首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. In 1993 the south basin of Squaw Lake, Wisconsin, U.S.A., was artificially circulated and injected with CO2 in an attempt to eliminate the massive quantities of blue-greens normally present during summer. The unmixed, uninjected north basin was the control. Despite a great difference in CO2 concentration and in pH between the two basins, their blue-green maxima began simultaneously and eventually reached the same size. The predominant algae in both basins were Aphanizomenon flos-aquae and Anabaena flos-aquae. 2. From 13 May to 9 September, experiments were done to determine the responses of photosynthesis (oxygen production) of the phytoplankton communities in both basins to changes in pH over the range 7–9. Both the north and south basins underwent two distinct shifts in the slopes of their photosynthetic responses to pH. These shifts paralleled changes in the proportion of blue-greens in their phytoplankton. 3. Experiments with additions of KHCO3 or NaHCO3 showed that the responses to pH were really responses to CO2 concentration. Therefore, the data obtained in the photosynthesis experiments were used to calculate the kinetic parameters Ks* and Vmax*. The Ks* values varied in relation to the proportion of blue-greens, with lower values during the period when blue-greens predominated. The Vmax*values showed no such systematic changes. 4. CO2 compensation and zero photosynthesis concentrations confirm that when the blue-greens dominated, CO2 was taken up much more efficiently than when the phytoplankton comprised mostly non-blue-greens. No evidence appeared suggesting direct use of bicarbonate even at pH values of 10.0. 5. Experiments with water collected seasonally from four other lakes show that Squaw Lake is not unique. In each case the response slopes (and therefore Ks* values) were high during spring when non-blue-greens were dominant, but decreased when the blue-green maximum began. 6. Experiments with individual species of algae confirm that blue-greens generally have better CO2 kinetics than do greens. 7. It is concluded that initiation of the blue-green maximum does not depend upon conditions of low CO2 concentration or high pH. However, once the blue-greens become abundant they ensure their dominance by reducing concentrations of CO2 to levels available only to themselves.  相似文献   

2.
Comparative Studies on Plastoquinones. IV. Plastoquinones in Algae   总被引:4,自引:2,他引:2  
Sun E  Barr R  Crane FL 《Plant physiology》1968,43(12):1935-1940
Plastoquinones A and C have been found in all classes of algae, including representatives of greens, yellow-greens, blue-greens, reds, browns and the flagellate, Euglena. Plastoquinone C from red and brown algae can be separated into 6 different types. An additional plastoquinone C has been found in Gigartina and Rhydomela. From chromatographic evidence this may be equivalent to plastoquinone Co, a C type with a hydroxyl group on the first isoprene unit of the terpenoid sidechain of this substituted benzo-quinone. The ubiquinone, vitamin K and α-tocopherylquinone content of several algae is also reported. The presence of plastoquinone A in all green plants and many algae indicates that it may be a functional element in photosynthesis. Our study shows that plastoquinone C is more regularly present in algae than has been previously shown.  相似文献   

3.
The effects of changes in CO2 and pH on biomass productivity and carbon uptake of Pleurochrysis carterae and Emiliania huxleyi in open raceway ponds and a plate photobioreactor were studied. The pH of P. carterae cultures increased during day and decreased at night, whereas the pH of E. huxleyi cultures showed no significant diurnal changes. P. carterae coccolith production occurs during the dark period, whereas in E. huxleyi, coccolith production is mainly during the day. Addition of CO2 at constant pH (pH-stat) resulted in an increase in P. carterae biomass and coccolith productivity, while CO2 addition lowered E. huxleyi biomass and coccolith production. Neither of these algae could grow at less than pH 7.5. Species-specific diurnal pH and pCO2 variations could be indicative of significant differences in carbon uptake between these two species. While E. huxleyi has been suggested to be predominantly a bicarbonate user, our results indicate that P. carterae may be using CO2 as the main C source for photosynthesis and calcification.  相似文献   

4.
Ecophysiology of algae living in highly acidic environments   总被引:4,自引:0,他引:4  
Gross  Wolfgang 《Hydrobiologia》2000,433(1-3):31-37
Highly acidic environments are inhabited by acidophilic as well as acidotolerant algae. Acidophilic algae are adapted to pH values as low as 0.05 and unable to grow at neutral pH. A prerequisite for thriving at low pH is the reduction of proton influx and an increase in proton pump efficiency. In addition, algae have to cope with a limited supply of carbon dioxide for photosynthesis because of the absence of a bicarbonate pool. Therefore, some algae grow mainly in near terrestrial situations to increase the CO2-availability or actively move within the water body into areas with high CO2. Beside these direct effects of acidity, high concentrations of heavy metals and precipitation of nutrients cause indirect effects on the algae in many acidic environments.  相似文献   

