färbungstheorie von Moellendorf, Kopaczewski und Rosnovski (Färbung der flüssigen Phase mit saueren Farben, die der festen mit basischen), andererseits in der Fähigkeit der Membran zur Ultrafiltration. Die Membran ist nicht etwas Statisches, Unveränderliches, sondern unterliegt sogar am fixierten Objekt einer Veränderung; auch schon die filtrierende Substanz ändert beim Durchtritt durch das Filter ihre Eigenschaft.Die Membran der Epithelzelle ist nicht nur eine Grenzlinie zwischen den Zellen, sondern stellt eine den ganzen Zellkörper einhüllende Schicht dar, die obere, seitliche und untere Wände besitzt. Die in diesem Aufsatz niedergelegten Versuchsresultate bestätigen die Sätze in den vorhergehenden Arbeiten der Verfasser bezüglich eines künstlichen oder natürlichen Abreißens der Membran, oder der Membran einschließlich Protoplasma und Kern.So, wie bei den Erythrozyten ist die Membran in den Epithelzellen fest mit den Kernen verbunden, womit auch das Abreißen der Kerne bei der Membranablösung zu erklären ist. Mit Ausnahme der Fälle, in denen es sich um gestörte Kerne oder deren flüssige Phase handelt, färben sich Kern und Membran mit der gleichen Farbe, das Protoplasma dagegen mit einer anderen. Sowohl die Kerne, wie die Membranen können sich mit saueren wie basischen Farben färben, jedoch bei intakten Kerneu niemals mit der Farbe, mit der sich das Protoplasma färbt. Diese Ergebnisse widersprechen der Annahme Unnas von der Anwesenheit gleicher Eiweiß-komponenten im Körper und Kern der Zelle.Es lassen sich die Resultate dieses Aufsatzes dahin zusammenfassen, daß die Unnaschen saueren Kerne nicht aus dem Globulin des Kernes stammen, sondern Kernreste sind, die aus der flüssigen Phase seiner Kolloide herrühren. Die Kerne des Plattenepithels, als Teile der Kernes, färben sich im Gegensatz zu den ganzen Kernen stets mit der Farbe, in der das Protoplasma gefärbt ist, d. h. in der Mehrzahl der Fälle mit saueren Farben. Alle hier erhaltenen Resultate lassen es verständlich erscheinen, warum der Kern sich plötzlich nicht mit der ihm zukommenden Farbe färbt, gestatten ferner eine Orientierung, wo es sich um intakte Zellen handelt, wo das seiner Membran entblößte Protoplasma und die Membran allein vorhanden ist. Die Erkenntnis der Rolle der Ultrafiltration in der Färbung der Zellen und der Tatsache, daß sauere Farben den flüssigen Teil der Kolloide und basische den festen Teil färben, lassen die Beziehungen der Phasen in der Zelle kennen lernen und die feinere Struktur der Zellen erforschen.Die von Schaffer beschriebene Froschhaut, die aus zwei Schichten Plattenepithel besteht, erwies sich bei der Mazeration als nur aus einer isoprismatischen Zellschicht bestehend; dieses Epithel bedeckt nur die Fußoberfläche, die ganze übrige Oberfläche der Haut ist mit Plattenepithelien bedeckt, die durch Abschichtung des isoprismatischen Epithels erhalten werden.  相似文献   

16.
