首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Oxidative stress in the pathogenesis of preeclampsia   总被引:17,自引:0,他引:17  
The etiology and pathogenesis of the pregnancy syndrome preeclampsia remain poorly understood. There is substantial evidence to suggest that the diverse manifestations of preeclampsia, including altered vascular reactivity, vasospasm, and discrete pathology in many organ systems, are derived from pathologic changes within the maternal vascular endothelium. With the theme of endothelial cell dysfunction emphasized, this review focuses on the role of oxidative stress (an imbalance favoring oxidant over antioxidant forces) in the pathogenesis of preeclampsia. Data are summarized regarding 1) the role of the placenta in preeclampsia; 2) evidence and mechanisms of oxidative stress in the preeclampsia placenta; 3) markers of oxidative stress in the maternal circulation; and 4) the potential role of maternal dyslipidemia in generation of oxidative stress. A recurrent theme is that free radical reactions, promoted by "cross-talk" between the diseased placenta and maternal dyslipidemia, promote a vicious cycle of events that make cause and effect difficult to distinguish but likely contribute to the progression of preeclampsia.  相似文献   

2.
Preeclampsia is a pregnancy-specific disorder characterised by hypertension and proteinuria occurring after the 20th week of gestation. Delivery of the placenta results in resolution of the condition, implicating the placenta as a central culprit in the pathogenesis of preeclampsia. In preeclampsia, an inadequate placental trophoblast invasion of the maternal uterine spiral arteries results in poor placental perfusion, leading to placental ischaemia. This could result in release of factors into the maternal circulation that cause widespread activation or dysfunction of the maternal endothelium. Factors in the maternal circulation might induce oxidative stress and/or elicit an inflammatory response in the maternal endothelium, resulting in the altered expression of several genes involved in the regulation of vascular tone. This review addresses the potential circulating factors and the molecular mechanisms involved in the alteration of vascular function that occurs in preeclampsia.  相似文献   

3.
The presence of pro-coagulant and anti-coagulant components of the placental vascular endothelium and syncytiotrophoblast are essential for homeostasis. Vascular endothelium prevents blood clot formation in vivo by involving a cell surface thrombin-binding glycoprotein, thrombomodulin (TM), that activates plasma anti-coagulant protein C. The TM levels increase during pregnancy, but the fibrinolytic capacity diminishes. Since vascular lesions with placental coagulation disorders can be associated with preeclampsia (PE), we hypothesized that TM expression in the stem villous vasculature and syncytiotrophoblast of the placenta are impaired in PE. Plasma and placental tissue samples were collected from PE (n=12) and normotensive pregnant patients (n=11). Patient's gestational age was 35.7+/-1.2 (normotensive) and 30.6+/-1.5 weeks (PE). Blood samples were drawn 30 min before delivery. Serum PAI-1 and PAI-2 antigens were determined by enzyme-linked immunoabsorbent assay (ELISA). A monoclonal antibody specific for TM was used for immunohistochemical tissue staining (ABC) and the staining was quantified by semi quantitative scores. Results show no intensity differences at the apical syncytiotrophoblast between the two groups. However, in preeclamptic placenta, TM expression diminished in the endothelium of the stem villi arteries and increased in the perivascular and stromal myofibroblats in cases of severe PE. TM changes were associated with an increased PAI-1/PAI-2 ratio. It is suggested that in severe PE, the decreased placental blood flow may be due to structural and functional impairment of the endothelium of the stem villi vessels and the surrounding perivascular and stromal myofibroblast, by increasing TM expression which may modulate fetal blow flow in the villous tree.  相似文献   