5.
Photosynthetic (oxygen evolution) and growth (biomass increase) responses to ambient pH and inorganic carbon (Ci) supply were determined for Porphyralinearis grown in 0.5 L glass cylinders in the laboratory, or in 40 L fibreglass outdoor tanks with running seawater. While net photosynthetic rates were uniform at pH 6.0–8.0, dropping only at pH 8.7, growth rates were significantly affected by pH levels other than that of seawater (c. pH 8.3). In glass cylinders, weekly growth rates averaged 76% at external pH 8.0, 13% at pH 8.7 and 26% at pH 7.0. Photosynthetic O2 evolution on a daily basis(i.e. total O2 evolved during day time less total O2 consumed during night time) was similar to the growth responses at all experimental pH levels, apparently due to high dark respiration rates measured at acidic pH. Weekly growth rates averaged 53% in algae grown in fibreglass tanks aerated with regular air (360 mg L-1 CO2) and 28% in algae grown in tanks aerated with CO2-enriched air (750 mg L-1 CO2). The pH of the seawater medium in which P. linear is was grown increased slightly during the day and only rarely reached 9.0. The pH at the boundary layer of algae submerged in seawater increased in response to light reaching, about pH 8.9 within minutes, or remained unchanged for algae submerged in a CO2-free artificial sea water medium. Photosynthesis of P. linearissaturated at Ci concentrations of seawater (K0.5560 μM at pH 8.2) and showed low photosynthetic affinity for CO2(K0.5 61 μM) at pH 6.0. It is therefore concluded that P. linearisuses primarily CO2 with HCO3 - being an alternative source of Ci for photosynthesis. Its fast growth could be related to the enzyme carbonic anhydrase whose activity was detected intra- and extracellularly. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
SUMMARY. Phytoplankton surveys of Cayuga Lake over the past 60 years indicate that summer algal crops have doubled and spring algal crops have increased 20-fold. The pattern of algal seasonal succession has changed from a summer maximum comprised of a mixture of diatoms, greens and blue-greens to a spring maximum comprised of diatoms followed by diminished summer levels with dominance by greens and blue-greens. Summer algal standing crop and the shift to a spring pulse are shown to be related phenomena resulting from the pattern of phosphorus loading to the lake. The combination of data on algal biomass, chlorophyll and Secchi disc transparency serve to describe the long-term trend in the lake's trophic state and demonstrate a large increase in algal standing crop in the period roughly coincidental with the advent of phosphorus-based detergents. The increase in algal standing crop from pre-1940 levels to present levels closely corresponds with that predicted by the Oglesby—Schaffner regression model from the increase in phosphorus loading due to phosphorus-based detergents.  相似文献   

7.
Marine pCO2 enrichment via ocean acidification (OA), upwelling and release from carbon capture and storage (CCS) facilities is projected to have devastating impacts on marine biomineralisers and the services they provide. However, empirical studies using stable endpoint pCO2 concentrations find species exhibit variable biological and geochemical responses rather than the expected negative patterns. In addition, the carbonate chemistry of many marine systems is now being observed to be more variable than previously thought. To underpin more robust projections of future OA impacts on marine biomineralisers and their role in ecosystem service provision, we investigate coralline algal responses to realistically variable scenarios of marine pCO2 enrichment. Coralline algae are important in ecosystem function; providing habitats and nursery areas, hosting high biodiversity, stabilizing reef structures and contributing to the carbon cycle. Red coralline marine algae were exposed for 80 days to one of three pH treatments: (i) current pH (control); (ii) low pH (7.7) representing OA change; and (iii) an abrupt drop to low pH (7.7) representing the higher rates of pH change observed at natural vent systems, in areas of upwelling and during CCS releases. We demonstrate that red coralline algae respond differently to the rate and the magnitude of pH change induced by pCO2 enrichment. At low pH, coralline algae survived by increasing their calcification rates. However, when the change to low pH occurred at a fast rate we detected, using Raman spectroscopy, weaknesses in the calcite skeleton, with evidence of dissolution and molecular positional disorder. This suggests that, while coralline algae will continue to calcify, they may be structurally weakened, putting at risk the ecosystem services they provide. Notwithstanding evolutionary adaptation, the ability of coralline algae to cope with OA may thus be determined primarily by the rate, rather than magnitude, at which pCO2 enrichment occurs.  相似文献   