Zusammenfassung Am Dünndarmepithel der Maus werden die Wirkungen von blutisotonischen Elektrolytlösungen untersucht. Einleitend werden einige physikalisch-chemische Grundlagen über den Einfluß der Elektrolyte auf lyophile Emulsionskolloide des Protoplasmas besprochen.Blutisotonische NaCl-Lösung führt nach 10 min Einwirkungsdauer im elektronenmikroskopischen Bild zu keiner morphologischen Veränderung der Dünndarmepithelzellen des Dursttiers. Verschiedene Zustandsformen im Fixierungsbild des Kerns werden auf einen wechselnden Hydratationszustand zurückgeführt. KCl führt in blutisotonischer Konzentration zur osmotischen Schwellung der Zellen. Es wird versucht, die Verbindung mit einer von Conway, Küsel und Netter entwickelten Theorie zu schaffen, nach der die osmotische Stabilität der Zellen durch zwei gegeneinandergeschaltete Donnan-Systeme gesichert wird. Ein Zusammenhang zwischen Spannungsveränderungen an Membranen und Depolarisation sowie zwischen dem Auftreten niedermolekularer Stoffwechselprodukte im Zytoplasma und der Stoffwechselwirkung des K+-Ions wird vermutet.In Verbindung mit den Befunden nach der Gabe von blutisotonischem MgCl2 werden die verschiedenen Ursachen für eine Schwellung von Mitochondrien besprochen. Die von diesem Erdalkaliion differenten Wirkungen des CaCl2 werden teilweise auf die konträre Stoffwechselwirkung des Ca2+ zurückgeführt. Dabei wird ein Einfluß auf kontraktile Proteine vom Actomyosintyp in den Mitochondrienmembranen diskutiert.Durchgeführt mit dankenswerter Unterstützung durch das Kultusministerium des Landes Nordrhein-Westfalen und die Deutsche Forschungsgemeinschaft.  相似文献   

17.
Zusammenfassung Das Ganglion coeliacum von 30 Menschen im Alter von 2–86 Jahren mit den verschiedensten Krankheiten und unterschiedlicher Todesursache wurde nach der Methode Bielschowsky-Gros untersucht.Der Bau von gesunden Ganglienzellen mit ihrem Hüllplasmodium aus dem Ganglion solare wird beschrieben. Ferner werden verschiedene Erkrankungsformen des Nervengewebes an der Ganglienzelle, ihren Fortsätzen und dem zugehörigen Hüllplasmodium geschildert.Tumorartige Bildungen werden im Ganglion solare beobachtet. An Hand pathologischen Wachstums wirdgezeigt, daß bei der Entwicklung von Nervenfasern der Ganglienzelle, dem Hüllplasmodium, dem Schwannschen Gewebe und dem Bindegewebe ein formativer Einfluß zukommen muß.Die pathologischen Erscheinungen im Ganglion solare des Menschen treten nicht nur an einzelnen Zellen oder in mikroskopisch kleinen Bezirken auf. In der weitaus überragenden Mehrzahl der Schnitte sind die Ganglien in ausgedehntem Maße von krankhaften Vorgängen ergriffen.Anlage, Alter des Menschen und die im Laufe des Lebens durchgemachten Erkrankungen verleihen jedem Ganglion solare ein unterschiedliches und für jeden Menschen individuelles Gepräge. Demnach dürfte neben dem Zentralnervensystem auch dem vegetativen Nervensystem bei dem Thema Individualanatomie eine besondere Bedeutung zukommen.  相似文献   

18.
Zusammenfassung Nun könnte man aber einwenden, es wäre wohl denkbar, daß die Chromosomenzahl in der Plumula und in Wurzelspitzen 18, in Pollenmutterzellen 9 beträgt, ferner daß die Keimpflanzen und außerdem jene geschoßten Exemplare, die bekanntlich schon im ersten Jahre blühen, ohne daß es zur Kopfbildung kommt, in den Körperzellen normal diploid sind, damit sei aber noch nicht bewiesen, daß dies auch bei den Chromosomengarnituren des oft riesigen Krautkopfes der Fall ist. Vielmehr könnte im Verlaufe der ontogenetischen Entwicklung auf ähnliche Weise, wie sie H.Winkler (1916) in Körperzellen geschildert hat (siehe Zitat auf Seite 107), Tetraploidie entstehen, welche mit der Ausbildung