4.
The cost of reproduction plays a central role in evolutionary theory, but the identity of the underlying mechanisms remains a puzzle. Oxidative stress has been hypothesized to be a proximate mechanism that may explain the cost of reproduction. We examine three pathways by which oxidative stress could shape reproduction. The “oxidative cost” hypothesis proposes that reproductive effort generates oxidative stress, while the “oxidative constraint” and “oxidative shielding” hypotheses suggest that mothers mitigate such costs through reducing reproductive effort or by pre‐emptively decreasing damage levels, respectively. We tested these three mechanisms using data from a long‐term food provisioning experiment on wild female banded mongooses (Mungos mungo). Our results show that maternal supplementation did not influence oxidative stress levels, or the production and survival of offspring. However, we found that two of the oxidative mechanisms co‐occur during reproduction. There was evidence of an oxidative challenge associated with reproduction that mothers attempted to mitigate by reducing damage levels during breeding. This mitigation is likely to be of crucial importance, as long‐term offspring survival was negatively impacted by maternal oxidative stress. This study demonstrates the value of longitudinal studies of wild animals in order to highlight the interconnected oxidative mechanisms that shape the cost of reproduction.  相似文献   

5.
Pre-eclamptic toxaemia or toxaemia has become outdated terminology for the disease of pregnancy called pre-eclampsia (PE) but, according to this hypothesis, these may be more relevant. This hypothesis is that PE is a toxaemia or poisoning of the blood that results in multi-organ dysfunction and injury, putting at risk the lives of both the infant and the mother. Yet these dysfunctions and injuries are reversible with the cessation of the pregnancy and the disease can be reduced with vitamins (antioxidants) and aspirin.This hypothesis is that the PE cascade starts with excessive shedding/embolisation of trophoblast from the placenta into the maternal venous circulation. This trophoblast embolisation (‘deportation’) is secondary either to an excessively large amount of trophoblast tissue (‘hyperplacentosis’) or to vascular trophoblast injury from a faulty uteroplacental circulation. The deported nuclear rich trophoblast is largely filtered out of the circulation in the lungs, and breaks down releasing fetal DNA. Accordingly, the level of fetal DNA in the maternal circulation rises. This DNA is then broken down in the maternal liver with the hepatocytes being presented with excessive amounts of purines for catabolism. In the hepatocytes of patients who subsequently develop PE, there is activation of xanthine oxidase (XO), the more toxic isoenzyme of xanthine oxidoreductase (XOR), with the generation of superoxide anion (O2) as a by-product. Excessive superoxide production overwhelms the normal antioxidant ability of the tissues to produce oxidative stress.In the hepatocytes, the excessive superoxide causes the peroxidation of polyunsaturated lipids to form microvesicular fat deposition. Excessive superoxide also causes hepatocellular damage with leakage of enzymes, lipids, DNA and superoxide into the circulation. In the circulation, oxidative injury of the blood corpuscles occurs releasing more DNA and accelerating purine catabolism and oxidative stress.The toxins, superoxide and the other reactive oxygen species (ROS), then travel in the arterial blood to the peripheral circulation where the microvasculature, the arterioles, capillaries, endothelial cells and venules, is injured. The damaged microvasculature leaks intravascular fluid into the extravascular compartment causing an intravascular dehydration and tissue oedema. In the kidneys, protein leaks through the damaged glomerular capillaries causing proteinuria. ROS causes arteriolar vasospasm and impairs vasorelaxation, mechanisms of hypertension. Micro-haemorrhages can occur and in the brain these, in combination with hypertension and oedema, can result in seizures or eclampsia.  相似文献   

6.
Pre-eclampsia (PE) complicates around 3% of all pregnancies and is one of the most common causes of maternal mortality worldwide. The pathophysiology of PE remains unclear however its underlying cause originates from the placenta and manifests as raised blood pressure, proteinuria, vascular or systemic inflammation and hypercoagulation in the mother. Women who develop PE are also at significantly higher risk of subsequently developing cardiovascular (CV) disease. In PE, the failing endoplasmic reticulum, oxidative and inflammatory stressed syncytiotrophoblast layer of the placenta sheds increased numbers of syncytiotrophoblast extracellular vesicles (STBEV) into the maternal circulation. Platelet reactivity, size and concentration are also known to be altered in some women who develop PE, although the underlying reasons for this have not been determined. In this study we show that STBEV from disease free placenta isolated ex vivo by dual placental perfusion associate rapidly with platelets. We provide evidence that STBEV isolated from normal placentas cause platelet activation and that this is increased with STBEV from PE pregnancies. Furthermore, treatment of platelets with aspirin, currently prescribed for women at high risk of PE to reduce platelet aggregation, also inhibits STBEV-induced reversible aggregation of washed platelets. Increased platelet reactivity as a result of exposure to PE placenta derived STBEVs correlates with increased thrombotic risk associated with PE. These observations establish a possible direct link between the clotting disturbances of PE and dysfunction of the placenta, as well as the known increased risk of thromboembolism associated with this condition.  相似文献   