8.
Blue-green algae and selection in rotifer populations   总被引:4,自引:1,他引:4  
Terry W. Snell 《Oecologia》1980,46(3):343-346
Summary Observation in natural populations of the rotifer Asplanchna girodi suggested blue-green algae may have toxic effects on rotifers. The blue-greens Anabaena flos-aquae and Lyngbya sp. were isolated from a pond in Central Florida along with three electrophoretically identified genotypes of A. girodi. When tested Anabaena had marked effect on the reproductive rate of A. girodi and the effect was different among genotypes. Likewise, Lyngbya also depressed rotifer reproduction, but required an order of magnitude higher concentration to produce the same effects as Anabaena. The toxicity of these algae was corroborated by mouse bioassays. Results clearly show these blue-greens have the capacity to differentially reduce reproductive rates of rotifer genotypes. Because of this capability blue-greens could play an important role in the ecology of natural selection in rotifer populations.  相似文献   

9.
The effect of CO2 supply is likely to play an important role in algal ecology. Since inorganic carbon (Ci) acquisition strategies are very diverse among microalgae and Ci availability varies greatly within and among habitats, we hypothesized that Ci acquisition depends on the pH of their preferred natural environment (adaptation) and that the efficiency of Ci uptake is affected by CO2 availability (acclimation). To test this, four species of green algae originating from different habitats were studied. The pH‐drift and Ci uptake kinetic experiments were used to characterize Ci acquisition strategies and their ability to acclimate to high and low CO2 conditions and high and low pH was evaluated. Results from pH drift experiments revealed that the acidophile and acidotolerant Chlamydomonas species were mainly restricted to CO2, whereas the two neutrophiles were efficient bicarbonate users. CO2 compensation points in low CO2‐acclimated cultures ranged between 0.6 and 1.4 μM CO2 and acclimation to different culture pH and CO2 conditions suggested that CO2 concentrating mechanisms were present in most species. High CO2 acclimated cultures adapted rapidly to low CO2 condition during pH‐drifts. Ci uptake kinetics at different pH values showed that the affinity for Ci was largely influenced by external pH, being highest under conditions where CO2 dominated the Ci pool. In conclusion, Ci acquisition was highly variable among four species of green algae and linked to growth pH preference, suggesting that there is a connection between Ci acquisition and ecological distribution.  相似文献   

10.
In ocean ecosystems, fluctuations in seawater pH affect CO2 fluxes, fundamentally influencing the metabolism of marine algae, especially during the early stages of macroalgal development. In this study, short-term exposure tests (minutes) and prolonged culture experiments (eight days) were performed at different pH levels to investigate the growth and photosynthetic responses of Ulva lactuca (Ulvales, Chlorophyta) germlings. Both acidified and alkalized seawater significantly depressed algal photosynthesis during short-term exposure tests. Prolonged culture in acidified or alkalized seawater also notably decreased photosynthesis rates and growth rates of U. lactuca germlings, but increased energy consumption and lipid peroxidation, indicating damage to the germlings. Our results suggested that both lowered and increased pH levels of seawater exert significant physiological stress on U. lactuca germlings.  相似文献   

11.
Synopsis Algal growth and damselfish (Eupomacentrus planifrons) territories were studied in two reef habitats at Discovery Bay, Jamaica. Damselfish territories were contiguous in the reef flat (0 to 2.5 m), where the algal composition and biomass varied from territory to territory. In contrast, on the lower reef terrace (22 m), damselfish territories were often spatially segregated. While the algal composition of the territories was more uniform on the reef terrace, the total algal biomass was lower than in the territories on the reef flat. Damselfish are largely herbivorous, and they defend their territories against most intruding fish, including a number of herbivorous species. Areas of the reef terrace outside of damselfish territories were heavily grazed by herbivorous fishes and contained only small quantities of non-crustose algae.The reef terrace territories were characterized by a multispecific turf of algae (greens, blue-greens, and reds) covering the Acropora cervicornis framework and by the leafy, brown alga, Lobophora variegata. A rapid reduction in the biomass of brown algae and filamentous algae was noted when damselfish were permanently removed from their territories. Only calcified, encrusting algae — plants apparently somewhat undesirable as fish food sources — would be common on the terrace zone of this reef if damselfish territories were absent. Damselfish territoriality may significantly influence the dynamics of some reefs by increasing the biomass of the algal turf thereby increasing; reef productivity. Since blue-green algae, potential nitrogen fixers, occur in these algal turfs, the fish may also be indirectly affecting reef nutrition.  相似文献   