des Krautkopfes in Beziehung steht, so daß dieser normalerweise in allen Zellen eine Verdoppelung der diploiden Chromosomenzahl aufweist, mithin also die wichtigste Eigentümlichkeit einer Gigas-Form besitzt. Zu dieser Annahme verleitet vor allem Fig. 37, die im Dauergewebe des Keimblattstieles gefunden wurde. Da die ausgewachsenen Blätter der Kulturrassen ebenfalls Dauergewebe vorstellen, wäre die Möglichkeit vorhanden, daß Tetraploidie dort normal sei.Die Wahrscheinlichkeit dieser Annahme wird aber vermindert, wenn man folgendes bedenkt:Wäre der Krautkopf tetraploid, dann müßten die Reduktionsteilungen der Pollenmutterzellen die doppelte haploide Zahl, also 18 Chromosomen zeigen, da doch die Blüten im zweiten Jahr aus dem Kopf des ersten Jahres hervorgehen. N.Shimotomai beobachtete in Pollenmutterzellen jedoch nur neun Chromosomen, daher dürfte der Krautkopf die normale diploide Zahl aufweisen. Allerdings wäre noch möglich, daß die Körperzellen des nächstjährigen Blütenstandes infolge somatischer Reduktionsteilungen (R. R.Gates 1912, B.Nemec 1910) wieder diploid und die aus ihnen hervorgehenden Pollenmutterzellen haploid werden, doch glaube ich, die Annahme ist zu gezwungen, um auch nur eine geringe Wahrscheinlichkeit für sich zu haben. Eine erhöhte Chromosomenzahl ist in den großen Blättern des Kopfes von Kraut und Wirsingkohl ferner deswegen kaum anzunehmen, weil die Zellen der Blattepidermis vonBrassica montana und auch vom Helgoländer Wildkohl im Durchschnitt sogar etwas größer sind, als die der Kulturrassen.Wir dürfen demnach abschließend sagen:Brassica oleracea L. var.capitata L., var.sabauda L., var.acephala DC. und var.gongylodes L. sind nach diesen Untersuchungen nichtals Riesenformen im Sinne der modernen Genetik anzusehen, nicht als Riesenformen mit vermehrter Chromosomenzahl oder vergrößerten Chromosomen.  相似文献   

19.
Zusammenfassung Die sehr zahlreichen Nervenfasern für die Thymus der Sauropsiden gehen hauptsächlich vom zervikalen sympathischen Strang, aber zum Teil auch vom Vagus und vielleicht von den ventralen Ästen der zervikalen Nerven aus und erreichen die Thymus, indem sie den Gefäßen entlang laufen.Die Faserbündelchen, in welchen man oft isolierte oder in Gruppen gesammelte sympathische Zellen antrifft, dringen in das Thymusparenchym ein und hier verästeln sie sich sehr stark. Ein kleiner Teil der Nervenfasern sind Vasomotoren, ein anderer ebenfalls kleiner Teil verschwindet innerhalb von Gruppen von epithelioiden Zellen, welche oft mit drüsenähnlichen Höhlungen versehen sind (einige von diesen epithelioiden Anhäufungen erinnern im Aussehen an dieHassall-Körperchen der Säugetiere); echte typische H. K. sind sehr selten in erwachsenen Tieren nachweisbar.Der größte Teil der Nervenfasern erreicht jedoch die myoiden Zellen und verbindet sich mit denselben. Bei Cheloniern und bei Hühnern ist der Nervenanteil, der den myoiden Elementen vorbehalten ist, wirklich übermäßig groß.Die myoiden Zellen sind bekanntlich ein oft sehr ansehnlicher Bestandteil der Thymus der Sauropsiden, wie bei anderen Wirbeltiergruppen. Sie sind regressiven und progressiven Veränderungen unterworfen: je nach den Jahreszeiten (Dustin), ebenso besonderen funktionellen Bedingungen wie Fasten, Winterschlaf (Hammar); sie zeigen beim Huhn eine Hyperplasie-Hypertrophie als Folge der Kastration und des Alters (Terni).In vorliegenden Untersuchungen sind nebenbei einige neue Tatsachen über die Morphologie der myoiden Zellen festgestellt worden, unter anderen folgende: a) ihre histologische Differenzierung während der Entwicklung tritt sehr spät ein; b) sie sind räumlich von dem retikulär-kollagenen Netze des Thymusläppchens