首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factor Xa is a central protease in the coagulation cascade and the target for many anticoagulant compounds currently under development. The preferences of the enzyme for substrates incorporating residues N-terminal to the cleavage site (P1, P2, etc.) have been elucidated, but little is known of its preferences for residues C-terminal to the cleavage site (P1', P2', etc.). The preferences of bovine factor Xa for substrate residues in the P1', P2' and P3' positions were mapped using fluorescence-quenched substrates. Bovine factor Xa, often used as a model for factor Xa, was most selective for the P2' position, less selective at the P1' position and almost completely non-selective at the P3' position. It appears that while the prime side subsites of factor Xa impose some selectivity towards substrates, the influence of these sites on factor Xa cleavage specificity is relatively low in comparison to related enzymes such as thrombin.  相似文献   

2.
Gene population statistical studies of protein coding genes and introns have identified two types of periodicities on the purine/pyrimidine alphabet: (i) the modulo 3 periodicity or coding periodicity (periodicity P3) in protein coding genes of eukaryotes, prokaryotes, viruses, chloroplasts, mitochondria, plasmids and in introns of viruses and mitochondria, and (ii) the modulo 2 periodicity (periodicity P2) in the eukaryotic introns. The periodicity study is herein extended to the 5' and 3' regions of eukaryotes, prokaryotes and viruses and shows: (i) the periodicity P3 in the 5' and 3' regions of eukaryotes. Therefore, these observations suggest a unitary and dynamic concept for the genes as for a given genome, the 5' and 3' regions have the genetic information for protein coding genes and for introns: (1) In the eukaryotic genome, the 5' (P2 and P3) and 3' (P2 and P3) regions have the information for protein coding genes (P3) and for introns (P2). The intensity of P3 is high in 5' regions and weak in 3' regions, while the intensity of P2 is weak in 5' regions and high in 3' regions. (2) In the prokaryotic genome, the 5' (P3) and 3' (P3) regions have the information for protein coding genes (P3). (3) In the viral genome, the 5' (P3) and 3' (P3) regions have the information for protein coding genes (P3) and for introns (P3). The absence of P2 in viral introns (in opposition to eukaryotic introns) may be related to the absence of P2 in 5' and 3' regions of viruses.  相似文献   

3.
Seventeen non-directed td- (thymidylate synthase-deficient) splicing-defective mutations isolated in phage T4 were localized within the catalytic core of the ribozyme. All of the mutations occur in conserved structural elements that form part of the td intron core secondary structure. Remarkably, seven of the seventeen independently isolated mutations clustered in the dinucleotide 5' element (P6[5']) of the putative two-base-pair P6 stem. An analysis of this region was undertaken by site-directed mutagenesis of the plasmid-borne td gene, leading to the following findings: First, the short P6 pairing in the td secondary structure model was verified with appropriate P6[5'] and P6[3'] compensatory mutations. Second, all P6[5'] and P6[3'] mutants are defective in the first step of splicing, guanosine-dependent 5' splice site cleavage, whereas their activity at the 3' splice site is variable. Third, residual in vitro splicing activity of the mutants altered on only one side of the P6 pairing is correlated with the ability to form an alternative two-base-pair P6 stem. Fourth, the degree to which the compensatory mutants have their splicing activity restored is highly condition-dependent. Restoration of phenotype of the compensatory P6[5']:[3'] constructs is weak under stringent in vitro conditions as well as in vivo. This sequence specificity is consistent with phylogenetic conservation of the P6 pairing elements in group I introns, and suggests either structural constraints on the P6 stem or a dual function of one or both pairing elements.  相似文献   