12.
The short‐term and long‐term effects of elevated CO2 on photosynthesis and respiration were examined in cultures of the marine brown macroalga Hizikia fusiformis (Harv.) Okamura grown under ambient (375 μL · L?1) and elevated (700 μL · L?1) CO2 concentrations and at low and high N availability. Short‐term exposure to CO2 enrichment stimulated photosynthesis, and this stimulation was maintained with prolonged growth at elevated CO2, regardless of the N levels in culture, indicating no down‐regulation of photosynthesis with prolonged growth at elevated CO2. However, the photosynthetic rate of low‐N‐grown H. fusiformis was more responsive to CO2 enrichment than that of high‐N‐grown algae. Elevation of CO2 concentration increased the value of K1/2(Ci) (the half‐saturation constant) for photosynthesis, whereas high N supply lowered it. Neither short‐term nor long‐term CO2 enrichment had inhibitory effects on respiration rate, irrespective of the N supply, under which the algae were grown. Under high‐N growth, the Q10 value of respiration was higher in the elevated‐CO2‐grown algae than the ambient‐CO2‐grown algae. Either short‐ or long‐term exposure to CO2 enrichment decreased respiration as a proportion of gross photosynthesis (Pg) in low‐N‐grown H. fusiformis. It was proposed that in a future world of higher atmospheric CO2 concentration and simultaneous coastal eutrophication, the respiratory carbon flux would be more sensitive to changing temperature.  相似文献   

13.
Both Chlorella pyrenoidosa and Chlorella vulgaris grow equally well at 20°C aerated with ordinary air or mixtures of air with 5 or 12 per cent CO2 (5 klux continuous light). Whereas C. vulgaris relatively rapidly adapts to a higher CO2 tension, adaptation takes about 24 hours for C. pyrenoidosa. In Chlorella vulgaris pH in the range 3.6–7.6 has no apparent influence on the rate of photosynthesis in experiments having a duration of two hours. This is true both for algae grown aerated by ordinary air and for algae grown with a mixture of 5 per cent CO2 in air. The adaptation time must be short. In Chlorella pyrenoidosa the same is found for algae in ordinary air, whereas an influence of pH is seen in some experiments where the aeration was by 5 per cent CO2 in air. As is to be expected, the rate of photosynthesis in C. pyrenoidosa during the first two hours is very much influenced by the concentration of free CO2. The highest rate is found at the CO2 concentration at which the algae had been growing previously. The influence on the rate of photosynthesis in C. vulgaris is very much less, although in principle the same. The investigation of the corresponding influence on the rate of respiration is complicated by considerable variation from one series to another. In C. vulgaris this is particularly of importance. In C. pyrenoidosa, the highest rate of respiration is generally found at the CO2-concentration at which the alga had been growing before the experiment. It seems probable that variations between similar series is due to the fact that the algae were grown in continuous light but with dilution with fresh culture medium when the optical density had reached a certain magnitude. Algae grown in this way are neither synchronized nor non-synchronized.Our thanks are due to the Danish State Research Foundation for financial support.  相似文献   