7.
子痫前期是妊娠期特有疾病,是导致孕产妇及围生儿病死率的重要原因,其病因和发病机理仍未完全明确。目前,已被提出 和子痫前期的发生相关的因素包括遗传、氧化应激、异常滋养层细胞侵入、血管内皮细胞功能紊乱、营养缺乏、免疫缺陷等,其中 内皮细胞损伤导致的内皮细胞生理功能紊乱已经成为子痫前期病因学研究的热点。肿瘤坏死因子-alpha(tumor necrosis factor-alpha, TNF-alpha)在内皮细胞损害中发挥着重要作用,可能通过诱导炎性因子和血管内皮细胞黏附分子-1(VCAM-1)生成、抑制基质金属蛋 白酶(MMP)、影响血管活性物质、脂联素、瘦素和血管因子生成,介导子痫前期的发生。本文就TNF-琢与子痫前期发生的关系进行 综述。  相似文献   

8.
Mesenchymal stem cells (MSC) promise to be valuable therapeutic tools but, due to their low numbers, require considerable in vitro expansion before use. This leads to in vitro aging, the accumulation of intracellular oxidative damage, and subsequently a decreased potential for proliferation and differentiation. Optimised culture conditions might help to reduce oxidative damage in MSC in vitro, and therefore, as reduced temperature is known to reduce oxidative stress in other somatic cells, we have investigated the effect of reduced temperature on rat MSC viability, differentiation, and oxidative damage. Temperature reduction did not affect MSC viability but increased differentiation and reduced apoptosis. Oxidative-damage-related indices were improved; reactive oxide species, nitric oxide, thiobarbituric acid reactive substances, carbonyl, and lipofuscin levels were reduced and glutathione peroxidase and superoxide dimutase levels increased. Levels of antiapoptotic heat shock proteins (HSP-27, -70, and -90) were raised and levels of the proapoptotic HSP-60 reduced. These data demonstrate that culturing MSC at reduced temperature decreases the accumulation of oxidative damage and therefore would probably improve long-term viability and successful engraftment of MSC used for tissue engineering or cell therapeutic purposes.  相似文献   

9.
Heme oxygenase (HO) catalyzes the oxidation of heme to carbon monoxide (CO), biliverdin, and iron and is thought to play a role in protecting tissues from oxidative damage. There are three isoforms of HO: HO-1 (inducible), HO-2 (constitutive), and HO-3 (unknown function). Preeclampsia is characterized by an inadequately perfused placenta and areas of tissue damage. We hypothesized that damaged areas of placentas from women with PE and uncomplicated pregnancies are associated with an alteration in HO expression. Compared with microsomes isolated from morphologically normal and peri-infarct chorionic villi of pathological placentas, microsomes from infarcted chorionic villi from the same placentas had decreased HO activity measured under optimized assay conditions. There was no correlation between microsomal HO levels and activity and tissue damage in uncomplicated pregnancies. Whereas there was no significant difference in HO-1 protein levels across all regions of uncomplicated and mildly preeclamptic pregnancies, HO-2 protein levels were decreased (P < 0.05) in peri-infarct regions and infarcted chorionic villi of mildly preeclamptic pregnancies. Immunohistochemical analysis revealed an apparent decrease in both HO-1 and HO-2 protein expression in damaged tissues. HO-1 and HO-2 were immunolocalized in the syncytiotrophoblast layer of the chorionic villi, the underlying cytotrophoblast, and in the vascular endothelium. This study suggests that the ability of the chorionic villi to oxidize heme to CO, biliverdin, and iron may be compromised in areas of tissue damage in the placenta of women with preeclampsia.  相似文献   