4.
In vitro processing of B. mori transfer RNA precursor molecules.   总被引:8,自引:0,他引:8  
R L Garber  S Altman 《Cell》1979,17(2):389-397
Ribonuclease P and 3'-5' nuclease, two enzymatic activities necessary for tRNA synthesis in E. coli, are also found in the silkgland cells of Bombyx mori. B. mori subcellular extracts containing RNAase P activity can cleave the E. coli tRNA precursor molecule endonucleolytically at the same site as the E. coli enzyme, and will also cleave in vitro all E. coli tRNA precursors (pre-tRNAs) which the bacterial enzyme recognizes. B. mori RNAase P will not cleave two E. coli RNAase P substrates that are structurally unrelated to tRNA. Pre-tRNAs from B. mori contain extra 5' and 3' nucleotides as judged by RNA fingerprinting and 5' terminal phosphate analysis. Crude silkgland extracts containing both RNAase P and 3'-5' nuclease can remove the 5' and 3' extra nucleotides from B. mori pre-tRNAs, whereas purified fractions containing RNAase P remove only 5' extra nucleotides. Only large silkworm pre-tRNAs were found to be susceptible to cleavage by B. mori RNAase P. This observation and sequence analysis of intermediates of in vitro processing reactions indicate a two-step process of pre-tRNA maturation in which extra 5' nucleotides are first removed by RNAase P and extra 3' nucleotides are then trimmed off by a 3'-5' nuclease.  相似文献   

5.
T Nomura  A Ishihama 《The EMBO journal》1988,7(11):3539-3545
The leuX gene of Escherichia coli codes for a suppressor tRNA and forms a single gene operon containing its own promoter and Q-independent terminator. An analysis of the in vitro processing of leuX precursor revealed that the processing of the 5' end took place in a single-step reaction catalysed by RNase P while the 3' processing involved two successive reactions. The endonucleolytic cleavage activity of the 3' precursor sequence was found to copurify with RNase P. Heat inactivation of thermosensitive RNase P from two independent E. coli mutants abolished the cleavage activity of both the 5' and 3' ends. These results altogether suggest that RNase P carries the activity of 3' end cleavage as well as that of 5' processing. In the presence of Mg2+ alone, the leuX precursor was found to be self-cleaved at a site approximately 13 nt inside from the 5' end of mature tRNA. The self-cleaved precursor tRNA was no longer processed by the 3' endonuclease, suggesting that the 3' endonuclease recognizes a specific conformation of the precursor tRNA for action.  相似文献   

6.
Serpins inhibit cognate serine proteases involved in a number of important processes including blood coagulation and inflammation. Consequently, loss of serpin function or stability results in a number of disease states. Many of the naturally occurring mutations leading to disease are located within strand 1 of the C beta-sheet of the serpin. To ascertain the structural and functional importance of each residue in this strand, which constitutes the so-called distal hinge of the reactive center loop of the serpin, an alanine scanning study was carried out on recombinant alpha(1)-antitrypsin Pittsburgh mutant (P1 = Arg). Mutation of the P10' position had no effect on its inhibitory properties towards thrombin. Mutations to residues P7' and P9' caused these serpins to have an increased tendency to act as substrates rather than inhibitors, while mutations at P6' and P8' positions caused the serpin to behave almost entirely as a substrate. Mutations at the P6' and P8' residues of the C beta-sheet, which are buried in the hydrophobic core in the native structure, caused the serpin to become highly unstable and polymerize much more readily. Thus, P6' and P8' mutants of alpha(1)-antitrypsin had melting temperatures 14 degrees lower than wild-type alpha(1)-antitrypsin. These results indicate the importance of maintaining the anchoring of the distal hinge to both the inhibitory mechanism and stability of serpins, the inhibitory mechanism being particularly sensitive to any perturbations in this region. The results of this study allow more informed analysis of the effects of mutations found at these positions in disease-associated serpin variants.  相似文献   

7.
Structural analogues of the sulfate donor 3'-phosphoadenosine-5'-phosphosulfate (3',5'-PAPS) were examined for their ability to inhibit dopamine and phenol sulfation by the M and P forms of phenol sulfotransferase (PST), respectively. The Ki values for each of the adenosine derivatives were calculated from the rate equation for PST. For both M and P PST, the naturally occurring product 3'-phosphoadenosine-5'-phosphate, (3',5'-PAP), was shown to be the most effective inhibitor. The weakest inhibitors of the two sulfotransferases were 5'-adenosine phosphosulfate and the three AMP derivatives, which were less than 1,000 times as effective as 3',5'-PAP. 5'-ATP, 2',5'-PAPS, 2',5'-PAP, and 5'-ADP were similar in their inhibition of M and P PST and were all approximately 100 times less effective than the natural end product. These data reveal that there is a rigid structural requirement for binding of the ribose portion of adenosine to both M and P PST that involves the groups on both the 3' and 5' positions. The effectiveness of binding to the two enzymes may depend on both steric factors as well as the distribution of negative charges on the ribose ring.  相似文献   