unabhängig, und sie besitzen keine retikulosarkolemmale Membran; c) die strahlenförmige (konzentrische) oder regellose Anordnung der Querstreifung der Myofibrillen in den großen myoiden Elementen bildet sich als Resultat der Verschmelzung von vorher unabhängigen Zellen (weshalb die besprochenen Elemente echte Syncytien sind); d) im Protoplasma der myoiden Zellen finden sich Spuren von Glykogen; usw.Die Verbindungen zwischen Nervenfasern und myoiden Elementen und andere Einzelheiten der feineren Verteilung der Nervenelemente im Thymusläppchen wurden bei Cheloniern und Vögeln besonders eingehend untersucht. An der Oberfläche der myoiden Zellen bilden die Nervenfasern Windungen oder spatel-, knopf-, keulchen- oder füßchenförmige Verbreitungen, welche der myoiden Substanz anhängen (neuromyoide Verbindungen).Die Nervenfasern, welche sich durch diese Endigungsweise mit den myoiden Zellen verbinden, gehören sehr wahrscheinlich zu den postganglionären Neuronen, welche entweder im Thymus (intraparenchymale oder perivasale mikroskopische Ganglien) oder im zervikalen sympathischen Gefäßgeflecht oder im sympathischen Grenzstrang liegen.Über Wesen, Zweck und Ziel der Vagusfibern habe ich mir kein bestimmtes Urteil bilden können.Außerdem befinden sich im Thymusläppchen wenige Nervenzellen des gewöhnlichen sympathischen Typus und in größerer Zahl kleine isolierte Nervenzellen, die zweifellos mit den interstiziellen ZellenCajals zu identifizieren sind. Diese interstiziellen Neuronen befinden sich meistensin der Nähe der myoiden Zellen und liegen oft auf der Oberfläche derselben, indem sie sie mit ihren verästelten Fortsätzen umfassen. Manchmal verbindet sich ein langer und feiner Fortsatz der interstiziellen Neuronen mit einer entfernt gelegenen myoiden Zelle. Diese Nervenzellen müssen zum größten Teil alsautonome effektorische Neurone aufgefaßt werden, wegen ihrer innigen Verbindung mit der kontraktilen Substanz. Wenn eine Kontraktionsmöglichkeit der myoiden Zellen auch nicht in Abrede zu stellen ist, ist es nicht recht verständlich, was für eine nützliche Wirkung ihre Kontraktion haben könnte (darum gebrauchen wir den Ausdruck effektorisch und nicht motorisch).Man kann oft beobachten, daß an der Oberfläche einer und derselben myoiden Zelle sich sowohl Fäden von exogenen Nervenfasern, als auch verästelte Fortsätze einer kleinen interstiziellen paramyoiden Zelle ausbreiten.Obwohl in der Thymus (wie auch im Darm;Cajal) das Wesen der Fortsätze der interstiziellen Neuronen zweifelhaft ist, mangels sicherer differentialer Merkmale zwischen Neuriten und Dendriten, ist doch das Aussehen der mit den myoiden Zellen verbundenen Fasern ganz verschieden von demjenigen der Fortsätze der interstiziellen Zellen.In einigen wenigen Fällen ist es möglich, einen dünnen und langen Fortsatz (Neurit?) der interstiziellen Zelle zu verfolgen, welcher ein kleines Blutgefäß erreicht; es ist möglich, daß er längs desselben eine proximale Richtung verfolgt. Dieses Verhalten läßt die Vermutung zu, daß wenigstens einigen dieser Neuronen die Bedeutung vonrezeptorischen Neuronen zuzuschreiben sei.Die Deutung des reichen Zuflusses und der ansehnlichen Verteilung des nervösen Anteils im Thymusparenchym der Sauropsiden ist, vom Gesichtspunkt ihrer möglicherweise endokrinen Funktion, nicht leicht: Sei es, weil die Innervation anderer endokriner Drüsen histologisch nicht genau bekannt ist (mit Ausnahme der Paraganglien); sei es, weil es überhaupt zweifelhaft ist, ob die Thymus eine innere Sekretion besitzt.Es ist möglich, daß die Anwesenheit der neuromyoiden Synapsen in der Thymus (welche hier zum ersten Male hervorgehoben wird), wenn auch die myoiden Zellen