10.
Although antioxidant systems help control the level of reactive oxygen species they may be overwhelmed during periods of oxidative stress. Evidence suggests that oxidative stress components as well as inflammatory mediators may be involved in the pathogenesis of vascular disorders, where localized markers of oxidative damage have been found. In this regard we investigated the putative antioxidant and anti-inflammatory effects of blueberry and cranberry anthocyanins and hydroxycinnamic acids against H(2)O(2) and TNFalpha induced damage to human microvascular endothelial cells. Polyphenols from both berries were able to localize into endothelial cells subsequently reducing endothelial cells vulnerability to increased oxidative stress at both the membrane and cytosol level. Furthermore, berry polyphenols also reduced TNFalpha induced up-regulation of various inflammatory mediators (IL-8, MCP-1 and ICAM-1) involved in the recruitment of leukocytes to sites of damage or inflammation along the endothelium. In conclusion, polyphenols isolated from both blueberry and cranberry were able to afford protection to endothelial cells against stressor induced up-regulation of oxidative and inflammatory insults. This may have beneficial actions against the initiation and development of vascular diseases and be a contributing factor in the reduction of age-related deficits in neurological impairments previously reported by us.  相似文献   

11.
Preeclampsia is one of the most serious pregnancy-related diseases and clinically manifests as hypertension and proteinuria after 20 gestational weeks. The worldwide prevalence is 3-8% of pregnancies, making it the most common cause of maternal and fetal morbidity and mortality. Preeclampsia lacks an effective therapy, and the only “cure” is delivery. We have previously shown that increased synthesis and accumulation of cell-free fetal hemoglobin (HbF) in the placenta is important in the pathophysiology of preeclampsia. Extracellular hemoglobin (Hb) and its metabolites induce oxidative stress, which may lead to acute renal failure and vascular dysfunction seen in preeclampsia. The human endogenous protein, α1-microglobulin (A1M), removes cell-free heme-groups and induces natural tissue repair mechanisms. Exogenously administered A1M has been shown to alleviate the effects of Hb-induced oxidative stress in rat kidneys. Here we attempted to establish an animal model mimicking the human symptoms at stage two of preeclampsia by administering species-specific cell-free HbF starting mid-gestation until term, and evaluated the therapeutic effect of A1M on the induced symptoms. Female pregnant rabbits received HbF infusions i.v. with or without A1M every second day from gestational day 20. The HbF-infused animals developed proteinuria and a significantly increased glomerular sieving coefficient in kidney that was ameliorated by co-administration of A1M. Transmission electron microscopy analysis of kidney and placenta showed both intracellular and extracellular tissue damages after HbF-treatment, while A1M co-administration resulted in a significant reduction of the structural and cellular changes. Neither of the HbF-treated animals displayed any changes in blood pressure during pregnancy. In conclusion, infusion of cell-free HbF in the pregnant rabbits induced tissue damage and organ failure similar to those seen in preeclampsia, and was restored by co-administration of A1M. This study provides preclinical evidence supporting further examination of A1M as a potential new therapy for preeclampsia.  相似文献   

12.
The placenta is a remarkable organ. In normal pregnancy its specialized cells (termed cytotrophoblasts) differentiate into various specialized subpopulations that play pivotal roles in governing fetal growth and development. One cytotrophoblast subset acquires tumor-like properties that allow the cells to invade the decidua and myometrium, a process that attaches the placenta to the uterus. The same subset also adopts a vascular phenotype that allows these fetal cells to breach and subsequently line uterine blood vessels, a process that channels maternal blood to the rest of the placenta. In the pregnancy complication preeclampsia, which is characterized by the sudden onset of maternal hypertension, proteinuria and edema, cytotrophoblast invasion is shallow and vascular transformation incomplete. These findings, together with very recent evidence from animal models, suggest that preeclampsia is associated with abnormal placental production of vasculogenic/angiogenic substances that reach the maternal circulation with the potential to produce at least a subset of the clinical signs of this syndrome. The current challenge is to build on this knowledge to design clinically useful tests for predicting, diagnosing and treating this dangerous disorder.  相似文献   