8.
Kinetic analysis and modeling studies of HIV-1 and HIV-2 proteinases were carried out using the oligopeptide substrate [formula: see text] and its analogs containing single amino acid substitutions in P3-P3' positions. The two proteinases acted similarly on the substrates except those having certain hydrophobic amino acids at P2, P1, P2', and P3' positions (Ala, Leu, Met, Phe). Various amino acids seemed to be acceptable at P3 and P3' positions, while the P2 and P2' positions seemed to be more restrictive. Polar uncharged residues resulted in relatively good binding at P3 and P2 positions, while at P2' and P3' positions they gave very high Km values, indicating substantial differences in the respective S and S' subsites of the enzyme. Lys prevented substrate hydrolysis at any of the P2-P2' positions. The large differences for subsite preference at P2 and P2' positions seem to be at least partially due to the different internal interactions of P2 residue with P1', and P2' residue with P1. As expected on the basis of amino acid frequency in the naturally occurring cleavage sites, hydrophobic residues at P1 position resulted in cleavable peptides, while polar and beta-branched amino acids prevented hydrolysis. On the other hand, changing the P1' Pro to other amino acids prevented substrate hydrolysis, even if the substituted amino acid had produced a good substrate in other oligopeptides representing naturally occurring cleavage sites. The results suggest that the subsite specificity of the HIV proteinases may strongly depend on the sequence context of the substrate.  相似文献   

9.
1. A comprehensive approach was taken to delineate the site of refractivity of trout to phenobarbital-type (PB-type) hepatic monoxygenase (MO) inducers. 2. Model inducers beta-naphthoflavone (BNF; 3-MC-type), and PB as well as the polychlorinated biphenyl isomers, 3,4,5,3',4',5'-hexachlorobiphenyl (3,4,5-HCB; 3-MC-type) and 2,4,5,2',4',5'-hexachlorobiphenyl (2,4,5-HCB; PB-type) were used to assess MO activities, total cytochromes P450, and [35S]-methionine incorporation into de novo synthesized microsomal protein in both trout and rats. 3. In rainbow trout immunodetection of P450 isozymes and nucleic acid hybridization of rainbow trout P(1)450 mRNA using pfP(1)450-3' (trout 3-MC-inducible, P450IA1 gene) and genomic DNA using pfP(1)450-3' or pSP450-oligo (rat PB-inducible, P450IIB1 gene) cDNAs were carried out. 4. In rainbow trout, PB and 2,4,5-HCB do not increase hepatic MO activities, total cytochromes P450, de novo synthesis of microsomal protein, levels of P450 isozymes, or levels of P(1)450 mRNA. 5. Rainbow trout have, within their genome, DNA with sequence(s) similar to rat P450IIB1, but inducibility of this P450 in trout by PB-type inducers is lacking.  相似文献   

10.
Structure-activity relationships are described for a series of succinyl hydroxamic acids 1a-o and their carboxylic acid analogues 2a-o as inhibitors of matrix metalloproteases MMP-3 and MMP-2. For this series (P1' = (CH2)3Ph, P2' = t-Bu) selectivity for the inhibition of MMP-2 was found to be strongly dependent on P3'.  相似文献   

11.
12.
Inhibition of adenosine and thymidylate kinases by bisubstrate analogs   总被引:3,自引:0,他引:3  
Potential bisubstrate analogs, in which the 5'-hydroxyl group of adenosine was joined to the phosphoryl group acceptor by polyphosphoryl bridges of varying length (ApnX, where n is the number of phosphoryl groups and X is the nucleoside moiety of the acceptor), were tested as inhibitors of human liver adenosine kinase and of thymidylate kinase from peripheral blast cells of patients with acute myelocytic leukemia. Adenosine kinase was most strongly inhibited by P1,P4-(diadenosine 5')-tetraphosphate (Kd = 30 nM) and P1,P5-(diadenosine 5')-pentaphosphate (Kd = 73 nM). Thymidylate kinase was most strongly inhibited by P1-(adenosine 5')-P5-(thymidine 5')-pentaphosphate (Kd = 120 nM) and by P1(adenosine 5')-P6-(thymidine 5')-hexaphosphate (Kd = 43 nM). In these enzymes, as in adenylate and thymidylate kinases, strongest inhibition was achieved in compounds containing one or two more phosphoryl groups than the substrates combined. These results support the view that nucleoside and nucleotide kinases mediate direct transfer of phosphoryl groups from ATP to acceptors, rather than acting by a double displacement mechanism.  相似文献   