14.
Crustose coralline algae (CCA) are a critical component of coral reefs as they accrete carbonate for reef structure and act as settlement substrata for many invertebrates including corals. CCA host a diversity of microorganisms that can also play a role in coral settlement and metamorphosis processes. Although the sensitivity of CCA to ocean acidification (OA) is well established, the response of their associated microbial communities to reduced pH and increased CO2 was previously not known. Here we investigate the sensitivity of CCA‐associated microbial biofilms to OA and determine whether or not OA adversely affects the ability of CCA to induce coral larval metamorphosis. We experimentally exposed the CCA Hydrolithon onkodes to four pH/pCO2 conditions consistent with current IPCC predictions for the next few centuries (pH: 8.1, 7.9, 7.7, 7.5, pCO2: 464, 822, 1187, 1638 μatm). Settlement and metamorphosis of coral larvae was reduced on CCA pre‐exposed to pH 7.7 (pCO2 = 1187 μatm) and below over a 6‐week period. Additional experiments demonstrated that low pH treatments did not directly affect the ability of larvae to settle, but instead most likely altered the biochemistry of the CCA or its microbial associates. Detailed microbial community analysis of the CCA revealed diverse bacterial assemblages that altered significantly between pH 8.1 (pCO2 = 464 μatm) and pH 7.9 (pCO2 = 822 μatm) with this trend continuing at lower pH/higher pCO2 treatments. The shift in microbial community composition primarily comprised changes in the abundance of the dominant microbes between the different pH treatments and the appearance of new (but rare) microbes at pH 7.5. Microbial shifts and the concomitant reduced ability of CCA to induce coral settlement under OA conditions projected to occur by 2100 is a significant concern for the development, maintenance and recovery of reefs globally.  相似文献   

15.
Effect of pH on Inorganic Carbon Uptake in Algal Cultures   总被引:7,自引:0,他引:7       下载免费PDF全文
Y. Azov 《Applied microbiology》1982,43(6):1300-1306
Biomass production by the green algae Scenedesmus obliquus and Chlorella vulgaris in intensive laboratory continuous cultures was considerably affected by the pH at which the cultures were maintained. Carbon photoassimilation experiments revealed that pH values in the range of 8 to 9 were important for determining the free CO2 concentrations in the medium. With higher pH values, additional pH effects were observed involving a decrease in the relative high affinity of low CO2-adapted algae to free CO2. The carbon uptake rate by high CO2-adapted algae after transfer to low free CO2 medium was characterized by a lag period of about 30 min, after which the affinity of the algae to CO2 increased considerably. Both continuous growth and carbon uptake experiments indicated that artificially maintained high free CO2 concentrations are recommended for maximal production in intensive outdoor algal cultures.  相似文献   

16.
Previous studies have shown that increasing atmospheric CO2 concentrations affect calcification in some planktonic and macroalgal calcifiers due to the changed carbonate chemistry of seawater. However, little is known regarding how calcifying algae respond to solar UV radiation (UVR, UVA+UVB, 280–400 nm). UVR may act synergistically, antagonistically or independently with ocean acidification (high CO2/low pH of seawater) to affect their calcification processes. We cultured the articulated coralline alga Corallina sessilis Yendo at 380 ppmv (low) and 1000 ppmv (high) CO2 levels while exposing the alga to solar radiation treatments with or without UVR. The presence of UVR inhibited the growth, photosynthetic O2 evolution and calcification rates by13%, 6% and 3% in the low and by 47%, 20% and 8% in the high CO2 concentrations, respectively, reflecting a synergistic effect of CO2 enrichment with UVR. UVR induced significant decline of pH in the CO2‐enriched cultures. The contents of key photosynthetic pigments, chlorophyll a and phycobiliproteins decreased, while UV‐absorptivity increased under the high pCO2/low pH condition. Nevertheless, UV‐induced inhibition of photosynthesis increased when the ratio of particulate inorganic carbon/particulate organic carbon decreased under the influence of CO2‐acidified seawater, suggesting that the calcified layer played a UV‐protective role. Both UVA and UVB negatively impacted photosynthesis and calcification, but the inhibition caused by UVB was about 2.5–2.6 times that caused by UVA. The results imply that coralline algae suffer from more damage caused by UVB as they calcify less and less with progressing ocean acidification.  相似文献   

17.
1. Oligotrophic softwater lakes represent a special type of aquatic ecosystem with unique plant communities where generalisations from other aquatic plant communities to rising CO2 in the water column may not apply. 2. In the present study, we set up large in situ mesocosms and supporting laboratory experiments with isoetid vegetation (Littorella uniflora) where water column CO2 and light could be manipulated in order to test whether (i) light and CO2 availability affect nutrient concentrations in isoetid vegetation, and (ii) if changes in light and CO2 climate affect fluxes of inorganic nitrogen (N) and phosphorus (P) from sediment to water column, which potentially could result in increased growth of epiphytic algae. 3. The results showed that the standing stocks of phosphorus and nitrogen in the L. uniflora vegetation were significantly influenced by CO2 concentration and light intensity. Both standing stocks of P and N were significantly higher in the mesocosm treatments with high CO2 concentration than in those at low CO2 concentration. Similarly, standing stocks of P and N enhanced with increasing light intensity. 4. Measurements of nutrient fluxes both in the field and the laboratory did not show any significant release of nutrients to the water column from plants or sediments at any of the light or CO2 treatments. However, mats of epiphytic algae developed from the beginning of June to late September and caused a light reduction for the isoetid vegetation. 5. Increasing CO2 concentrations in the water column may over time potentially result in a change in soft water plant communities.  相似文献   