13.
One of the most important pathological consequences of renal ischemia/reperfusion (I/R) is kidney malfunctioning. I/R leads to oxidative stress, which affects not only nephron cells but also cells of the vascular wall, especially endothelium, resulting in its damage. Assessment of endothelial damage, its role in pathological changes in organ functioning, and approaches to normalization of endothelial and renal functions are vital problems that need to be resolved. The goal of this study was to examine functional and morphological impairments occurring in the endothelium of renal vessels after I/R and to explore the possibility of alleviation of the severity of these changes using mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decylrhodamine 19 (SkQR1). Here we demonstrate that 40-min ischemia with 10-min reperfusion results in a profound change in the structure of endothelial cells mitochondria, accompanied by vasoconstriction of renal blood vessels, reduced renal blood flow, and increased number of endothelial cells circulating in the blood. Permeability of the kidney vascular wall increased 48 h after I/R. Injection of SkQR1 improves recovery of renal blood flow and reduces vascular resistance of the kidney in the first minutes of reperfusion; it also reduces the severity of renal insufficiency and normalizes permeability of renal endothelium 48 h after I/R. In in vitro experiments, SkQR1 provided protection of endothelial cells from death provoked by oxygen–glucose deprivation. On the other hand, an inhibitor of NO-synthases, L-nitroarginine, abolished the positive effects of SkQR1 on hemodynamics and protection from renal failure. Thus, dysfunction and death of endothelial cells play an important role in the development of reperfusion injury of renal tissues. Our results indicate that the major pathogenic factors in the endothelial damage are oxidative stress and mitochondrial damage within endothelial cells, while mitochondria-targeted antioxidants could be an effective tool for the protection of tissue from negative effects of ischemia.  相似文献   

14.
Erectile dysfunction (ED) is a common ageing male's disease, and vascular ED accounts for the largest proportion of all types of ED. One of the mechanisms of vascular ED in the clinic is arterial insufficiency, which mainly caused by atherosclerosis, trauma and surgical. Moreover, oxidative stress damage after tissue ischemia usually aggravated the progress of ED. As a new way of acellular therapy, mesenchymal stem cell‐derived exosomes (MSC‐Exos) have great potential in ED treatment. In the current study, we have explored the mechanism of MSC‐Exos therapy in a rat model of internal iliac artery injury‐induced ED. Compared with intracavernous (IC) injection of phosphate‐buffered saline after artery injury, of note, we observed that both mesenchymal stem cells (MSCs) and MSC‐Exos through IC injection could improve the erectile function to varying degrees. More specifically, IC injection MSC‐Exos could promote cavernous sinus endothelial formation, reduce the organization oxidative stress damage, and improve the nitric oxide synthase and smooth muscle content in the corpus cavernosum. With similar potency compared with the stem cell therapy and other unique advantages, IC injection of MSC‐ Exos could be an effective treatment to ameliorate erectile function in a rat model of arterial injury.  相似文献   

15.
Preeclampsia, a hypertensive pregnancy-specific disorder, has long been analyzed for its association with cellular stress. It still remains one of the most serious complications of pregnancy. It is a multi-system disorder that affects maternal vascular function and fetal growth. The physiopathology of preeclampsia is still unclear, but an imbalance between reactive oxygen species (ROS) and antioxidants, appears to be an important contributing factor. Oxidative stress has been increasingly postulated as a major contributor to endothelial dysfunction in preeclampsia (PE). The ROS promotes lipid oxidation and are known to induce stress proteins, such as hemeoxygenase 1 (HO-1) and heat-shock protein 70 (HSP70). Embryonic and placental cells are highly sensitive to oxidative stress due to their proliferate nature. Endothelial cell dysfunction is suggested to be a part of wider maternal inflammatory reaction responsible for the clinical syndrome of preeclampsia. Part of the dysfunction in endothelial cell and trophoblast is attributed to oxidative stress developed during pregnancy. The disequilibrium in compensatory antioxidant control is proposed as a causative mechanism in the pathophysiology of preeclampsia. HSP70 acts as the secondary line of defense in systems with compromised antioxidant function. This article reviews the differential expression of HSP70 and the effect of mint-tea therapy to modulate preeclamptic oxidative damage.  相似文献   