13.
Structural modifications to the peptide deformylase inhibitor BB-3497 are described. In this paper, we describe the initial SAR around this lead for modifications to both the P2' and P3' side chains. Enzyme inhibition and antibacterial activity data revealed that a variety of substituents are tolerated at the P2' and P3' positions of the inhibitor backbone. The data from this study highlights the potential for modification at the P2' and P3' positions to optimise the physicochemical properties.  相似文献   

14.
(Hydroxyethyl)urea peptidomimetics are potent inhibitors of gamma-secretase that are accessible in a few synthetic steps. Systematic alteration of P2-P4' revealed that the corresponding S2-S4' active site pockets accommodate a variety of substituents, consistent with the fact that this protease cleaves a variety of single-pass membrane proteins; however, phenylalanine is not well tolerated at P2'. A compound spanning P2-P3' was identified as a low nM inhibitor of gamma-secretase activity both in cells and under cell-free conditions.  相似文献   

15.
Carrot roots with cavity spot lesions from eight different counties in Norway were sampled and Pythium species were isolated on selective medium. Pythium spp. were characterised morphologically and by species-specific PCR. Laboratory experiments with inoculations of carrot roots were performed. A total of 130 isolates out of 230 Pythium -like isolates tested with PCR were identified as pathogenic species of Pythium. These were P. intermedium (29%), P. sulcatum (23%), P. sylvaticum (16%), P. violae (15%) and a possible new Pythium species designated P . ' vipa ' (18%). There were some differences between geographical regions and ages of cavities regarding the frequency of the different species isolated. When rating sunken lesions in the laboratory inoculation experiments, P. ' vipa ' was the most aggressive and P. violae the least aggressive species. P. intermedium and P. ' vipa ' caused more discolouration of the infected carrot tissue than the other species. The importance of the different Pythium spp. as agents of cavity spot in Norway is discussed.  相似文献   

16.
Previously, we reported potent pentapeptidic BACE1 inhibitors with the hydroxymethylcarbonyl isostere as a substrate transition-state mimic. To improve the in vitro potency, we further reported pentapeptidic inhibitors with carboxylic acid bioisosteres at the P(4) and P1' positions. In the current study, we screened new P1' position 1-phenylcycloalkylamine analogs to find non-acidic inhibitors that possess double-digit nanomolar range IC(50) values. An extensive structure-activity relationship study was performed with various amine derivatives at the P1' position. The most potent inhibitor of this pentapeptide series, KMI-1830, possessing 1-phenylcyclopentylamine at the P1' position had an IC(50) value of 11.6 nM against BACE1 in vitro enzymatic assay.  相似文献   

17.
Recently, an X-ray co-crystal structure of our hydroxamate inhibitor IK682 and TACE [Niu, X.; Umland, S.; Ingram, R.; Beyer, B. M.; Liu, Y.-H.; Sun, J.; Lundell, D.; Orth, P. Arch. Biochem. Biophys. 2006, 451, 43-50] was published that explicitly shows the orientation of the hydroxamate and the TACE-selective 4-[(2-methyl-4-quinolinyl)methoxy]phenyl P1' group in the S1' and S3' sites. The preceding paper described a novel series of potent and TACE-selective hydantoins and we previously described pyrimidinetrione (barbiturate) inhibitors of TACE, both of which contain the same P1' group as IK682. Using this TACE-selective P1' group as an anchor, stereochemical and conformational constraints in the inhibitors, and restrictions to the active site Zn coordination geometry, we developed a highly plausible and predictive pharmacophore model that rationalizes the observed TACE activity of all three inhibitors.  相似文献   