18.
In a field microcosm experiment, species‐specific responses of aboveground biomass of two California annual grassland communities to elevated CO2 and nutrient availability were investigated. One community grows on shallow, nutrient‐poor serpentine‐derived soil whereas the other occurs on deeper, modestly fertile sandstone/greenstone‐derived substrate. In most species, CO2 effects did not appear until late in the growing season, probably because the elevated CO2 increased water‐use‐efficiency easing, the onset of the summer drought. Responses of aboveground biomass to elevated CO2 differed depending on nutrient availability. Similarly, biomass responses to nutrient treatments differed depending on the CO2 status. For the majority of the species, production increased most under elevated CO2 with added nutrients (N,P,K, and micro nutrients). Some species were losers under conditions that increased overall community production, including Bromus hordeaceus in the serpentine community (negative biomass response under elevated CO2) and Lotus wrangelianus in both communities (negative biomass response with added nitrogen). Treatment and competitive effects on species‐specific biomass varied in both magnitude and direction, especially in the serpentine community, significantly affecting community structure. Individual resource environments are likely to be affected by neighbouring plants, and these competitive interactions complicate predictions of species' responses to elevated CO2.  相似文献   

19.
Primary producers rarely exist under their ideal conditions, with key processes often limited by resource availability. As human activities modify environmental conditions, and therefore resource availability, some species may be released from these limitations while others are not, potentially disrupting community structure. In order to examine the limitations experienced by algal functional groups that characterise alternate community structures (i.e. turf-forming algae and canopy-forming kelp), we exposed these groups to contemporary and enriched levels of carbon dioxide (CO2) and nutrients. Turfs responded to the individual enrichment of both CO2 and nutrients, with the greatest shift in the biomass and carbon:nitrogen (C:N) ratios observed under their combined enrichment. In contrast, kelp responded to enriched nutrients, but not enriched CO2. We hypothesise that the differing limitations reflect the contrasting physiologies of these functional groups, specifically their methods of C acquisition, such as the possession and/or efficiency of a carbon concentrating mechanism (CCM). Importantly, our results reveal that these functional groups, whose interactions structure entire communities, experience distinct resource limitations, with some potentially limited by a single type of resource (i.e. kelp by nutrients), while others may be co-limited (i.e. turf by CO2 and nutrients). Consequently, the identification of how alternate conditions modify resource availability and limitations may facilitate anticipation of the future sustainability of major ecosystem components and the communities they support.  相似文献   

20.
We investigated the influence of CO2/HCO3 -depletion and of the presence of acetate and formate on the in vivo photosynthetic electron transport in the two green algae Chlamydobotrys stellata and Chlamydomonas reinhardtii by means of thermoluminescence technique and mathematical glow curve analysis. The main effects of the removal of CO2 from the algal cultures was: (1) A shift of the glow curve peak position to lower temperatures resulting from a decrease of the B band and an increase of the Q band. (2) Treatment of CO2-deficient Chl. stellata with DCMU yielded two thermoluminescence bands in the Q band region peaking at around +12°C and +5°C; in case of Chl. reinhardtii DCMU treatment induced only one band with an emission maximum at +5°C. The presence of acetate or formate in CO2-depleted algal cultures lowered the intensities of all of the individual TL bands but that of a HT band (TL+37). The effects of CO2-depletion and of the presence of anions were fully reversible.Abbreviations DCMU 3-(3,4)-dichlorophenyl-1,1-dimethylurea - HT band high temperature TL band - P680 reaction center chlorophyll of PS II - QA and QB primary and secondary quinone acceptors of PS II, respectively - PS II Photosystem II - S2/3 redox states of the oxygen evolving complex of PS II - TL thermoluminescence  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号