16.
The past two decades have highlighted the pivotal role of the endothelium in preserving vascular homeostasis. Among others, nitric oxide (NO) is currently believed to be the main component responsible for endothelium dependent vasorelaxation and therefore for endothelial function integrity. Reduced NO bioavailability causes the so-called "endothelial dysfunction," which seems to be the common molecular disorder comprising stable atherosclerotic narrowing lesions or acute plaque rupture causing unstable angina or myocardial infarction. Compelling evidence is accumulating, stressing the role of oxidative stress in causing reduced NO bioavailability and subsequently endothelial dysfunction (ED). More recently, the role of endothelial cell (EC) apoptosis as a possible final stage of ED and plaque activation has been suggested. In vitro and in vivo evidence suggests a role of oxidative stress also as a putative mechanism finally leading to plaque denudation and activation through increased EC apoptosis. Thus, oxidative stress, irrespective of atherosclerotic disease stages, seems to represent a key phenomenon in vascular disease progression and possible prevention.  相似文献   

17.
The vascular endothelium is a dynamic cellular interface between the vessel wall and the bloodstream, where it regulates the physiological effects of humoral and biomechanical stimuli on vessel tone and remodeling. With respect to the latter hemodynamic stimulus, the endothelium is chronically exposed to mechanical forces in the form of cyclic circumferential strain, resulting from the pulsatile nature of blood flow, and shear stress. Both forces can profoundly modulate endothelial cell (EC) metabolism and function and, under normal physiological conditions, impart an atheroprotective effect that disfavors pathological remodeling of the vessel wall. Moreover, disruption of normal hemodynamic loading can be either causative of or contributory to vascular diseases such as atherosclerosis. EC-matrix interactions are a critical determinant of how the vascular endothelium responds to these forces and unquestionably utilizes matrix metalloproteinases (MMPs), enzymes capable of degrading basement membrane and interstitial matrix molecules, to facilitate force-mediated changes in vascular cell fate. In view of the growing importance of blood flow patterns and mechanotransduction to vascular health and pathophysiology, and considering the potential value of MMPs as therapeutic targets, a timely review of our collective understanding of MMP mechanoregulation and its impact on the vascular endothelium is warranted. More specifically, this review primarily summarizes our current knowledge of how cyclic strain regulates MMP expression and activation within the vascular endothelium and subsequently endeavors to address the direct and indirect consequences of this on vascular EC fate. Possible relevance of these phenomena to vascular endothelial dysfunction and pathological remodeling are also addressed.  相似文献   

18.
铅是一种嗜神经和嗜胎盘的毒性重金属,本综述主要是关于铅的胎盘毒性。孕期铅暴露可以导致胎盘重量减轻,滋养层增生,血管堵塞,细胞间隙增宽,血管周围大量的纤维蛋白沉积,以及粗面内质网扩张,膜上核糖体数量减少。当孕期铅暴露在一定范围内时,一氧化氮(NO),一氧化氮合酶(NOS)水平升高,以保证胎盘组织器官的正常结构和功能;进一步加重时,NO及NOS反而降低,导致胎儿-胎盘循环阻力增高,胎盘灌注量下降;孕期铅暴露时,丙二醛(MDA)升高,说明存在胎盘氧化与抗氧化系统平衡失调;基质金属蛋白酶-9(MMP-9)表达降低,而基质蛋白酶组织抑制因子-1(TIMP-1)表达增强,胎盘MMP-9/TIMP-1的表达失衡,导致滋养细胞浸润能力减弱,胎盘着床过浅,血管重铸障碍,从而影响胎盘发育及胎儿生长;染铅胎盘NF-kB的表达及血栓调节蛋白(TM)的表达明显高于对照组。NF-kB的激活又可以反式激活表皮生长因子,血小板生长因子等的表达,促进血管平滑肌细胞的增殖,细小动脉胶原纤维增加,血管痉挛性收缩;TM表达异常,说明孕期铅暴露可致胎盘血管内皮细胞损伤。总之,孕期铅暴露可引起胎盘病理及一系列的分子化学改变,从而影响胎盘功能和胎儿发育,可引起子代早产、出生体重低、智力障碍等。  相似文献   