nicht kontraktionsfähig sein sollten, trotzdem mit dem Kohlenhydratenstoffwechsel in Zusammenhang steht, ähnlich wie es für die neuromuskularen Synapsen des zerebrospinalen Systems angenommen wird (Roncato).Der beinahe übergroße Reichtum nervöser Verzweigungen und neuromyoider Verbindungen, besonders bei Cheloniern, legt die Vermutung nahe, daß in zyklischen degenerativen Vorgängen des Thymusparenchyms eine Zerstörung und nachfolgende übermäßige Regeneration von Nervenfasern stattfindet; andererseits läßt die Zunahme der Zahl und Verzweigung der Nervenfasern im Kapaun und alten Hahn (Terni) die begründete Vermutung zu, daß es sympathische Neuronen gibt, welche einer auch verspäteten progressiven histologischen Differenzierung ihrer Neuriten fähig sind (eine verspätete histologische Vervollkommnung des Zellenleibes und der Dendriten in sympathischen Neuronen ist schon in menschlichen Ganglien bekannt;Terni).Aus diesen Gründen lassen die voliegenden Beobachtungen über die Thymus der Sauropsiden den Gedanken aufkommen, daß die stark entwickelte autonome Innervation der Thymus in der Funktion dieses Organs eine bedeutende Rolle spielt: sei es als Sitz besonderer Reize, welche sich wahrscheinlich in den neuromyoiden Apparaten entladen, sei es, weil die Nervenfasern mit Vorrichtungen versehen sind, welche auf lokale oder allgemeine Reize mit besonderer Empfindlichkeit morphologisch reagieren.  相似文献   

20.
Zusammenfassung Die interstitielle Zelle läßt sich vielleicht als die kleinste Form einer vegetativen Ganglienzelle betrachten.Im Auerbachschen Plexus des menschlichen Colons kommen Zellen vom Typus 1 und 2 nach Dogiel und viele kleine und mittelgroße, der Form nach sehr mannigfache Gnanglienzellan vor.Der Auerbachsche Plexus zeigt eine Gliederung in ein Primär-, Sekundär- und Tertiärgeflecht. Der mit dem Auerbachschen Plexus kontinuierlich zusammenhängende Plexus muscularis profundus besitzt in verhältnismäßig spärlicher, aber gleichmäßiger Verteilung Ganglienzellen.Die großen Ganglienzellen des Meissnerschen Plexus gehören vorwiegend dem Typus 2 nach Dogiel an; daneben gibt es noch eine Fülle kleiner, teils multipolarer, teils der Form nach schwer bestimmbarer Ganglienzellen.Die an die Muscularis mucosae grenzenden Maschen des Meissnerschen Plexus sind von außerordentlicher Feinheit und enthalten auch interstitielle Zellen.Der Meissnersche Plexus geht mit feinsten, netzartigen Faserzügen ohne scharfe Grenze in den in der Schleimhaut ausgebreiteten Plexus mucosus über. Letzterer enthält zwar in seinem an die Submucosa grenzenden Gebiet noch vereinzelte kleine multipolare Ganglienzellen, weist jedoch in seinen übrigen, dem Epithel genäherten Lagen nur noch interstitielle Zellen auf.Der Plexus mucosus besitzt die Form des Terminalretikulums, den Charakter einer netzartigen Endformation des vegetativen Nervensystems, das hier afferente, efferente und (Sekretorische Nervenelemente in einer gemeinsamen plasmodialen Leitbahn beherbergt.In der Schleimhaut des Processus vermiformis entwickelt der dort ausgebreitete Plexus mucosus eine außerordentliche Zartheit und Reichhaltigkeit seiner nervösen Elemente.In einem Falle von rein neurogener Appandizitis kommen im Plexus mucosus des menschlichen Processus vermiformis bei sonst intakter Schleimhaut neuromatöse Gewebsneubildungen vor, die als das Resultat eines im Terminalretikulum zutage tretenden Wucherungsprozesses gedeutet werden können.In einem Falle von Megacolon werden schwere pathologische Veränderungen, vor allem an den Zellen und Fasern des Auerbachschen Plexus und des Plexus muscularis profundus beschrieben.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号