18.
Activated Protein C (APC) inactivates factor VIIIa by cleavage at Arg(336) and Arg(562) within the A1 and A2 subunits, respectively, with reaction at the former site occurring at a rate approximately 25-fold faster than the latter. Recombinant factor VIII variants possessing mutations within the P4-P3' sequences were used to determine the contributions of these residues to the disparate cleavage rates at the two P1 sites. Specific activity values for 336(P4-P3')562, 336(P4-P2)562, and 336(P1'-P3')562 mutants, where indicated residues surrounding the Arg(336) site were replaced with those surrounding Arg(562), were similar to wild type (WT) factor VIII; whereas 562(P4-P3')336 and 562(P4-P2)336 mutants showed specific activity values <1% the WT value. Inactivation rates for the 336 site mutants were reduced approximately 6-11-fold compared with WT factor VIIIa, and approached values attributed to cleavage at Arg(562). Cleavage rates at Arg(336) were reduced approximately 100-fold for 336(P4-P3')562, and approximately 9-16-fold for 336(P4-P2)562 and 336(P1'-P3')562 mutants. Inhibition kinetics revealed similar affinities of APC for WT factor VIIIa and 336(P4-P3')562 variant. Alternatively, the 562(P4-P3')336 variant showed a modest increase in cleavage rate ( approximately 4-fold) at Arg(562) compared with WT, whereas these rates were increased by approximately 27- and 6-fold for 562(P4-P3')336 and 562(P4-P2)336, respectively, using the factor VIII procofactor form as substrate. Thus the P4-P3' residues surrounding Arg(336) and Arg(562) make significant contributions to proteolysis rates at each site, apparently independent of binding affinity. Efficient cleavage at Arg(336) by APC is attributed to favorable P4-P3' residues at this site, whereas cleavage at Arg(562) can be accelerated following replacement with more optimal P4-P3' residues.  相似文献   

19.
Kinetics of the hydrolysis of a P(1)-(7-methylguanosinyl-5') P(3)-(guanosinyl-5') triphosphate (m(7)GpppG), P(1)-(7-methylguanosinyl-5') P(4)- (guanosinyl-5') tetraphosphate (m(7)GppppG), diadenosine-5',5'-P(1),P(3)-triphosphate (ApppA), and diadenosine-5',5'-P(1),P(4)-tetraphosphate (AppppA) promoted by Cu(2+) or Zn(2+) has been investigated. Time-dependent products distributions at various metal ion concentrations have been determined by CZE and HPLC-RP. The results show that in acidic conditions, in the presence of metal ion, the predominant hydrolytic reaction is the cleavage of 5',5'-oligophosphate bridge. The 5',5'-oligophosphate bridge of the dinucleotides studied is hydrolyzed by Cu(2+) more efficiently than by Zn(2+). At the catalyst concentration of 2 mM the cleavage of the 5',5'-triphosphate bridge of m(7)GpppG was ~3.6 times faster, and that of the tetraphosphate bridge of m(7)GppppG ~2.3-fold faster in the presence of Cu(2+) compared to the Zn(2+) ion, applied as catalysts. Dependence of the rates of hydrolysis on the catalyst concentration was in some instances not linear, interpreted as evidence for participation of more than one metal ion in the transition complex.  相似文献   

20.
Methylation interference experiments reveal bases involved in three different catalytic functions of the T4-phage derived sunY self-splicing intron. RNA molecules methylated at the N-7 position of the guanine at the cofactor binding site are inactive in cofactor-dependent splicing and 3' splice-site hydrolysis. In contrast, 5' splice-site hydrolysis occurs despite methylation at this position. Specific adenines that have been implicated in docking of the P1 stem to the catalytic core are shown to be important for cofactor-dependent splicing and essential for 5' splice-site hydrolysis. Similarly, methylation of bases in the P9.0 stem, as well as C56 in J5/4, interferes with 3' splice-site hydrolysis and with the splicing reaction. All of the bases identified as important for the overall splicing reaction are also identified as essential for either the 5' or 3' splice-site hydrolysis reactions, and vice versa. It is inferred that the bases implicated in 5' and 3' splice-site hydrolysis are involved in specific interactions of the 5' and 3' splice site, respectively, with the catalytic core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号