19.
Oxidative stress has been increasingly postulated as a major contributor to endothelial dysfunction in preeclampsia (PE), although evidence supporting this hypothesis remains inconsistent. This study aimed to analyze in depth the potential role of oxidative stress as a mechanism underlying endothelial damage in PE and the pregnant woman's susceptibility to the disease. To this end, indicative markers of lipoperoxidation and protein oxidation and changes in antioxidant defense systems were measured in blood samples from 53 women with PE and 30 healthy pregnant controls. Results, analyzed in relation to disease severity, showed PE women, compared with women with normal pregnancy, to have: (1) significantly enhanced antioxidant enzyme SOD and GPx activities in erythrocytes; (2) similar plasma alpha-tocopherol levels and significantly increased alpha-tocopherol/lipids in both mild and severe PE; (3) significantly decreased plasma vitamin C and protein thiol levels; (4) similar erythrocyte glutathione content, total plasma antioxidant capacity, and whole plasma oxidizability values; (5) significantly elevated plasma total lipid hydroperoxides, the major initial reaction products of lipid peroxidation, in severe PE; (6) no intracellular or extracellular increases in any of the secondary end-products of lipid peroxidation, malondialdehyde or lipoperoxides; (7) similar oxidative damage to proteins quantified by plasma carbonyl levels, immunoblot analysis, and advanced oxidation protein products assessment; and (8) significantly elevated and severity-related soluble vascular cell adhesion molecule-1 serum levels reflecting endothelial dysfunction. No correlations were found among plasma levels of circulating adhesion molecules with regard to lipid and protein oxidation markers. Globally, these data reflect mild oxidative stress in blood of preeclamptic women, as oxidative processes seem to be counteracted by the physiologic activation of antioxidant enzymes and by the high plasma vitamin E levels that would prevent further oxidative damage. These results do not permit us to conclude that oxidative stress might be a pathogenetically relevant process causally contributing to the disease.  相似文献   

20.
The placenta plays a major role in embryo-fetal defects and intrauterine growth retardation after maternal alcohol consumption. Our aims were to determine the oxidative status and cellular and molecular oxidative stress effects on uterine myometrium and trophoblast-decidual tissue following perigestational alcohol intake at early organogenesis. CF-1 female mice were administered with 10% alcohol in drinking water for 17 days prior to and up to day 10 of gestation. Control females received ethanol-free water. Treated mice had smaller implantation sites compared to controls (p < 0.05), diminished maternal vascular lumen, and irregular/discontinuous endothelium of decidual vessels. The trophoblast giant cell layer was disorganized and presented increased abnormal nuclear frequency. The myometrium of treated females had reduced nitrite content, increased superoxide dismutase activity, and reduced glutathione (GSH) content (p < 0.05). However, the trophoblast-decidual tissue of treated females had increased nitrite content (p < 0.05), increased GSH level (p < 0.001), increased thiobarbituric acid-reactive substance concentration (p < 0.001), higher 3-nitrotyrosine immunoreaction, and increased apoptotic index (p < 0.05) compared to controls. In summary, perigestational alcohol ingestion at organogenesis induced oxidative stress in the myometrium and trophoblast-decidual tissue, mainly affecting cells and macromolecules of trophoblast and decidual tissues around early organogenesis, in CF-1 mouse, and suggests that oxidative-induced abnormal early placental formation probably leads to risk of prematurity and fetal growth impairment at term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号